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Abstract: Stratified Taylor–Couette flow (STCF) undergoes transient growth. Recent studies have
shown that there exists transient amplification in the linear regime of counter-rotating STCF. The
kinetic budget of the optimal transient perturbation is analysed numerically to simulate the interaction
of the shear production (SP), buoyancy flux (BP), and other energy components that contributes to
the total optimal transient kinetic energy. These contributions affect the total energy by influencing
the perturbation to extract kinetic energy (KE) from the mean flow. The decay of the amplification
factor resulted from the positive amplification of both BP and SP, while the growth is attributed to the
negative and positive amplification of BP and SP, respectively. The optimal SP is positively amplified,
implying that there is the possibility of constant linear growth. These findings agree with the linear
growth rate for increasing values of Grashof number.

Keywords: bifurcation; stability; nonlinear dynamics; Taylor–Couette flow; convection; buoyancy;
thermal diffusivity

1. Introduction

The Taylor–Couette system consists of a thin layer of a viscous fluid confined between
two vertical rotating coaxial cylinders. The stability conditions for co-rotating cylinders
was first examined by [1]. Counter-rotating Taylor–Couette flow refers to the flow of a fluid
confined between two coaxial and independently rotating cylinders in opposite directions.
Stratified Taylor–Couette flow (STCF) introduces an additional layer of complexity by
incorporating density variations in the fluid. Stratification refers to the presence of density
gradients in the fluid, which can occur due to variations in temperature, salinity, or other
properties. The buoyancy effect, resulting from the density differences caused by stratifica-
tion, introduces a new dimension to the dynamics of STCF. It interacts with the rotational
forces, and its impact on the stability of the flow has been the subject of considerable
research interest [2–10]. Understanding the dynamics of stratified Taylor–Couette flow
holds relevance in many practical applications, including geophysics, oceanography, and
industrial processes in the oil and gas sector. The combination of the horizontal angular
shear induced by the cylinders and buoyancy effects due to density stratification gives
rise to intriguing patterns, transitions, and stability regimes. In recent years, numerous
studies have been conducted to better understand the underlying mechanisms and charac-
teristics of this flow regime [11,12]. This flow configuration has been extensively studied
for decades and in recent times, primarily in the absence of stratification [13–17]. Con-
versely, in the presence of stratification, the flow becomes more complex with more degrees
of freedom [18,19].

Although linear stability analysis predicts plane Couette and pipe Poiseuille flows
to be stable, they exhibit turbulence in practical scenarios for sufficiently large Reynolds
numbers, as indicated by [20–22], and recent studies [23,24]. For plane Poiseuille flow,
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an instability is predicted to occur beyond a Reynolds number around 5772; in practice, the
critical Reynolds number is found to be around 2300.

The inconsistency in these results is attributed to the non-normality of the linearised
Navier–Stokes operator, leading to transient growth in the linear regime and triggering the
transition from laminar to turbulent flow [25–27].

A recent work by Godwin et al. [28] focused specifically on the short-time instability
of STCF. To explore the short-time instability of STCF, the authors conducted a detailed
numerical investigation employing transient growth analysis techniques. The authors
analysed the transient stability of STCF by considering small perturbations to the base
flow. By systematically varying the Grashof number for various model configurations,
they were able to quantify the influence of these parameters on the transient instability
characteristics. The study sheds light on the transient instability induced by buoyancy
in counter-rotating STCF within the bounds of the linear regime considered, but it does
not capture the physical mechanism that triggers the transient bifurcation phenomena at
Grashof number Gr ≈ Grc. As in [28], the critical value Grc is the value of Gr when the
amplification factor reaches a local minimum.

There is a preference to considering these ubiquitous flows within the modal analysis
framework, but this analysis predicts linear stability for all values of the Reynolds number
R, which is contrary to experimental observations.

Transient growth exists when the eigenvectors of the system are non-normal. To
investigate transient growth, non-modal analysis is necessary, and this is the reason that
a study based on non-modal analysis is presented here. Additionally, Couette flow is
asymptotically stable according to linear theory, and since non-modal analysis determines
the largest possible growth of a perturbation in a finite time interval, also called optimal
growth, it is hoped that non-modal analysis will bridge the gap between theory and
experiment. The initial disturbance yielding optimal growth is called an optimal initial
condition, and in our study, we have also allowed for thermal disturbances. The latter
ones can be removed in a limiting process, allowing therefore the possibility of connection
between linear and nonlinear regimes.

