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Abstract: Currently, staging the degree of liver fibrosis predominantly relies on liver biopsy,
a method fraught with potential risks, such as bleeding and infection. With the rapid development
of medical imaging devices, quantification of liver fibrosis through image processing technology
has become feasible. Stacking technology is one of the effective ensemble techniques for potential
usage, but precise tuning to find the optimal configuration manually is challenging. Therefore,
this paper proposes a novel EVO-MS model—a multiple stacking ensemble learning model
optimized by the energy valley optimization (EVO) algorithm to select most informatic features
for fibrosis quantification. Liver contours are profiled from 415 biopsied proven CT cases,
from which 10 shape features are calculated and inputted into a Support Vector Machine (SVM)
classifier to generate the accurate predictions, then the EVO algorithm is applied to find the
optimal parameter combination to fuse six base models: K-Nearest Neighbors (KNNs), Decision
Tree (DT), Naive Bayes (NB), Extreme Gradient Boosting (XGB), Gradient Boosting Decision Tree
(GBDT), and Random Forest (RF), to create a well-performing ensemble model. Experimental
results indicate that selecting 3–5 feature parameters yields satisfactory results in classification,
with features such as the contour roundness non-uniformity (Rmax), maximum peak height of
contour (Rp), and maximum valley depth of contour (Rm) significantly influencing classification
accuracy. The improved EVO algorithm, combined with a multiple stacking model, achieves an
accuracy of 0.864, a precision of 0.813, a sensitivity of 0.912, a specificity of 0.824, and an F1-score
of 0.860, which demonstrates the effectiveness of our EVO-MS model in staging the degree of
liver fibrosis.

Keywords: ensemble learning; energy valley optimization algorithm; liver fibrosis; computer-aided
diagnosis; image processing

1. Introduction

Liver fibrosis is a common hepatic disease characterized by the abnormal prolifera-
tion and deposition of collagen fibers and other extracellular matrix components within
the liver, resulting from chronic liver injury [1,2]. This pathological repair response is a
critical step in the progression of various chronic liver diseases towards cirrhosis. The
process is associated not only with chronic viral hepatitis, such as hepatitis B and C,
but also with the incidence of fibrosis due to non-alcoholic fatty liver disease (NAFLD)
and autoimmune liver diseases, which have also been increasing in recent years. Early
diagnosis and accurate staging of liver fibrosis are of significant importance for treatment
and prognosis. Traditional diagnostic methods for liver fibrosis primarily rely on liver
tissue examination, namely, liver biopsy. Liver biopsy is considered the gold standard
for diagnosing liver fibrosis [3–5]; however, its invasive nature, high cost, and associated
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risks limit its widespread clinical application. Therefore, there is an urgent need for a non-
invasive and convenient method for diagnosing liver fibrosis. As fibrosis progresses, the
liver surface becomes increasingly irregular, forming nodules and rough edges, leading
to increased roughness of the liver’s margin. By calculating the roughness characteristics
of the liver’s edge, one can assess the complexity and heterogeneity of the liver surface,
which correlates positively with the degree of fibrosis [6].

