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Simple Summary: Amphistomes, also known as rumen flukes, are parasites of domestic and wild
ruminants and occur globally. Adult parasites are found in the forestomach, and the young flukes
are found in the small intestines, causing severe damage. The flukes are transmitted by various
species of freshwater snails. While the disease is well documented in domestic ruminants, there are
gaps in knowledge pertaining to wild ruminants with regard to the fluke species as well as the snail
species which transmit them. Therefore, freshwater snails were surveyed from 19 water points that
are frequented by wild ruminants in the Matebeleland region, Zimbabwe. Snails were found at nine
sites, and eight species were identified and screened for rumen fluke DNA to determine the fluke
species and prevalence of infection. Rumen fluke DNA was detected in 11.9% of the screened snails.
Prevalence was high in the West Nicholson locality and in Bulinus globosus snail species. One rumen
fluke species, i.e., Calicophoron microbothrium, was confirmed in one snail species and there were also
mixed infections with lung fluke parasite, Paragonimus spp., in two snail species. This was the first
study documenting the presence of this lung fluke in Zimbabwe.

Abstract: This study aimed at determining the identity of freshwater snails collected from selected
water habitats frequented by wildlife as source of drinking water in the Matebeleland region of
Zimbabwe and further screening the identified snails for natural infections with amphistomes using
PCR. A total of 487 freshwater snails were collected from six areas in the Matebeleland region of
Zimbabwe for identification and screening of amphistome infection. Eight freshwater snail species
were morphologically identified and Biomphalaria pfeifferi, Bul. tropicus, Bul. truncatus, Bul. globosus,
and L. (R.) natalensis were confirmed using the COI gene. Bulinus tropicus and Phy. acuta were the
most abundant species at 33.9% (165/487) and 31.2% (155/487), respectively. DNA of amphistome
was detected in 11.9% (58/487) of the collected snails. The highest infection rate was detected in Bul.
globosus (44.4%). West Nicholson recorded the highest infection rate (33.9%), and infection was not
detected in L. (R.) natalensis, Phy. acuta, and Bellamya spp. Amphistome DNA from M. tuberculata
was successfully sequenced and identified as Calicophoron microbothrium. An additional band was
detected in M. tuberculata, Bul. tropicus, and Bul. trancatus, which showed a 96.42% similarity to
Paragonimus sp. sequence in the GenBank.

Keywords: gastropods; identification; diversity; amphistomes; molecular detection; Zimbabwe

1. Introduction

Amphistomes are digenetic trematodes that exhibit a heteroxenous life cycle that
includes an intermediate and definitive host [1]. Although over 70 amphistomes have been
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recorded globally to date [2,3], the intermediate host snails have only been described for
a few amphistomes species in sub-Saharan Africa [4]. Amphistome species use several
freshwater snail species as intermediate hosts (IHs) for transmission, and these include
species from the genus Bulinus [5–7], Galba [8,9], Lymnaea (Radix) [10,11], Biomphalaria [12],
and Segmentorbis [12]. According to Laidemitt et al. [12], Bulinus species, which are the
most widely distributed snails in sub-Saharan Africa, accounts for the wide distribution of
Calicophoron spp. in Africa. Furthermore, several Bulinus species have been implicated in
the transmission of Calicophoron microbothrium, an amphistome responsible for most cases
of amphistomosis in both wild and domestic ruminants [4].

Like other trematodes, both domestic and wild ruminants get infected with amphis-
tomes by grazing in pasture around drinking water points contaminated with metacer-
cariae [13]. Infection in wild ruminants can be confirmed at post-mortem by the presence
of immature stages in the duodenum, and adult amphistomes in the forestomachs of rumi-
nants, and at ante-mortem through the detection of eggs in feces [14]. However, surveys and
monitoring of these infections in free-ranging wild ruminants can be challenging [15] due
to factors such as accessibility and ethical issues associated with capturing, handling, and
releasing wild animals to collect non-invasive fecal samples [16]. Moreover, identification
up to the species level using morphological characters is a challenge, and at ante-mortem,
the egg morphology is not easily distinguishable from that of other trematodes such as
Fasciola spp. [17].