The primary goal of this study is to explore the physical processes responsible for
triggering a transient bifurcation with specific objectives outlined as follows: developing
a linear model for STCF and conducting a numerical evaluation using the Chebyshev
collocation method, determining the least stable eigenvalue for each configuration, iden-
tifying the maximum amplification factor and optimal perturbation for the least stable
mode, and ultimately deriving and evaluating the energy budget quantities associated with
the optimal perturbation. This paper primarily focuses on the last objective, as the other
aspects have already been satisfactorily addressed in previous work [28].

Since non-modal analysis is a relatively new method of analysis, it is used here as
an important tool to predict instabilities. Nowadays, it is understood that a perturbation in
a shear flow can experience significant transient energy growth. This growth is responsible
for the initial linear amplification of disturbances and is mainly responsible for the appear-
ance of a subcritical transition to turbulence. Non-modal effects can therefore explain the
discrepancy between the observed experimental results in incompressible shear flows and
the theoretically predicted critical Reynolds number for a linear instability in wall-bounded
shear flows. We therefore need to use non-modal analysis to gain further insight into the
linear stability of Couette flow.

It is reported that as Gr increases, the maximum amplification factor initially decays
before it eventually starts growing after reaching a critical value Grc. Assuming other
parameters of the model are kept constant, the value Grc changes as a function of different
speed ratios of the cylinders. The observed decay/growth pattern of G0 is attributed to
the interplay between the induced shear and buoyancy. In this study, the mechanism that
triggers this observed pattern is investigated.

In Section 1, a brief overview of the investigated problem is presented. Section 2
focuses on deriving, linearising, and numerically discretising the governing equations
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of the STCF model. The discussion of optimal transient budget quantities is covered
in Section 3 with detailed derivations provided in Appendix A. Section 4 delves into
a comprehensive analysis of the investigation’s results. Finally, Section 5 summarises the
conclusions drawn from this study.

2. Mathematical Model

In this study, we consider an incompressible fluid between two concentric rotating
heated vertical cylinders of infinite height. The inner cylinder has radius ri, rotates with
an angular velocity of Ωi > 0 and is held at the temperature Ti = T̄ + ∆T/2, where T̄ is
the ambient temperature and ∆T is the temperature difference between the two cylinders.
The outer cylinder has radius ro, rotates with an angular velocity of Ωo < 0 and is held
at the temperature To = T̄ − ∆T/2. We assume that the density ρ varies linearly with the
temperature such that

ρ = ρo(1 − β(T − T̄)), (1)

where β = −(1/ρo)∂ρ/∂T|ρ=ρo is the coefficient of thermal expansion. We assume that
the dynamic viscosity of the fluid µ and thermal conductivity κ are constant, whilst we
define ν = µ/ρo as the kinematic viscosity. We notice we can write ρ = ρo + ρ′ where
ρ′ = −ρoβ(T − T̄).

The presence of temperature gradients with the rotating concentric cylinders induces
complex flow patterns and thermal effects. The variation in the density, due to the tem-
perature gradients, induces various buoyancy-driven flow regimes. The equations are
nondimensionalised using (bold here denotes a vector)

v =
ν

d
v̌, T = T̄ + (∆T)Ť, x = dx̌, t =

d2

ν
ť, p = pa +

ρoν2

d2 p̌,

where v̌, Ť, x̌, ť and p̌ are the dimensionless velocity, temperature, spatial coordinate, time
and pressure, with d = ro − ri. By defining η = ri/ro we can express the dimensionless
inner and outer radii as η/(1 − η) and 1/(1 − η), respectively. By dropping the accents for
convenience, the resulting dimensionless equations become

vt + (v · ∇)v = −∇p +∇2v + GrTez + ϵT(v · ∇)v, (2)

∇ · v = 0, (3)

Tt + (v · ∇)T =
1
Pr

∇2T, (4)

where ez is the unit vector in the vertical axial direction, and the Grashof number, Prandtl
number and relative density are given by

Gr =
βg∆Td3

ν2 , Pr =
ν

κ
, and ϵ = β∆T.