In recent years, with the advancement of medical imaging technologies [7–10],
such as ultrasound, CT, and MRI, it has become possible to provide information on the
morphology, structure, and function of the liver [11]. The feature extraction, classifica-
tion, and analysis of medical images can achieve non-invasive or minimally invasive
qualitative or quantitative assessment of liver fibrosis, offering possibilities for non-
invasive or minimally invasive grading of fibrosis [12]. Features in medical images
can be broadly categorized into texture features and shape features. Texture features
describe the attributes of gray-scale variations and spatial distribution in an image [13],
while shape features are quantitative indicators used to describe the morphology of an
object [14]. Due to the complexity of individual learners, their performance often fails to
meet requirements; ensemble learning can combine multiple weak learners into a strong
learner [15]. Boosting, bagging, and stacking are classic algorithms in ensemble learning.
Boosting sequentially builds a series of classifiers, adjusting sample weights each round,
focusing on incorrectly classified samples to generate multiple prediction functions [16].
Bagging constructs multiple independent learners in parallel, combining their prediction
results in the end [17]. Stacking combines the prediction results of multiple base-learning
algorithms through a meta-learning algorithm [18]. Stacking ensemble techniques are
widely applied; for instance, a stacking ensemble learning framework (SELF) was con-
structed by Liang M et al. [19] by integrating three machine learning methods, achieving
high accuracy in prediction tasks. Cui S et al. proposed a stacking ensemble learning
model based on an improved swarm intelligence optimization algorithm, validating its
effectiveness on a Chinese earthquake dataset from 1996–2017 [20]. Mota L F M et al.
combined stacking ensemble learning with real-time milk analysis to predict cheese
production characteristics [21]. Zhang H et al. introduced a multi-dimensional feature
fusion and stacking ensemble mechanism (MFFSEM), effectively detecting abnormal
network traffic behaviors, achieving commendable results on two intrusion detection
evaluation datasets (UNSW-NB15 and CIC-IDS-2017) [22]. Rashid M et al. introduced a
tree-based stacking ensemble technique (SET), which, by further enhancing feature selec-
tion techniques, better identified normal and anomalous traffic in networks, compared
to other existing IDS models [23]. Kardani N et al. used the Artificial Bee Colony (ABC)
optimization algorithm to find the best combination of base classifiers and determine
the most suitable meta-classifier from 11 machine learning algorithms. The experiments
showed that the improved stacking model significantly enhanced the predictive ability
for slope stability [24]. By applying meta-heuristic algorithms, suitable solutions, close
to the optimal, can be found in a short time for model optimization. The EVO algorithm
has a strong global search capability, allowing it to find global optima in complex op-
timization problems more effectively. The EVO algorithm tends to have higher search
efficiency and better convergence performance compared to traditional optimization
algorithms. Accordingly, this study proposes an EVO-MS model optimized by the energy
valley algorithm (EVO) [25–28].

The author adapted the micro-unevenness indicators from industrial applications for
detecting the shape characteristics of the liver’s edge, selecting materials with significant
deformation, such as silicone models, to replace human liver in preliminary tests. Using the
SVM model [29] to analyze liver CT images, the study identified feature parameters with
significant impact on classification experiments and trained the EVO-MS ensemble model
with these parameters. This research aims to explore the effectiveness and applicability of
the EVO-MS-based liver fibrosis grading method, providing a new tool for the diagnosis
and monitoring of clinical liver fibrosis.
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2. Materials and Methods
2.1. Dataset

All liver CT images in this study were obtained from the Radiology Department
of the First Affiliated Hospital of Guangxi Medical University between June 2009 and
March 2011 [6,30,31]. The images consist of 415 cases, both diagnosed via liver puncture
biopsy and those without a history of liver-related diseases, who did not undergo biopsy.
The grading of liver fibrosis was based on the chronic hepatitis fibrosis staging standards
revised in 2000 by the Infectious Diseases and Parasitology Branch and the Hepatology
Branch of the Chinese Medical Association. The stages were divided into the normal
group (S0), the mild fibrosis groups (S1 and S2), the severe fibrosis groups (S3 and S4),
and cirrhosis group (CIR), each comprising 70, 69, 69, 69, 69, and 69 cases, respectively.
The sample set of imaged CTs included 39 males and 31 females in the normal group,
with an average age of 38.60 years; 118 males and 20 females in the mild fibrosis group,
with an average age of 37.25 years; 90 males and 48 females in the severe fibrosis group,
with an average age of 38.6 years; and 53 males and 16 females in the cirrhosis group,
with an average age of 47.5 years. Each image was verified by experienced radiologists
to ensure the accuracy of the grading labels. The CT image of the liver is shown in
Figure 1.
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Figure 1. Different CT phased images were obtained from a 52-year-old woman with fibrosis stage F2
due to type C viral hepatitis before and after injection of contrast agent.

In practical medical applications, CT scans typically involve the injection of a contrast
agent into the patient. The contrast agent, spreading with the blood flow into various tissues
and organs, enhances the sensitivity of the tissues to X-rays during scanning. This allows
for clearer X-ray signals and better reconstruction of internal body images. The acquired
scan images can be categorized according to the timing of the contrast agent injection, as
per Table 1. Each scanning phase yields a complete set of full liver cross-sectional images.
The CT scanner used was the 64-slice multi-layer spiral CT machine (GE Lightspeed VCT)
produced by GE, USA, with an exposure voltage of 120 kV, a tube current of 250 mA, and
an image pixel matrix of 512 × 512. The contrast agent used was iohexol injection fluid,
administered through an antecubital vein using a high-pressure injector, with a dosage of
85–90 mL, a concentration of 320 mg/mL, and an injection rate of 3.0 mL/s.