Data from previous research in sub-Saharan Africa have indicated that majority of
amphistomes species occurring in wild ruminants are also common in domestic ruminants,
except Bilatorchis papillogenitalis, Carmyerius bubalis, and Cotylophoron macrosphinctris, which
have only been documented in wild ruminants to date [4,18]. These three species are
amongst those with unknown intermediate snail hosts. Amphistome infection in the
intermediate snail hosts can be detected through shedding of cercariae or squashing of the
snail soft tissue and visualizing the developmental stages using a light microscope and
the subsequent morphological characterization of the cercariae/rediae/sporocyst [19–21].
However, the morphological characterization of these larval stages has limitations as most
studies could only discriminate up to the genus level [21–23], with only a few studies able
to distinguish up to the species level [24–27]. Nonetheless, Kane et al. [28] indicated that
morphological identification of larval trematodes is error-prone and hard or impossible for
the genus or species level resolution.

Although some recent studies still utilize shedding of cercariae as sole detection
method of infection [21], most recent studies couple the use of shedding cercariae with
molecular techniques such as Restriction Fragment Length Polymorphism (RFLP) of Poly-
merase Chain Reaction (PCR) products [29] or sequencing of the PCR products for iden-
tification up to the species level [6,12,29]. Some studies also amplified the larval DNA
directly from the snails, followed by sequencing [12,30] or RFLP of the products [29].
However, Schols [30] showed that detection of larval infection using PCR was better than
cercariae shedding.

According to Carolus et al. [31], knowledge on the prevalence, diversity, and ecology
of both intermediate host freshwater snails and trematodes is key to understanding disease
transmission dynamics and the possible control of trematodes of economic significance.
Although there are several ways of identifying freshwater snails and trematode larval
stages based on morphological characters, molecular methods are known to provide better
resolution for identifying snails and trematodes at the species level [32]. Hence, the aim of
this study was to determine the identity of freshwater snails collected from selected water
habitats serving as water sources for wildlife in selected game ranches, conservancies, and
game parks located in the Matebeleland region of Zimbabwe and the amphistome species
they may transmit in these habitats.



Vet. Sci. 2024, 11, 211 3 of 13

2. Materials and Methods
2.1. Study Areas and Sample Collection

Freshwater gastropods were surveyed from water sources frequented by wildlife
around game ranches, conservancies, and game parks located in Inyathi, Nyamandlovu,
and Ntabazinduna, located in Matebeleland North and Esigodini, West Nicholson, and
Matopos which are in Matebeleland South province of Zimbabwe (Figure 1). Sampling
sites were pre-selected based on the following criteria: little or no human activity and
locality is a drinking water point for wild ruminants. The habitat type and vegetation cover
were recorded for each site (Table 1), and snails were collected using a scooping net and
dredge for superficial and deep-water samples, respectively [31]. Collected snails were first
washed with distilled water and thereafter preserved in 70% ethanol for morphological
and molecular analyses.

Figure 1. All sampling sites of the study located in the Matebeleland region of Zimbabwe.

Table 1. Description of habitat type and animal/human activity at localities where freshwater snails
were collected in the Matebeleland region of Zimbabwe.

Locality No. of Habitats
Surveyed

No. of Habitats
with Snails Habitat Type Vegetation

Cover/Description
Animal/Human

Activity

Nyamandlovu 13 3
Waterholes made of
concrete (typically

less than 40 m2)

Sub-merged vegetation
in some waterholes but

typically some
waterholes are clear

Wild ruminants
(100%)

West Nicholson 2 2 Dams

A lot of submerged
vegetation, trees on the
periphery, and decaying

organic matter

Wild animals
(100%)
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Table 1. Cont.