The dimensionless boundary conditions are given as

v = Reieθ on r =
η

1 − η
and v = Reoeθ on r =

1
1 − η

, (5)

where eθ is the unit vector in the azimuthal direction, and the inner and outer Reynolds
numbers are given by

Rei =
Ωirid

ν
and Reo =

Ωorod
ν

.

Due to the cylindrical boundaries, we perform our calculations in cylindrical polar coordi-
nates. The steady base state velocity takes the form

U(r) = Vbeθ + Wbez. (6)
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In order to have a constant pressure gradient in the axial direction, we impose the zero
mass flux constraint, namely ∫ 1

1−η

η
1−η

rWbdr = 0. (7)

The well-known analytical base state solution to this problem is given by

Vb = Ar +
B
r

, Tb =
ln((r/η)(1 − η))

ln(η)
+

1
2

, (8)

Wb =
Gr

(1 − η)2

[
C((r(1 − η))2 − η2)

+

(
C(1 − η2) +

1
8
(1 − (r(1 − η))2)

)
(2Tb(r)− 1)

]
, (9)

where the constants A, B and C are given by

A =
Reo − ηRei

1 + η
, B =

η(Rei − ηReo)

(1 − η)(1 − η2)
, (10)

and

C =
(η2 − 3)(η2 − 1) + 4 ln(η)

16(η2 − 1)((1 + η2) ln(η) + 1 − η2)
. (11)

Now, we consider small perturbations to the base state in the form

v = U + δṽ, p = Pb + δ p̃, and T = Tb + δT̃ (12)

where δ is assumed to be a small constant, Pb is the base state pressure, not presented here
for convenience, and ṽ is the perturbation to the velocity. Substituting Equation (12) into
the dimensionless Equations (2)–(4) and linearising in δ, we obtain

ṽt = −∇ p̃ +∇2ṽ + GrT̃ez + (ϵT̃ − 1)((U · ∇)ṽ + (ṽ · ∇)U), (13)

∇ · ṽ = 0, (14)

T̃t =
1
Pr

∇2T̃ − (U · ∇)T̃ − (ṽ · ∇)Tb. (15)

To perform a stability analysis on this system, we seek perturbations of the form

ṽ = v̂(r, t)ei(nθ+kz) + c.c., p̃ = p̂(r, t)ei(nθ+kz) + c.c., T̃ = T̂(r, t)ei(nθ+kz) + c.c.

where n ∈ N and k ∈ R are the azimuthal and axial wavenumbers, respectively. Substitut-
ing these expansions into the linearized Equations (13)–(15) and simplifying yields

∂û
∂t

=

(
F −H− 1

r2

)
û − ∂ p̂

∂r
−

[
2in
r2 − 2Vb

r
(1 − ϵTb)

]
v̂ −

ϵV2
b

r
T̂, (16)

∂v̂
∂t

=

(
F −H− 1

r2

)
v̂ − inp̂

r
+

[
2in
r2 − (1 − ϵTb)

(
Vb
r

+
dVb
dr

)]
û, (17)

∂ŵ
∂t

= (F −H)ŵ − ikp̂ − dWb
dr

(1 − ϵTb)û + GrT̂, (18)

0 = D+û +
in
r

v̂ + ikŵ, (19)

∂T̂
∂t

=
1
Pr

[
F − iPr

(
nVb

r
+ kWb

)]
T̂ − dTb

dr
û, (20)

where D =
∂

∂r
, D+ = D +

1
r

and
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F = D+D − n2

r2 − k2 and H = i
(

nVb
r

+ kWb

)
(1 − ϵTb).

