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Abstract: Craft breweries release wastewater into the environment, posing serious environmental
concerns. Microbial fuel cells (MFCs) are an attractive technology that has been used in industrial
wastewater treatment. This study used a scalable system of nine MFCs (stacked) to treat 150 L of
craft brewery wastewater (CBW). The CBW had 1831 ± 85 mg COD (chemical oxygen demand) L−1.
The hydraulic retention time was 5 days, with a COD removal percentage of 93 ± 1.8%. The total
internal resistance of the stack was 204.8 ± 5.2 Ω at 26 ± 2 ◦C without the use of a metal catalyst; the
reduction of oxygen was the limiting process. Finally, the sequence of treatments applied with this
proposed system demonstrated its self-sustainability, which could be a viable option for the real-life
conditions of this kind of wastewater. Further research is needed.

Keywords: craft brewery wastewater; scalable stack system; microbial electrochemical systems

1. Introduction

Industrial activities contribute to the contamination of the environment because they
release polluting chemicals, and traditional chemical or physical remediation is not enough
to overcome the problems of pollution [1]. Currently, 6.7 billion cubic meters of wastewater
are generated annually in Mexico [1–3]. An example of this is brewery wastewater, of which
volumes between 18 and 3000 m3 per day are generated, with craft breweries discharging
directly to municipal drainage systems and/or water bodies without treatment, as they are
not regulated like large-scale breweries [4]; additionally, they have an organic load up to
10 times greater than conventional domestic wastewater [5].

Mexico is the fourth-largest beer producer in the world [6], and Yucatan is among the
top 10 producers of craft beer in the country [7,8].

The main treatment given to brewery wastewater is through anaerobic processes [6,8],
which present long retention times, produce effluent parameters outside the NOM-SEMARNAT-
001-2021, and require control of several operational parameters [3]. Fossil fuels, which produce
carbon dioxide and have an adverse effect on the environment, are currently used to produce
most of the world’s energy. Investigating eco-friendly alternative energy sources is becoming
essential as a result. MFCs are a technology that transforms chemical energy into biofuels
(ethanol, hydrogen, etc.) and electricity from wastewater, thereby reducing environmental
pollution and the energy and climate crises [9]. Therefore, an option of interest that over-
comes fermentation barriers are bioelectrochemical technologies such as microbial fuel cells.
Several authors [3,10–14] have successfully treated brewery wastewater in microbial fuel
cells because organic matter content (sugars, starch, ethanol, and low-molecular-weight
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fatty acids) is biodegradable [15] and presents low concentrations of inhibitory compounds
such as phenolic compounds [16]. However, MFCs can achieve the removal of persistent
organic compounds, heavy metals, and nutrients from different waste effluents while
recovering energy and valuable substances [16,17]. The strategy that has been applied
in the last decade to favor decreasing the organic load in MFCs has been focused on the
type of material, system configuration, and circuits, as well as performance prediction
modeling [17,18], allowing several studies to transition to system scaling [11,19–21].

MFCs produce low voltage and current as output, but cannot be directly used for many
applications. Therefore, energy harvesting (EH) systems from sources of ultra-low power
(biological, mechanical vibration, electromagnetic radio frequency, pressure gradients,
temperature gradients, and solar, among others, in terms of renewable energies) are circuits
that make up for the potential difference between the source and the load, avoiding reverse
voltage since the same electrolyte is shared [22,23], modifying internal impedance to
optimize the collection of electrons transferred by the cell, and enabling the energy provided
by these sources to be stored, reused by the circuit, or used for other purposes [22–24].
Similarly, other EH systems are used to obtain measurements of temperature, humidity,
CO2 (measuring off-grid greenhouse gases), and in health diagnostics and food quality
management [24].

The present study revealed that the performance of a pilot-scale system of microbial
fuel cells for the treatment of craft brewery wastewater is self-sustainable.

2. Materials and Methods
2.1. Inoculum and Carbon Source
2.1.1. Inoculum

A mixed inoculum was prepared [25], composed of cattle manure (300 g L−1), swine
manure (150 g L−1), and soil (30 g L−1). The manure was collected on the campus of
Biological and Agricultural Sciences at the Autonomous University of Yucatan. Inoculation
was carried out with 10% (v v−1) of the total volume (150 L).