Locality No. of Habitats
Surveyed

No. of Habitats
with Snails Habitat Type Vegetation

Cover/Description
Animal/Human

Activity

Esigodini 1 1 Dam
Submerged vegetation
and a lot of trees on the

periphery

Wild ruminants
(50%), livestock

(40%), and human
activity (10%)

Ntabazinduna 1 1 Dam

Very little submerged
vegetation with no trees
on the periphery but a
lot of decaying organic

matter. More brown
algae macrophytes

observed.

Wild ruminants
(30%), livestock

(70%)

Matopos 1 1 Dam
A lot of submerged

vegetation with no trees
on the periphery

Wild ruminants
(80%) and 20%

livestock

Inyathi 1 1 River
Few submerged

vegetation with trees on
the periphery

50% wild
ruminants and 50%

livestock

Total 19 9

2.2. Morphological and Molecular Identification of Snails
2.2.1. Morphological Classification

Morphological identification of snails was based on the classification keys as described
by Brown [33]. Snails of the same species morphologically were grouped, and representative
specimens were selected for confirmation using PCR.

2.2.2. DNA Extraction from Gastropods

Selected snail specimens were washed with sterile water to remove alcohol, and
excess water was removed with sterile absorbent paper. Tissue from foot of each snail
or whole snail tissue was harvested using either a sterile blade or the whole snail tissue
was removed and then frozen at −20 ◦C for 2 h before use. DNA was extracted using a
modified Quick-DNATM Tissue Miniprep Kit (Zymo Research Corporation, Irvine, CA
92164, USA) protocol.

2.2.3. Molecular Characterization of Gastropods

Extracted DNA were amplified based on the COI region using the primers COI (F) 5′-
TAATGTWATTGTTACAGCACATG-3′ and COI (R) 5′-GTTGRTATAAAATAGCATCACCW-
3′ [31]. PCR was performed in a total reaction volume of 25 µL, composing of 5 µL of
5X One Taq PCR buffer, 0.4 µL of 10 mM dNTPs, 0.5 µL forward primer (10 mM), 0.5 µL
reverse primer (10 mM), 3 µL of 25 mM MgCl2, 2 µL DNA template, 0.125 µL of One Taq
polymerase (NEB, Hitchin, UK), and nuclease-free water to make up the final volume. The
cycling protocol for the reaction was as follows: initial denaturation at 94 ◦C for 3 min,
followed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing at 64 ◦C for 45 s, extension
at 68 ◦C for 1 min, and a final extension of 68 ◦C for 15 min. The fragments were separated
on 1% agarose stained with ethidium bromide, and successful amplicons were identified
by a band at 630 base pairs. Amplicons were sent to Inqaba Biotech for Sanger sequencing.

2.2.4. Molecular Detection of Amphistomes from Snail Tissue Samples

Snails were assessed for amphistome infection using the primers GA1 (5′-AGAACATC
GACATCTTGAAC-3′) and BD2 (5′-TATGCTTAAATTCAGCGGGT-3′) [12]. Calicophoron
microbothrium DNA was used as a positive control/signal for amphistome DNA. The
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PCR mix was composed of 2 µL of 10X PCR buffer SuperTherm (Separation Scientific SA
(Pty) Ltd., Roodepoort, South Africa), 0.8 µL of 10 mM dNTPs, 0.4 µL forward primer
(10 µM/µL), 0.4 µL reverse primer (10 µM/µL), 1.6 µL 25 mM MgCl2, 1 µL DNA template,
0.2 µL Super Therm polymerase, and nuclease-free water to make up a total reaction volume
of 20 µL. Amplification was performed under the following thermocycling conditions: 95 ◦C
for 3 min, followed by 30 cycles of 95 ◦C for 30 s, 55 ◦C for 45 s, and 72 ◦C for 1 min, and a
final extension of 72 ◦C for 15 min. Amplicons were separated on 1% agarose gels stained
with ethidium bromide, and positive isolates were identified by a band at approximately
385 bp. Positive amplicons were sent to Inqaba Biotechnical Industries (Pretoria, South
Africa) for Sanger sequencing.