By letting q̂ = [û, v̂, ŵ, p̂, T̂]T , we can write Equations (16)–(20) as

∂

∂t
Aq̂ = Bq̂, (21)

where

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 (22)

and

B =



F −H− 1
r2

2Vb
r (1 − ϵTb)− 2in

r2 0 −D − ϵV2
b

r

2in
r2 − (1 − ϵTb)

(
Vb
r + dVb

dr

)
F −H− 1

r2 0 − in
r 0

− dWb
dr (1 − ϵTb) 0 F −H −ik Gr

D+
in
r ik 0 0

− dTb
dr 0 0 0 F

Pr − i
(

nVb
r + kWb

)


. (23)

By assuming a solution of the form

v̂ = v̆(r)eλt, p̂ = p̆(r)eλt, and T̂ = T̆(r)eλt, (24)

we transform the initial value problem to a generalized eigenvalue problem:

λAq̂ = Bq̂, =⇒ |λA − B| = 0. (25)

The scalar eigenvalue λ is complex and defines the temporal stability of the flow. That is,
if the real part of λ is negative, the flow is stable and the amplitude of the perturbations
will decay in time. Conversely, if the real part of λ is positive, the flow is unstable and the
amplitude of the perturbation will grow asymptotically in time. Further more, in order
to define the boundary conditions, we assume that the perturbation of the velocity and
temperature of the fluid motion must vanish at the walls:

v̆(ri) = v̆(ro) = 0 and T̆(ri) = T̆(ro) = 0. (26)

In other words, we impose a homogeneous boundary condition for the velocity and
temperature perturbations at the respective walls of the cylinders.

3. Perturbation Energy Budget

The asymptotic stability approach employed in perturbation analysis can effectively
capture the length and time scales of unstable modes [29,30]. However, this method lacks
an intuitive physical interpretation of the internal processes driving the instability. To gain
a deeper understanding of the physical underpinnings of the instability, it is advantageous
to adopt a more intuitive approach [25,31–33]. Exploring the processes influencing the
kinetic energy distribution of perturbations can provide valuable insights [34–36].

The presence of kinetic energy in thermal stratified shear flow significantly impacts the
perturbation’s decay or growth process [35,37]. The perturbation process is characterized
by the conservation or transformation of energy across different states. For perturbations
to grow, an energy exchange must occur. In the case of shear flow, perturbations grow by
accessing kinetic energy. Investigating the quantities of energy sources interacting to form
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perturbation kinetic energy allows for a further understanding of the nature of induced
instability—whether it is induced by shear or buoyancy—due to transient growing modes.

To calculate the kinetic energy of the optimal perturbation, we multiply the linearized
Equations (A1)–(A4) by the complex conjugate of the optimal perturbation and evaluate
the average over the entire domain in azimuthal and axial coordinating directions. Using
the singular value decomposition method we computed the largest (negative) eigenvalues
of equation (25). The associated eigenvectors to these eigenvalues are the optimal pertur-
bations. One notes that eigenvalues remain negative as this problem is predicted to be
linearly stable even though full nonlinear simulations and experiments show this problem
to be unstable. This process yields the following energy budget equation:

dKE
dt

= SP + BP + EF + CKEV + VD (27)

where KE is the kinetic energy of the perturbation, SP is the shear production, BP is the
buoyancy production, EF is the energy flux, CKEV is the convergence of kinetic energy of
the optimal perturbation due to viscosity and VD is the viscosity dissipation. All of these
terms are defined in Appendix A.

4. Results and Discussion

Before discussing our results, it is important to acknowledge that in mixed convection
flow, shear instability can manifest when there are relatively moving shear layers of fluid.
The perturbations that arise from this instability may experience damping due to a stable
stratification because the perturbation’s energy must be expended to counteract the force of
gravity induced by the stratification. Consequently, the growth rate of these perturbations
will decrease, and the instability will be suppressed if the stratification is sufficiently strong.
These intricate processes are elucidated through the examination of the energy budget
quantities within the framework of optimal transient perturbations particularly in relation
to the amplification factor.

The kinetic budget quantities of the optimal growth perturbation are numerical in-
vestigated for different stratified STCF configurations. In Table 1, the parameter values
for the four different configurations are given. Furthermore, the critical value Grc for each
configuration is also included.

Table 1. This table displays the 4 configurations examined in [28]. Here, ratio refers to Rei/Reo.