2.1.2. Synthetic Brewery Wastewater (SBW) Composition

The synthetic brewery wastewater medium was prepared by dissolving the following
materials in tap water: 1 g L−1 malt extract, 0.5 g L−1 yeast extract, 0.15 g L−1 peptone,
0.86 g L−1 maltodextrin, 2.2 g L−1 (NH4)2SO4, 2.8 mL L−1 ethanol, 0.08 g L−1 NaH2PO4,
and 0.14 g L−1 Na2HPO4 (70167, 70161, P6838, 419672, A4418, E7023, S3139, S9763, Merck
Mexico, Company, San Andres Atoto, Naucalpan de Juárez, Mexico) [26]. This SBW had an
initial COD of 1980 ± 17 mg L−1 and was based on wastewater samples obtained from a
craft brewery in Mérida, Yucatan, Mexico.

2.1.3. Craft Brewery Wastewater (CBW)

Wastewater was collected from a craft brewery in Yucatan; it came from the daily wash-
ing of the equipment after the beer production process was completed. The organic matter
content varied depending on the type of beer produced at the time, with dry stout beer
being the most popular. CBW was composed of 1.831 ± 85 mg L−1 COD, 63 ± 5 mg L−1

total nitrogen, 50 ± 3 mg L−1 total phosphorus, 7.30 ± 0.09 pH, and 950 ± 90 mg L−1 of
Volatile Fatty Acids (VFAs).

2.2. Analytical Methods
2.2.1. Chemical Oxygen Demand (COD) and pH

For COD determination, a standard high-range COD kit (20–1500 mg L−1) (Hach Com-
pany, Loveland, CO, USA) was used, and measurements were performed in a Hach DRB
200 digester (Hach Company, Loveland, CO, USA) and Hach DR3900 colorimeter (Hach
Company, Loveland, CO, USA). pH was measured with a Hach sensION 156 potentiometer
(Hach Company, Loveland, CO, USA) [27].
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2.2.2. Volatile Fatty Acids (VFA)

VFAs were determined on a Perkin Elmer Clarus® 500 gas chromatograph (Perkin
Elmer, Waltham, MA, USA). A total of 0.5 mL of sample was prepared, and 100 µL of
phosphoric acid and 0.5 mL of ether (49685, 300314 Merck Mexico, Company, San Andres
Atoto, Naucalpan de Juárez, Mexico) were added and vortexed for one minute. A Perkin
Elmer Clarus® 500 gas chromatograph equipped with a flame ionization detector (FID) and
an Agilent HP-FFAP column (30 m length, 0.32 mm diameter, and 0. 25 µm film) were used.
Nitrogen was used as carrier gas with a flow rate of 1 mL min−1; for FID, hydrogen gas,
45 mL min−1, and extra dry air, 450 mL min−1, were used. The operating temperatures
were 230 ◦C for the injector, 150, 180, and 230 ◦C for the oven, and 230 ◦C in the detector,
splitless mode [26,27]. Acetic, propionicand butyric acid were used as standards (45754,
P1386, B103500 Merck Mexico, Company, San Andres Atoto, Naucalpan de Juárez, Mexico).

2.3. Building MFCs
2.3.1. Anodic Chamber

An anode chamber was built from a PVC reducer (10.16 to 5.08 cm) (Boxito, Merida
Yucatan, Mexico), which was used as a support; then a tubular piece of 10.16 cm in diameter
and 23 cm in height was placed, in which 1.27 cm holes were made to allow for access of
the wastewater to the anode; each perforation had a distance of 4 cm [27].

To build the anode, 416 stainless-steel mesh and activated carbon (Fuel Cell Store,
College Station, TX, USA) were used, according to Alzate-Gaviria et al. [28].