2.2.5. Molecular Analysis of Trematode/Amphistome Isolates from Snails

Sequences were viewed, assembled, and manually edited using BioEdit version 7.2
(Sequence Alignment Editor) [34], and NCBI BLAST (Basic local alignment search tool)
was used to identify the closest matches available on GenBank database. Sequences were
trimmed to a common length of 455 nucleotides. Tamura 3-parameter (T92) was selected as
the best model fit for the dataset, and the neighbour-joining (NJ) and maximum likelihood
trees were generated on the MEGA 7 software [35]. The phylograms were 50% majority-
rule, and the nodal support was estimated using 1000 bootstrap pseudo-replicates for
both methods.

3. Results
3.1. Description of Snail Habitats

From the six localities visited in the Matebeleland region (Figure 1), 19 water sites
were surveyed, and these were predominantly man-made waterholes in Nyamandlovu
(n = 13), dams in West Nicholson (n = 2), Matopos National Park (n = 1), Ntabazinduna
(n = 1), and Esigodini (n = 1), and lastly, a river in Inyathi (n = 1) (Table 1). All habitats
had different types and levels of submerged vegetations, and only habitats from West
Nicholson, Esigodini, and Inyathi had trees on their periphery. The surrounding areas were
clear, with decaying matter found in dams in West Nicholson and Ntabazinduna. Results
show that although all 13 sites from Nyamandlovu had solely wildlife activity, some sites
showed a level of interaction or shared habitat with livestock (n = 4) and to a lesser extent
humans (n = 1).

3.2. Morphologically Identified Snail Species and Their Abundance

Snails were found at 9 of 19 sites (47.37%), while none were found at 10 sites from
Nyamandlovu (Table 1). A total of 487 gastropods were collected, and these were from
Nyamandlovu (n = 212) and Ntabazinduna (n = 174), followed by West Nicholson (n = 59),
Esigodini (n = 21), Matopos National Park (n = 18), and to a lesser extent Inyathi (n = 3)
(Table 2). From these collections, eight species were morphologically identified as Melanoides
(M.) tuberculata, Bulinus (Bul.) globosus, Bul. truncatus, Bul. tropicus, Biomphalaria (Bio.)
pfeifferi, Physa (Phy.) acuta, Lymnaea (L.) natalensis, and Bellamya spp. (Table 2).

Bulinus tropicus was the most distributed species across sites and was found in four of
the six surveyed areas. Furthermore, this species was the most abundant and contributed
33.9% (165/487) of the collected snail populations. This was followed by Phy. acuta that
contributed to 31.2% (155/487) and was found in Esigodini and Nyamandlovu. Bulinus
truncatus and M. tuberculata, which were each found in Ntabazinduna and West Nicholson,
contributed to 12.5% (61/487) and 11.9% (58/487), respectively. Surprisingly, Bio. pfeifferi,
Bul. globosus, and L. natalensis were found in multiple areas, though in low numbers of
20/487 (4.1%), 18/487 (3.7%), and 8/487(1.6%), respectively. The least collected snail species
was Bellamya spp., which was found in Ntabazinduna and contributed to 0.4% (2/487) of
the collected snail population.
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Table 2. Morphological and molecular identities and number of snail species collected in the different localities surveyed in the Matebeleland region of Zimbabwe.

Morphology
Identification

Molecular Identification Number of Snails Collected Per Locality
Total

% Overall Prevalence
Per Snail SpeciesSpecies % Similarity West Nicholson Esigodini Inyathi Matopos Nyamandlovu Ntabazinduna

Melanoides tuberculata ND - 58 - - - - - 58 11.9

Biomphalaria pfeifferi Biomphalaria
pfeifferi 100 - 13 - 7 - - 20 4.1

Bulinus tropicus Bulinus
tropicus 99.78 - - 3 5 58 99 165 33.9

Bulinus truncatus Bulinus
truncatus 99.78 - - - - - 61 61 12.5

Bulinus globosus ND - 1 5 - - - 12 18 8.2

Physa acuta ND - - 3 - - 152 - 155 31.2

Lymnaea natalensis Lymnaea
natalensis 98.68 - - - 6 2 - 8 1.6

Bellamya spp. ND - - - - - - 2 2 0.4

Total 59 21 3 18 212 174 487

% Prevalence per locality 12.1 4.3 0.6 3.7 43.5 36

ND = not done.
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3.3. Molecular Confirmation and Phylogenetic Relationship of Snail Species.