Configuration Rei Reo Ratio n k Grc

C1 591 −2588 1:4 10 1.9940 3244.5
C2 523 −2975 1:6 11 1.9960 4804.2
C3 473 −3213 1:8 11 1.9200 5728.5
C4 405 −3510 1:9 11 1.8390 7148.2

The analysis is carried out over a range of Grashof number values along with the
following values: Pr = 68, ϵ = 0.067 and η = 0.881, with values of Rei and Reo given in
Table 1. These values are chosen to allow a comparison of the current results with those in
the literature and correspond to the experimental values in [38]. The results obtained for
the above parameter values are illustrative of the results we obtained from a larger number
of numerical simulations. To obtain sufficiently accurate results, 128 Chebyshev nodes
were used to compute the energy quantities.

The least stable modes for each configuration are first identified. The energy quantities
are computed using the optimal disturbances as inputs for each of the selected Gr values.
These values are chosen for illustrative purposes to show how the energy quantities oscillate
between the cylinders depending on the value of Gr. For a more detailed discussion on
how the amplification factor depends on Gr, please see Figure 4 of [28].
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Figure 1 illustrates the energy quantities for the C1 configuration for two values of Gr,
namely Gr = 2500 (blue) and Gr = 3500 (red). The curves are presented at the time when
the amplification factor is optimal.

In Figure 1, the blue curve corresponds to Gr < Grc whilst the red curve corresponds
to Gr > Grc. All of the blue curves in Figure 1 show peaks concentrated around the outer
cylinder, whilst the red curves show peaks concentrated around the inner cylinder. Notice
that the peaks of BVP are at least 103 times smaller than the peaks of the other six quantities.
When BP is positive, buoyancy causes the warmer, less dense fluid to rise, while the cold
dense fluid sinks. We found that configurations C2, C3 and C4 produced very similar results
to those of C1.

Figure 1. The optimal perturbation energy (temperature) budget quantities for the configuration C1;
see Table 1. The blue curve corresponds to Gr = 2500, whilst the red curve corresponds to Gr = 3500.
The curves are presented at the time when the amplification factor is optimal.

In Figure 2, we illustrate contour plots in the r–z plane of the perturbations to the base
state temperature at the optimal wavenumber for θ = 0.68. The values of Gr above each
contour plot in the left column correspond to values of Gr less than Grc, the middle column
corresponds to values of Gr within 5% of Grc, whilst the right column corresponds to values
of Gr greater than Grc. The rows from top to bottom correspond to the configurations
C1–C4.

The left column in Figure 2 shows that the extrema in the perturbed temperature
occurs towards the outer cylinder for values of Gr < Grc. Conversely, the right column in
Figure 2 shows that the extrema in the perturbed temperature occurs towards the inner
cylinder for values of Gr > Grc. The perturbations to the angular and vertical velocity
were very similar to that of the temperature comtour plots and thus are not presented here.
These results are consistent with the energy budget quantities shown in Figure 1.

In Figure 3, we illustrate contour plots in the r− z plane of the perturbations to the base
state radial velocity at the optimal wavenumber for θ = 0.68. The values of Gr above each
contour plot in the left column correspond to values of Gr less than Grc, the middle column
corresponds to values of Gr within 5% of Grc, whilst the right column corresponds to values
of Gr greater than Grc. The rows from top to bottom correspond to the configurations
C1–C4.
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Figure 2. Contours of the perturbations to the base state temperature of the optimal perturbation
in the r–z plane for θ = 0.68. Configurations C1, C2, C3, and C4 are organized in rows from top to
bottom, for selected Gr values, as indicated above each contour plot.
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Figure 3. Contours of the perturbations to the base state radial velocity of the optimal perturbation
in the r–z plane for θ = 0.68. Configurations C1, C2, C3, and C4 are organized in rows from top to
bottom, for selected Gr values, as indicated above each contour plot.

The left column in Figure 3 shows that the extrema in the perturbed radial velocity
occurs towards the outer cylinder for values of Gr < Grc. Conversely, the right column in
Figure 3 shows that the extrema in the perturbed radial velocity occurs towards the inner
cylinder for values of Gr > Grc. Again, these results are consistent with the energy budget
quantities shown in Figure 1. We notice that there are alternating convective rolls arranged
vertically above each other, which is consistent with the vortices which appear as secondary
states in the Taylor–Couette flow.