2.3.2. Membrane-Aerobic Cathode Electrode Assembly

A 10 × 10 cm Nafion® 117 membrane (Fuel Cell Store, College Station, TX, USA)
was used, which, before its implementation, was activated as reported by Alzate-Gaviria
et al. [27] and Atkinson et al. [29]. The Nafion 117® was attached on the cathode electrode
and used as a diffuser; it was initially activated receiving a bath with a 3% hydrogen per-
oxide (216763 Merck Mexico, Company, San Andres Atoto, Naucalpan de Juárez, Mexico)
solution at 100 ◦C for 1 h, after which it was washed with deionized water at 100 ◦C for
15 min; after that, it was immersed in a 1 M H2SO4 (258105 Merck Mexico, Company, San
Andres Atoto, Naucalpan de Juárez, Mexico) solution at 100 ◦C for 1 h, and finally a wash
was carried out with deionized water at 100 ◦C for 1 h. Once the process was completed,
the membrane was kept in deionized water at room temperature until use.

A carbon cloth (Fuel Cell Store, College Station, TX, USA) with a diameter of 6.5 cm
was used, and subsequently, an ink with a deposit density of 10 mg cm−2 composed of 5%
Nafion® solution (1 mL), isopropyl alcohol (1.2 mL) (31175-20-9, W292907, Merck Mexico,
Company, San Andres Atoto, Naucalpan de Juárez, Mexico), and XC-72 vulcanized carbon
(120 mg) (Beyond Battery, Vision Exchange, Singapore 608526) was placed [30,31].

Once the membranes and cathodes with the ink were obtained, the membrane–
electrode assembly process was performed using a CARVER® Press (Carver, Wabash,
IN, USA) at a pressure of 300 lb in−2 at 110 ◦C for 5 min [29]. Furthermore, two membrane
supports, a stainless-steel mesh terminal, and two threadable PVC pieces were used. In
one of the threadable pieces, the lower support was placed, where the membrane–cathode
electrode rested; finally, the other threadable piece was placed to join all the pieces.

2.3.3. Stack Assembly

A stack was built with nine MFCs, and they were placed in an acrylic cube with
dimensions of 60 cm in length, 50 cm in width, and 70 cm in height (Figure 1). The cells
were kept in an open circuit during the stabilization stage, and then the circuit was placed
in energy recovery, which consisted of capacitors that allowed for energy storage [27,32].
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2.4. Ultra-Low Power Circuit

The circuit used in this experiment was previously designed at the Yucatan Scientific
Research Center (CICY). The electronic circuit to harvest energy from ultra-low-power
sources comprised an integrated capacitor module with a set of capacitors, a microcontroller,
two analog switch modules, each comprising a set of analog switches, an auxiliary battery
module arrangement, a terminal, and an operation mode module with a solid-state battery
(STEREN, Merida Yucatan, Mexico). The electronic circuit was to harvest energy from
ultra-low-power sources within a voltage range of 0.1 V to 12 V [32].

2.5. Electrochemical Measurements
2.5.1. Voltage and Current

Voltage and current were measured with a Fluke® 1587 multimeter (Fluke Mexico
Corporation, Col. del Valle, Ciudad de México, Mexico). Voltage was measured daily, and
once the open voltage circuit presented stability, current was measured [33].

2.5.2. Polarization Curve and Power Density

The polarization curve was performed with a Biologic® PCV potentiostat (Bio-Logic
Science Instruments, Seyssinet-Pariset, Grenoble, France), and the measurement was full-
cell using a two-electrode configuration. As with voltage and current, the measurement was
performed after the circuit was disconnected, and the cells presented a stable voltage [34].

2.5.3. Electrochemical Impedance Spectroscopy

Once the polarization curve measurement was concluded, electrochemical impedance
spectroscopy measurements were performed with a two-electrode configuration (full cell),
and a swept spectrum from 1 MHz to 100 mHz with 10 points per decade was used [35].

2.5.4. Coulombic Efficiency

Coulombic efficiency is calculated as the ratio of the total coulombs that are actually
transported from the substrate to the anode to the maximum coulombs that could have
been generated if all substrate removal resulted in current [36].

CE was calculated using the following equation:

CE = M
∫ t

0
Itdt (n V F ∆COD)−1 (1)

where CE is coulombic efficiency, M is acetate molecular weight,
∫

Itdt is the integral of the
current over time, n is the number of moles exchanged, F is the Faraday constant, V is the
anode volume, and ∆COD is the substrate concentration change over the batch cycle.
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2.6. Statistical Analysis

For comparisons between some data, an analysis of variance was performed between
data sets with an α = 0.05 (Minitab Incorporated, 2017, State College, PA, USA).