Of the eight morphologically identified species, four snail species were confirmed
with a BLAST similarity index ranging between 98.24 and 100% (Table 2). Amongst these
was 1G, which showed 100% homology with Bio. pfeifferi from Zimbabwe (DQ084829).
However, the phylogenetic tree showed a moderate support between this isolate and other
GenBank isolates (Figure 2). The isolated Bio. pfeifferi formed a well-supported sister clade
to Bulinus species, which falls under the same family. Our isolate NB showed a 99.78%
identity with Bul. truncatus isolate from Iran (KT365867) and formed a well-supported clade
with other Bul. truncatus isolates. These isolates formed a strongly supported monophyletic
sister clade with Bul. tropicus isolates, including those from this study (2R and IT) (Figure 2),
which showed 99.78% homology with Bul. tropicus from Uganda (MN551550). Lastly, our L.
natalensis isolates (LN and N3) (Figure 2) showed a homology of 98.68% with L. natalensis
from Malawi (EU818835). These species formed a well-supported separate clade from
the Bulinus and Biomphalaria clade. However, the relationship between the isolates was
moderately to weakly supported. The sequences generated from this study were submitted
to NCBI GenBank under the accession numbers PP389543–PP389548. Sequences for Bul.
globosus failed quality control, while sequencing failed for M. tuberculata, Phy. acuta, and
Bellamya spp. The time lapse between the PCR and the amplicons reaching South Africa
from Zimbabwe for post clean-up and sequencing might have compromised the quality of
the PCR products, and possibly causing their degradation.
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N3 = isolates from the study. The 50% majority-rule was applied, and any support value of lower
than 50% was represented by a hyphen.
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3.4. Molecular Detection of Amphistome DNA in Field-Collected Snails

All 487 gastropod isolates were individually screened for amphistome DNA based on
the ITS-2 gene. A total of 58 of 487 (11.9%) snails showed a band at approximately 385 bp,
which was consistent with a Calicophoron (Cal.) microbothrium isolate used as a control for
amphistomes. Bulinus globosus recorded the highest prevalence of amphistome infections
(44.4%), followed by M. tuberculata (33.9%) (Table 3). No amphistome DNA was detected in
Phy. acuta, L. natalensis, and Bellamya spp. The highest incidence of amphistome infections
in snails per locality was recorded in West Nicholson, with a prevalence of 33.9% in M.
tuberculata. In contrast, snails from Inyathi did not harbor any amphistomes, and those
from Nyamandlovu had a prevalence of 2.4% in Bul. tropicus despite the area recording the
highest number of gastropod specimens collected. However, sequencing of amphistome
amplicons was only successful for a sample from M. tuberculata, which was confirmed as
Cal. microbothrium with a percentage similarity of 100% (Table 4) and submitted to GenBank
under the accession number of PP392962. The remaining samples, which were the majority,
failed quality control.

Table 3. Prevalence per locality of amphistome infection in freshwater snails collected from the
Matebeleland region of Zimbabwe as detected by PCR.