Table 1. The scanning time for each phase on contrast CT images.

Scan Phase CT Scan Timing Contrast Agent Diffusion

N Phase: Non-contrast Phase <0 s No contrast agent injected
A Phase: Arterial Phase 25 s Contrast agent diffused into hepatic arterial vessels
V Phase: Venous Phase 60 s Contrast agent refluxed into hepatic venous vessels

P Phase: Equilibrium Phase 120 s Contrast agent diffused into hepatic capillary tissues
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2.2. Microscopic Roughness

The hepatic surface profile is outlined with the red line, consisting of more than
128 points, as shown in Figure 2a, on which an approximate curve was determined by
a least-square approach, and a one-dimensional function was obtained by drawing a
straight line between the start and end points before rotating it parallel to the y-axis
(Figure 2b). Then, the microscopic roughness of the hepatic surface is calculated as the
shape feature.

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 20 
 

2.2. Microscopic Roughness 
The hepatic surface profile is outlined with the red line, consisting of more than 128 

points, as shown in Figure 2a, on which an approximate curve was determined by a least-
square approach, and a one-dimensional function was obtained by drawing a straight line 
between the start and end points before rotating it parallel to the y-axis (Figure 2b). Then, 
the microscopic roughness of the hepatic surface is calculated as the shape feature. 

 
Figure 2. The outline of the hepatic surface, shown in red (a), is rotated according to its angle of 
approximate curve to generate a one-dimensional profile function (b). 

Micro-unevenness is a quantitative indicator used in mechanical engineering to de-
scribe the characteristics of surface morphology. The author intends to select a total of ten 
such parameters as characteristic parameters, which include 𝑙, representing the sampling 
length, and 𝑍(𝑥), the profile deviation function. 

The average arithmetic deviation of a profile is represented by 𝑅 . It is the arithmetic 
mean of the absolute values of the distances. These distances are between the points on 
the profile line and the baseline. The measurement is taken along the direction of the pro-
file within a sampling length. A smaller 𝑅  means a smoother surface. The calculation 
formula for 𝑅  is as follows: 𝑅 = 1𝑙 |𝑍(𝑥)| 𝑑𝑥 (1)

The root mean square deviation of the profile is denoted as 𝑅𝑞. It is the square root 
of the arithmetic mean of the squared distances. These distances are between the points 
on the profile line and the baseline. Again, the measurement is within a sampling length. 
A smaller 𝑅  value means a smoother surface. The calculation formula for 𝑅  is as fol-
lows: 

𝑅 = 1𝑙 𝑍 (𝑥)𝑑𝑥 (2)

The maximum height of profile micro-unevenness is represented by 𝑅 . It is the 
vertical distance between the highest and lowest points on the profile line. This measure-
ment is also within a sampling length. A smaller 𝑅  value suggests a smoother surface. 
The calculation formula for 𝑅  is as follows: 𝑅 = 𝑚𝑎𝑥 |𝑍(𝑥)| (3)

The maximum valley depth of the profile is denoted as 𝑅 . It is the vertical distance 
from the lowest point on the profile line to the baseline. This is measured within a sam-
pling length. The calculation formula for 𝑅  is as follows: 𝑅 = 𝑚𝑖𝑛 |𝑍(𝑥)| (4)

Figure 2. The outline of the hepatic surface, shown in red (a), is rotated according to its angle of
approximate curve to generate a one-dimensional profile function (b).

Micro-unevenness is a quantitative indicator used in mechanical engineering to de-
scribe the characteristics of surface morphology. The author intends to select a total of ten
such parameters as characteristic parameters, which include l, representing the sampling
length, and Z(x), the profile deviation function.