3. Results and Discussion
3.1. Analytical Methods and Performance of MFCs (Stacked)
3.1.1. Chemical Oxygen Demand (COD)

The COD value was total COD. Once the voltage stabilized in the system, the syn-
thetic brewery wastewater treatment was started (Figure 2a), replacing 135 L to reach
150 L of useful volume; according to the slope of the straight line, a removal rate of
1133.7 mg COD L−1 d−1 was obtained. The reactor was operated for 42 useful days; dur-
ing the first 21 days, it presented six cycles between 3 and 4 days with a COD removal rate
of 95 ± 1.4% at 26 ± 2 ◦C.
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On the other hand, the CBW treatment (Figure 2b) presented cycles of 5–6 days with a
COD elimination percentage of 93 ± 1.5%. A study by Feng et al. [12], which was among
the first prototypes studied with a liquid volume of 28 mL, used titanium wire for the
connection of an external circuit to carbon electrodes with real brewery wastewater with
cycles of 4 days; however, its concentration was 1.3 times higher than the present study.
It used Pt as a catalyst in the anode, buffer solution, and for temperature control (30 ◦C),
influencing a better response (removing 98%). On the other hand, a study by Hiegemann
et al. [37] tested an integrated 45 L pilot microbial fuel cell system connected in parallel over
an external resistance box (RBox01, Voltcraft, Hirschau, Germany) to a current collector
of cathodes with a stainless-steel mesh, using real brewery wastewater, which achieved
an almost total removal of the initial concentration (510 mg L−1) in 6 days. Each cell was
equipped with cathodes coated with platinum as a catalyst (0.5 mg cm2) and four PTFE
(Polytetrafluoroethylene) diffusion layers on the air-facing side. In the case of a study
conducted by Lu et al. [3], which had a 20 L microbial fuel cell system, voltages were
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measured every 15 min across an external resistor using a data acquisition system. It
presented 7 days of cycles with 93% COD removal, with a concentration 1.7 times higher
than that used in this study. They employed a tubular configuration of carbon-based
cells and electrodes; they also used a carbon fiber cloth without any metal catalyst, a
recirculation pump, mechanical oxygenation, and thermal pretreatment at the cathode. In a
study by Dong et al. [11], a 90 L stackable pilot microbial fuel cell that used five independent
capacitor-based circuits that were set to discharge alternately in a charging and discharging
cycle of 5 min had 3 days of cycles with 0.45 times higher concentration than in the present
study, presenting a COD removal rate of 1230 mg L−1 d−1, unlike the present study, which
reached a COD removal rate of 992 mg L−1 d−1.

3.1.2. Performance of MFCs (Stacked)

Treatments with brewery wastewater show how voltage is dependent on COD re-
moval, with maximum values of 0.44 and 0.39 V (individual MFC) and amplified voltage
produced by serially connected capacitors of 4.1 and 3.6 V, respectively, for SBW and CBW
(Figure 2a,b). In the study by Feng et al. [12], a voltage between 0.4 and 0.5 V, fed with brew-
ery wastewater, was obtained, using Pt as catalyst in the cathode, which favored the voltage
response. In agreement with this, in studies by Wen et al. [13] (180 mL volume, treating
beer brewery wastewater) and Yu et al. [15] (working volume of 225 mL, single-chamber
microbial fuel cells with brewery wastewater), the anode and cathode were connected by a
copper wire with an external resistance of 100 Ω. These studies also used Pt as a catalyst
and obtained voltages between 0.5 and 0.6 V. Driessen and Vereijken [38], who focused
on a serpentine-type microbial fuel cell stack with 40 tubular air cathodes eating brewery
wastewater, employed a stack with a usable volume of 10 L, reporting a total stack voltage
of 23 V, with averages in each fuel cell of 0.58 and 0.64 V. Similarly, Dong et al. [11] obtained
average values per fuel cell of 0.6 V in a usable volume of 90 L.