Gastropod
Species

No. of
Snails

Screened

Snails Positive for Amphistome DNA Per Locality
Total

Infected % PrevalenceWest
Nicholson Esigodini Inyathi Matopos Nyamandlovu Ntabazinduna

Melanoides
tuberculata 58 20 - - - - - 20 34.5

Biomphalaria
pfeifferi 20 - 1 - 0 - - 1 5

Bulinus
tropicus 165 - - 0 1 5 14 20 12.1

Bulinus
truncatus 61 - - - - - 9 9 14.8

Bulinus
globosus 18 0 5 - - - 3 8 44.4

Physa acuta 152 - - - - 0 - 0 0

Lymnaea
natalensis 12 - - - 0 0 - 0 0

Bellamya
spp. 2 - - - - - 0 0 0

Total
infected 20 6 0 1 5 26 58

N 487 59 21 3 18 212 174 487

%
Prevalence - 33.9 28.6 0 5.6 2.4 14.9 - -

Table 4. BLAST percentage similarity of trematode DNA obtained from snails collected in the
Matebeleland region of Zimbabwe.

Sample ID Fragment Size Species ID Based
on Sequence % Similarity IH Species (Source)

MO1 290 bp Paragonimus kellicotti 96.10 Bulinus truncatus

MB1 290 bp Paragonimus kellicotti 96.42 Melanoides
tuberculata

MB2 385 bp Calicophoron
microbothrium 100 M. tuberculata

NT 290 bp Paragonimus kellicotti 96.42 Bul. truncatus
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Additional bands were observed at approximately 280–290 base pairs from M. tu-
berculata (n = 9) and Bul. tropicus (n = 1), from Esigodini and Bul. truncatus (n = 1), and
from Ntabazinduna, indicating a mixed infection. Sequencing of three of the additional
bands from M. tuberculata and BLAST analysis showed a similarity index of 96.42% to
Paragonimus kellicotti (Table 4). The sequences were submitted to GenBank as Paragonimus
sp. under the accession numbers of PP392960, PP392961, and PP392963. Phylogenetic
analysis showed that these sequences formed a clade with two P. kellicotti isolates from India
(KC523868.1) and the United States (JF4177709.1) from Indoplarnobis exustus and Orconectes
virilis, respectively. The genetic distance within this clade was 3%. This clade also formed a
monophyletic sister clade with various Paragonimus species, including two more P. kellicotti
(Figure 3). The genetic p-distance between these two clades was 28%.
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4. Discussion

Snail survey conducted in this study was from three different habitat types that include
dams, waterholes, and a river. All the habitats had macrophytes (submerged vegetation),
with Ntabazinduna sampling site having an abundance of brown algae macrophytes. Ac-
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cording to Min et al. [36], physico-chemical properties and macrophyte abundance together
with other factors influence the diversity of freshwater snails. The most abundant snail
species were collected from Ntabazinduna, accounting for 36% of the total number of snails.
Middelboe and Markager [37] suggested that the presence of submerged macrophytes
increase periphyton, the food source of Bulinus spp. and Bio. pfeifferi. In this study, a total
of eight snail species collected from the Matebeleland region of Zimbabwe in selected areas
included Bul. globosus, Bul. tropicus, Bul. truncatus, M. tuberculata, Bio. pfeifferi, L. natalensis,
and Phy. Acuta, and these have been implicated in the transmission of amphistome species
in wildlife and domestic ruminants [4] except Phy. acuta and Bellamya spp.

Results showed that Bul. tropicus was the most widely distributed and abundant
species in the Matebeleland region of Zimbabwe. This was not surprising as earlier re-
ports have indicated that this species is the most widely distributed freshwater snail in
Zimbabwe [38] and is well adapted to a wide variety of environments [33]. However,
Chingwena et al. [7] later reported that Bul. tropicus was the most abundant species in
the lowveld and the third most abundant snail species following L. natalensis and Bul.
globosus in the highveld. Although this still explains the abundance of this species in the
Matebeleland region that falls within the middle to highveld, L. natalensis and Bul. Globosus
were surprisingly collected in low numbers in this study. Physa acuta, the second most
abundant species, is an invasive snail, which was previously reported in Zimbabwe [39].
Although this species showed a limitation in distribution, and the one locality where this
snail species was collected had macrophytes in abundance compared to other species. This
is not surprising as not only several authors have shown that this species is now widely
distributed in Zimbabwe [40] but also that it is invasive [41].