5. Conclusions

In this study, we have revisited the stratified Taylor–Couette flow via the non-modal
stability analysis the singular value decomposition method and via computing the largest
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negative eigenvalues of equation (25). Sequentially we used the energy budget equation
to perform our calculations. Our results are presented for values of the Grashof number
less than, around, and greater than the critical Grashof number, where the critical Grashof
number has been defined as the value which minimises the optimal amplification factor.
We found that when Gr < Grc, then the perturbations to the base state flow are focused
around the outer wall; conversely, when Gr > Grc, then the perturbations to the base state
flow are focused around the inner wall.

The complex dynamics of mixed convection flow with a particular focus on shear
instability and its manifestation in the presence of stratified conditions were investigated
with a systematic numerical investigation of kinetic budget quantities for optimal growth
perturbations in various stratified configurations of Taylor–Couette flow. The key find-
ings shed light on the interplay of different energy components and their effects on the
transient growth.

Our results reveal distinct behaviours of energy quantities before, around, and beyond
the turning point in the amplification factor. Prior to the turning point, the values of
SP and BF near the outer cylinder wall induce significant kinetic energy KE peaks. This
positive amplification of BF indicates a buoyant fluid rise, while the negative amplification
suggests shear-induced instability opposing gravity. Around the turning point, the kinetic
energy distribution exhibits peaks either towards the outer or inner cylinder, emphasizing
the transient nature of the amplification process. Beyond the turning point, the energy
quantities show similar amplification peaks with SP and BF near the inner cylinder wall
causing significant KE peaks.

Our analysis also highlighted the role of buoyancy and shear drag in triggering short-
time and long-time instability. We found that the disparity between BF and SP values
significantly influences the nature of amplification with a sufficiently high shear production
leading to the decay of short-time amplification. This long-time behavior is captured by an
asymptotic analysis of the eigenvalue. Contrary to initial assumptions, the study argues
that shear drag, rather than buoyancy, is the primary trigger for short-time instability.

The perturbation functions change shape even for small Gr increments as shown in
Figures 2 and 3 due to the proximity of the optimal amplification factor. Small changes
indicate the change of stability and the possibility of existence of nonlinear solutions.
Sometimes shifted to the inner wall and sometimes to the outer wall the flow meanders as
it rearranges itself for effective mass transport. This work is slightly distinctive to modal
analysis where the eigenvalues indicate the critical mode(s) and indicates an alternative
transfer to nonlinearity.

Furthermore, our findings have shown that the viscous processes CKEV and VD
disperse energy without contributing to the overall KE, while dissipative terms VD lead
to the decay of KE. Viscosity acts as an energy sink, gradually diminishing the velocity
at the boundary and influencing the perturbation’s configuration to extract KE from the
background mean flow.

In summary, our analysis provides insight into the intricate processes governing
mixed convection flow with shear instability, emphasizing the role of buoyancy, shear
drag, and viscosity in shaping the flow dynamics. These findings contribute to a deeper
understanding of the underlying mechanisms in complex fluid systems.
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Appendix A. Derivations of Optimal Perturbation Energy Budget Equation

The linearised version of the Navier-Stokes equations about the base state is given by

∂ŭ
∂t

= −∂ p̆
∂r

+ (ϵTb − 1)
[

Vb
r

∂ŭ
∂θ

+ Wb
∂ŭ
∂z

− 2Vbv̆
r

]
−

ϵT̆V2
b

r
+∇2ŭ − 2

r2
∂v̆
∂θ

− ŭ
r2 (A1)

∂v̆
∂t

= −1
r

∂ p̆
∂θ

+ (ϵTb − 1)
[

ŭ
dVb
dr

+
Vb
r

∂v̆
∂θ

+ Wb
∂v̆
∂z

+
Vbŭ

r

]
+ ∇2v̆ +

2
r2

∂ŭ
∂θ

− v̆
r2 (A2)

∂w̆
∂t

= −∂ p̆
∂z

+ (ϵTb − 1)
[

ŭ
dWb
dr

+
Vb
r

∂w̆
∂θ

+ Wb
∂w̆
∂z

]
+∇2w̆ + GrT̆ (A3)

∂T̆
∂t

= −ŭ
∂Tb
∂r

− Vb
r

∂T̆
∂θ

− Wb
∂T̆
∂z

+
1
Pr

∇2T̆ (A4)

If we multiply each of the first three equations by the associated velocity component and
then take the sum of these equations we can obtain