3.1.3. Volatile Fatty Acids

Chromatography analysis showed a dominant concentration of acetic acid, and only
until day 2 did it present a low concentration of propionic acid (3 mg L−1) in SBW. The
difference in the concentration of acids other than acetic acid is due to the limitation of
the carbon source for propionate and butyrate, producing fermentative bacteria [39,40].
Maltose was one of the main components of SBW; this compound is a disaccharide that,
when unfolded, gives rise to two units of D-glucose [41], and once this process occurs,
it can take different routes (oxidation, fermentation, and/or biomass generation). Given
that hydrolysis is required, it could be seen that the maximum generation of VFAs was
between days 1 and 2 (after feeding). Compounds added in the SBW, in addition to maltose,
also influence the production of VFAs, such as ethanol, which is thermodynamically more
favorable for conversion to acetate compared to butyrate and propionate [41,42].

For CBW, all three types of acids were present, except for the last day, when only acetic
acid was detected (between days 5 and 6), caused by the composition of the actual wastew-
ater itself, which contained organic acids, mostly acetic acid, from beer production [41].
Generally, it was observed that acetate was predominant in the system; the presence of
butyric acid (maximum concentration was 205 ± 59 mg L−1 on the first day) and propionic
acid (maximum concentration was 95 ± 5 mg L−1 on the second day) were propitiated
by the bacterial community; acetate and propionate, two of these acids, made the biggest
contributions to the production of energy reported by Yu et al. [15], who found the presence
of ethanol, acetate, butyrate, and propionate in an MFC fed with real brewery wastewater,
which is consistent with the present study.

3.2. Ultra-Low-Power Circuit and Start-Up EHS Behavior

Although there are many EHSs described in the literature, it is crucial to pick one that
best fits the system’s unique requirements [35,36,42,43]. It is crucial to keep in mind that
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the EHSs power source is a living organism; as a result, the amount of energy that may be
harvested and the frequency at which this must be done must be considered.

The EHS used in this work was a capacitor-based system operated in an intermittent
energy harvest (IEH) mode, because it has been reported that using this mode, it is pos-
sible to harvest twice as much energy compared to the continuous energy harvest (CEH)
mode [36,44] and prevent voltage reversal in the cells. One of the main challenges in EHSs
is the autonomy of the circuit. The circuit utilized in this study can self-power and keep a
2.4 V Ni-Mh battery charged (Figure 3). This is made possible by the energy harvesting
for the nine MFCs in the stack, combined with the ultra-low consumption in the circuit
(10.4 J) [45,46]. The total energy harvested by the nine cells depended on the capacitor
charge time (CCT). When the CCT was 1 s, the energy harvested was 16 J, 65% higher than
the energy consumption in the circuit, enabling the battery charge level to be maintained
for the circuit to run on its own. A capacitor-based EHS was used in the ECOBOT III,
harvesting 2 J of 48 MFCs with a microcontroller operating in a low mode, maintaining the
energy level to power the ECOBOT functions [47].
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circuit connection.

3.3. Electrochemical Measurements
3.3.1. Coulombic Efficiency

Table 1 shows that the treatment of SBW had a CE of 57.2% ± 2.4. The presence
of sulfate as a component of SBW stimulated the growth of sulfate-reducing bacteria,
which reduce sulfate, obtaining sulfhydryl ions (HS-) [42] or hydrogen sulfide [43], which
in turn are oxidized through the anodic respiration of these bacteria, thus increasing
CE, as described and reported in different studies [44–47]. Given that throughout this
treatment, there were fluctuations close to pH neutrality, which could be associated with
the production of carbonates during the sulfate reduction process, it could be seen how
the highest pH unit was present (7.55 ± 0.1) at the end of the treatment, which similarly
occurred in a study of Cristiani et al. [48] and collaborators, who found that the system
alkalinized as the carbon source used by sulfate-reducing bacteria was consumed.