Of the eight snail species screened for amphistome DNA, M. tuberculata, Bio. pfeifferi,
Bul. tropicus, Bul. globosus, and Bul. truncatus were positive. Amphistome detection in the
Bulinus and Biomphalaria species was not surprising as a wide range of these snail species
have been reported to act as intermediate hosts for different amphistome species in sub-
Saharan Africa [7,25,42–44]. Although Bul. tropicus was reported to act as an intermediate
host of Cal. microbothrium, with high prevalence of experimental infections [7], our study
reported a high prevalence of amphistome DNA in Bul. globosus. Melanoides tuberculata
showed the second highest prevalence of amphistome infection in this study. Previous
reports have already confirmed the susceptibility of this species through experimental
infections with Cal. microbothrium in Zimbabwe [7] and South Africa [2], and to another
trematode species, Gastrodiscus aegyptiacus, in Zimbabwe [45]. Based on the successful
identification of Cal. microbothrium from M. tuberculata through sequencing, to the best of
our knowledge, this is the first study to confirm natural infection of this Thiaridae species
with Cal. microbothrium in Africa.

Results showed that amphistome DNA was not detected in three snail species, namely,
Phy. acuta, Bellamya spp., and L. natalensis. Although earlier experimental studies have
showed that L. natalensis was refractory to Cal. microbothrium [7], this species was found
infected with Gastrothylax/Paramphistomum in Zimbabwe [30]. A similar pattern was
observed with Phy. acuta, which was successfully infected with G. aegyptiacus during dis-
section after experimental exposure [45], but no amphistome DNA was detected from this
species despite being collected in high numbers, indicating that there might be amphistome
species IH specificity, and this may be confirmed through experimental studies like those
conducted by Chingwena et al. [7].

Results from this study revealed cases of mixed infections of amphistome DNA with
other DNA of a trematode species identified as Paragonimus-like species in Bul. truncatus
and M. tuberculata. Paragonimus spp. are lung flukes that have been reported worldwide in-
cluding Africa and mainly in West and Central African regions. Species reported in the West
and Central Africa include P. africanus, P. gondwanensis, P. kerberti, and P. uterobilateralis [46].
According to Procop [47], Paragonimus species usually utilize snail species from families
Pleuroceridae and Thiaridae as IHs. While results from this study and previous reports
link paragonimiasis with presence of M. tuberculata in South Africa [48], which may explain
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the infections observed in M. tuberculata in this study, the phylogenetic positioning of these
isolates and the high genetic distance with other reported Paragonimus spp. raise concerns
of whether these isolates belong to the genus Paragonimus, or the sequences deposited on
GenBank are misidentified under the genus Paragonimus.

5. Conclusions

Eight freshwater snail species common in drinking water sources frequented by
wildlife from the Matebeleland region of Zimbabwe were identified in this study with
Bul. tropicus and Phy. acuta as the predominant species, and the overall prevalence of
amphistome DNA (Cal. microbothrium) was 11.9%. Prevalence rate was higher in Bul.
globosus followed by M. tuberculata. The highest number of snails were collected from
Nyamandlovu, meanwhile the highest prevalence of amphistome DNA was recorded in
Beitbridge. A single sample was confirmed as Cal. microbothrium through DNA sequencing
and a mixed infection with Paragonimus species-like trematode was also confirmed. Failure
to sequence other amphistome samples shows the need to specifically use the larval stage
from the infected snails (sporocysts, rediae, or cercariae), to increase the quantity and quality
of DNA to be successful in identifying and characterizing the amphistome species found in
freshwater snails. There is a need to also develop and apply the use of primers and protocols
that do not require sequencing such as the LAMP protocols and PCR-RLFP to discriminate
multiple amphistome species of wildlife in IH snails including mixed infections. We
recommend future studies such as collecting amphistome specimens from culled wildlife
ruminants from the study locations for morphological and molecular identification.
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