1
2

∂

∂t

[
ŭ2 + v̆2 + w̆2

]
= −ŭ

∂ p̆
∂r

− v̆
r

∂ p̆
∂θ

− w̆
∂ p̆
∂z

+ ŭ∇2ŭ + v̆∇2v̆ + w̆∇2w̆

+ (ϵTb − 1)
[

Vb
2r

∂ŭ2

∂θ
+

Wb
2

∂ŭ2

∂z
+

Vb
2r

∂v̆2

∂θ
+

Wb
2

∂v̆2

∂z
+

Vb
2r

∂w̆2

∂θ
+

Wb
2

∂w̆2

∂z

]
+ (ϵTb − 1)

[(
dVb
dr

− Vb
r

)
ŭv̆ +

dWb
dr

ŭw̆
]
− ŭ2 + v̆2

r2 − 2ŭ
r2

∂v̆
∂θ

+
2v̆
r2

∂ŭ
∂θ

−
ϵV2

b
r

T̆ŭ + GrT̆w̆

Now, we integrate over the axial and azimuthal directions and assume periodic boundary
conditions in both those directions to give〈

1
2

∂

∂t

[
ŭ2 + v̆2 + w̆2

]〉
=

〈
− ŭ

∂ p̆
∂r

− v̆
r

∂ p̆
∂θ

− w̆
∂ p̆
∂z

+ GrT̆w̆
〉

+

〈
(ϵTb − 1)

[(
dVb
dr

− Vb
r

)
ŭv̆ +

dWb
dr

ŭw̆
]
−

ϵV2
b

r
T̆ŭ − ŭ2 + v̆2

r2

〉
+

〈
2v̆
r2

∂ŭ
∂θ

− 2ŭ
r2

∂v̆
∂θ

+ ŭ∇2ŭ + v̆∇2v̆ + w̆∇2w̆
〉

(A5)

where < · > denotes the average given by
nk

4π2

∫ 2π
n

0

∫ 2π
k

0
dθ dz. If we multiply Equa-

tion (A4) by T̆ and average as before, we obtain

1
2

〈
∂T̆2

∂t

〉
= − < ŭT̆ >

∂Tb
∂r

+
1
Pr

< T̆∇2T̆ > .
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Now, the conservation of mass equation is given by

1
r

∂

∂r
(rŭ) +

1
r

∂v̆
∂θ

+
∂w̆
∂z

= 0. (A6)

If we multiply Equation (A6) by − p̆, integrate over the axial and azimuthal directions, and
then add this equation to Equation (A5), we obtain

d
dt

KE = SP + BP + EF + CKEV + VD (A7)

where the terms are defined as follows:

KE =
1
2
< ŭ2 + v̆2 + w̆2 > (A8)

SP = (ϵTb − 1)
[(

dVb
dr

− Vb
r

)
< ŭv̆ > +

dWb
dr

< w̆ŭ >

]
(A9)

BP = Gr < w̆T̆ > −
ϵV2

b
r

< ŭT̆ > (A10)

EF = −1
r

d
dr

< rŭp̆ > (A11)

CKEV =
1
2r

d
dr

(
r

d
dr

< ŭ2 + v̆2 + w̆2 >

)
+

〈
2v̆
r2

∂ŭ
∂θ

〉
(A12)

VD = −
〈[

∂ŭ
∂r

]2

+

[
∂v̆
∂r

]2

+

[
∂w̆
∂r

]2

+
2ŭ
r2

∂v̆
∂θ

+
ŭ2 + v̆2

r2

〉
+

〈
ŭ
r2

∂2ŭ
∂θ2 +

v̆
r2

∂2v̆
∂θ2 +

w̆
r2

∂2w̆
∂θ2 + ŭ

∂2ŭ
∂z2 + v̆

∂2v̆
∂z2 + w̆

∂2w̆
∂z2

〉
(A13)

BVP =
1
2
< T̆2 > (A14)

where the kinetic energy of the perturbation is KE, the shear production is SP, the buoyancy
production is BP, the energy flux is EF, CKEV is the convergence of kinetic energy of
the optimal perturbation due to viscosity, VD is the viscosity dissipation, and BVP is the
buoyancy variance.
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