In CBW treatment (Table 1), the reported range for brewery wastewater treatment CE
ranges from 5.5 to 59 [3,11–15,49]. Although the literature exposes different electrochemical
treatment options for better utilization of the substrate in electron recovery, it is not always
related to higher COD removal efficiency, so wastewater treatment is closely related to other
metabolic pathways, such as methanogenesis, including other electron donors and oxygen
diffusion in wastewater [11–13]. In the case of the present study, a coulombic efficiency of
49.5% ± 0.71 was reported for craft brewery wastewater.
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Table 1. Bioelectrochemical performance systems from brewery wastewater.

Substrate Configuration Materials
Anode/Cathode

Useful
Volume

(L)

COD
(mg L−1)/OLR
(mg L−1 d−1)

COD Re-
moval

(%)

Columbic
Efficiency

(%)

Maximum
Power

(mW m−3)
Reference

Brewery
Wastewater

One Chamber—
Aerated Cathode

Carbon cloth/carbon
cloth–Pt 0.028 2250/NA 85 10 5100 [12]

One Chamber—
Aerated Cathode

Carbon fiber graphite
rod/activated

carbon–Pt
0.18 7436/NA 43 19.75 9520 [13]

One Chamber—
Aerated Cathode

Graphite
felt/carbon–Pt cloth 0.225 510/NA 99 41 2944 [15]

Stack—Aerated
cathode

Graphite felt/cloth
and catalytic coating

(Ni + MnO2)
10 NA/1060 86.4 7.6 4100 [14]

Stack—Forced
Oxygen Cathode

Carbon fiber
cloth/carbon fiber

cloth–heat treatment
18.8 3000/310 93.3/94.6 ND/5.5 ND/440 [3]

Stack—Aerated
cathode

Titanium
carbon/activated
carbon brushes

90 830/NA 84.7 19.7 9520 [11]

Synthetic
brewery

wastewater

Stack—Aerated
cathode GAC/carbon cloth 150 1980 ± 17 95 ± 1.4 57.2 ± 2.4 1938.02 This

study

Craft
brewery

wastewater

Stack—Aerated
cathode GAC/carbon cloth 150 1831 ± 85 93 ± 1.8 49.5 ± 0.71 1454.37 This

study

NA: Not available; GAC: granular activated carbon; OLR: organic loading rate; Pt: Platinum; COD: chemical
oxygen demand.

3.3.2. Polarization Curves

Figure 4 shows the behavior of the polarization curves of microbial fuel cells in the
stack after the respective CBW feedings over time.

Figure 4. Polarization curve performance obtained from each of the nine MFCs (stack system) after
CBW feedings.
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MFC1 obtained a power density in the last cycle of 225.36 mW m−3. On average, a
power density of 235.60 ± 5.00 mW m−3 was generated. The sum of the power densities
of the stack yielded a value of 1454.37 mW m−3 without a metal catalyst. The literature
has reported that treatments with real brewery wastewater have presented power densities
between 2944 and 9520 mW m−3 when employing cells with an aerated cathode and Pt
as catalyst at the cathode [12,13,15]. The value obtained in the present study was more
similar to the configuration performed by Moreno [33], with a maximum power density of
230.26 mW m−3. In a study reported by Zhuang et al. [14], which obtained a maximum
power density of 4100 mW m−3 while employing a stack with a useful volume of 10 L for
the treatment of brewery wastewater, the main differences that produced favorable results
were the pretreatment of the cathode with a catalytic layer (Ni and MnO2) and variation of
the connections (series and parallel) during the experimentation. On the other hand, in a
study by Lu et al., [3], a power density of 440 mW m−3 was obtained, which is 3.5 times
lower than that reported in the present study, in addition to having a thermal pretreatment
at the cathode and forced oxygen flow at the cathode, which, on a larger scale, would
represent external energy requirements to carry out the treatment.

3.3.3. Electrochemical Impedance Spectroscopy

The experimental data were fitted using Ec-Lab® software (version 10.37). The whole-
cell equivalent circuit circumscribes ohmic resistance, charge transfer process, and double
layer, as well as diffusion and transfer processes [50–53].

The trend shown by the Nyquist diagrams (Figure 5a) shows the formation of two
semicircles, which are represented by an equivalent circuit through a capacitor in parallel
with a resistor [50,54]. Since the system was not a pure capacitor, the semicircles are
represented by a constant-phase element, which is attributed to the heterogeneity of the
electrode or reactions, named Q2 and Q3 [51,55], as presented in Figure 5b.
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The resistance was characterized as ohmic resistance (R1), charge transfer resistance
(R2), and diffusion resistance (R3) [31]. Figure 5b shows the general behavior of the
resistances obtained during the CBW treatment. Likewise, it was concluded that the
highest resistance was given by R2 (Table 2), which is the diffusion-controlled element
and corresponds to proton transfer processes, followed by R3. However, the total internal
resistance obtained with CBW water was between 198.9 and 208.9 Ω. Higher resistances
have been reported during treatment with complex substrates such as cellulose (351 Ω) [56].
R1 represented a small fraction of the total internal resistance, only 3.5%, whereas R2
represented 78.1%, a very high percentage, mainly because no metal catalysts were used
in the MFCs, with oxygen reduction at the cathode being the limiting process [50,54,57].
Finally, R3 accounted for 18.3% of the total internal resistance due to fouling processes
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and the development of biofilms on the air cathode as well as the accumulation of inert
materials that can create a barrier to oxygen reduction [56].

Table 2. Resistance values and constant-phase elements from CBW treatment.

Feeding R1 (Ω) Q2
(F.s(α−1)) α2 R2 (Ω) Q3

(F.s(α−1)) α3 R3 (Ω) X2 Total Internal
Resistance (Ω)

1 10.42 ± 2.7 1.5 ± 0.06 0.72 ± 0.08 143.2 ± 2.71 0.18 ± 0.03 0.52 ± 0.05 45.34 ± 2.62 0.0010 198.96
3 9.03 ± 2.90 5.1 ± 1.4 0.90 ± 0.03 155.3 ± 9.1 0.55 ± 0.14 0.57 ± 0.06 44.58 ± 1.26 0.0081 208.91
4 2.46 ± 4.49 6.32 ± 0.34 0.91 ± 0.01 181.6 ± 4.47 1.38 ± 1.07 0.54 ± 0.06 22.71 ± 4.28 0.0065 206.77

204.88 ± 5.24

Similarly, the study conducted by Feng et al. [12] for the treatment of brewery liquid
waste using an aerated cathode reported a total internal resistance range between 595
and 4340 Ω, which was given through NaCl to adjust the conductivity, which was higher
than the present study. Likewise, a study carried out by Çetinkaya et al. [58] had internal
resistances between 130 and 45.26 Ω when employing microbial fuel cells fed by brewery
wastewater and a subsequent treatment effluent from an anaerobic reactor, respectively. On
the other hand, a study reported by Wang et al. [59], who performed impedance analysis in
the treatment of brewery wastewater, obtained a low resistance between 4 and 35 Ω due to
a cascade treatment of an agitated reactor followed by a microbial fuel cell.

4. Limitations

There are some limitations to this research study. The microflora was not identified
in this study. Cattle and hog manure as well as the soil contain various microorganisms
depending on many factors, including feed, hygiene, and location in the world, among
others. Likewise, microbial community development in MFCs is complex and clearly
affected by several factors in addition to anode potentials. However, electrochemically
active microorganisms can be enriched from various natural sources, creating selective
pressure on the microbial community to regulate respiratory pathways with a working
bioanode potential, resulting in better wastewater treatment under maximum current
or power.

The prototype was limited to 150 L, with a maximum hydraulic retention time of 5 days
and a COD of 1831 ± 85 mg L−1 for craft brewery wastewater, and more studies need to be
conducted in this way. However, to project a real-life scale, a sanitary hydraulic system
must be designed, composed of an equalization tank followed by a holding containing the
number of microbial fuel cells per liter, according to data obtained experimentally.

5. Conclusions

In this research, the batch operation of a scalable system stack of nine MFCs for
craft brewery wastewater demonstrated its self-sustainability, reaching an organic matter
removal measured through COD above 93 ± 1.8% without the use of external energy. In the
impedance analysis, the total internal resistance was low (204.8 ± 5.2 Ω), without the use of
a metal catalyst, with the reduction of oxygen being the limiting process. This study could
be a viable foundation for large-scale MFC systems that could improve the technology for
sustainable and energy-efficient wastewater treatment.
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