The average arithmetic deviation of a profile is represented by Ra. It is the arithmetic
mean of the absolute values of the distances. These distances are between the points on the
profile line and the baseline. The measurement is taken along the direction of the profile
within a sampling length. A smaller Ra means a smoother surface. The calculation formula
for Ra is as follows:

Ra =
1
l

∫ l

0
|Z(x)|dx (1)

The root mean square deviation of the profile is denoted as Rq. It is the square root
of the arithmetic mean of the squared distances. These distances are between the points
on the profile line and the baseline. Again, the measurement is within a sampling length.
A smaller Rq value means a smoother surface. The calculation formula for Rq is as follows:

Rq =

√
1
l

∫ l

0
Z2(x)dx (2)

The maximum height of profile micro-unevenness is represented by Rmax. It is the
vertical distance between the highest and lowest points on the profile line. This measure-
ment is also within a sampling length. A smaller Rmax value suggests a smoother surface.
The calculation formula for Rmax is as follows:

Rmax = max0≤x≤l |Z(x)| (3)
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The maximum valley depth of the profile is denoted as Rmin. It is the vertical distance
from the lowest point on the profile line to the baseline. This is measured within a sampling
length. The calculation formula for Rmin is as follows:

Rmin = min0≤x≤l |Z(x)| (4)

The maximum peak height of the profile is denoted as Rp. It is the highest peak
value relative to the mean line within a sampling length. The calculation formula for Rp is
as follows:

Rp = max0≤x≤lZ(x) (5)

The average spacing of micro-unevenness of the profile is denoted as Sm. It is the
average distance between the micro-unevenness within a sampling length. The spacing
of micro-unevenness refers to the segment length on the mean line between a profile
peak and its adjacent valley. Here, n represents the number of profile elements, and si
denotes the width of the ith profile element. A profile element is defined as the segment
of the profile line between a peak and its adjacent valley. The calculation formula for Sm is
as follows:

Sm =
1
n∑n

i=1 si (6)

The average spacing of single peaks of the profile is denoted as S. It is the average
distance between individual peaks within a sampling length. Here, xi+1 represents the
position of adjacent peaks, and n is the total number of peaks. The calculation formula for
S is as follows:

S =
1

n − 1∑n−1
i=1 (xi+1 − xi) (7)

The average height of micro-unevenness of the profile is denoted as Rz. It is calculated
as the sum of the average of the five highest peaks and the average of the five deepest
valleys within a sampling length. Here, ypi represents the height of the ith highest peak,
and yvi denotes the depth of the ith deepest valley. The calculation formula for Rz is
as follows:

Rz =
1
5∑5

i=1

(
ypi + yvi

)
(8)

The density of profile peaks is denoted as D. It is the ratio of the number of profile
peaks to the sampling length within a sampling length. Here, n represents the number
of profile peaks contained within the sampling length, and l is the sampling length. The
calculation formula for D is as follows:

D =
n
l

(9)

The profile bearing length ratio is denoted as tp. It is the ratio of the bearing length
to the sampling length. Given a horizontal intercept, a line parallel to the mean line is
drawn at the intercept length below the peaks. The intersection of the profile with this
line l1 + l2 + l2 + · · ·+ ln is called the bearing length. The calculation formula for tp is
as follows:

tp =
l1 + l2 + l2 + · · ·+ ln

l
(10)

Examples of Sm and tp are illustrated in Figure 3.
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2.3. Overview of the Proposed Method

In cases where liver imaging resources were scarce, the authors employed a silicone
mold with a favorable degree of deformability as a surrogate for the liver in simulation
experiments. Beneath the silicone mold, two sets of holes, totaling six, are uniformly
spaced to suspend weights, thereby simulating the edge roughness associated with varying
degrees of liver fibrosis. Simulated experiments were conducted to verify the correlation
between micro-unevenness parameters and the degree of deformation. The silicone mold
and the edges of the silicone are depicted, respectively, in Figure 4.
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Figure 4. The silicone mold is hung by different weights to simulate the restraint force on the liver
caused by the progression of fibrosis (a), as shown in its profile image (b).

The liver CT experiment comprises three stages: the data extraction module; the feature
optimization module; and the EVO-MS classification module. The specific flowchart is
illustrated in the Figure 5.

(a) The data extraction module involves the extraction of representative edge curves
from the lower segment of the left hepatic lobe to the lower segment of the left hepatic
outer lobe on the liver contour map after positioning, rotating, and fitting the edge curve.
Based on this edge curve, ten characteristic parameters are extracted. Following min–max
normalization of the data, the samples are input into an SVM classifier. The leave-one-out
method is employed to maximize the input samples, and an exhaustive search method is
used to select different combinations of all feature parameters.
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(b) The feature optimization module is divided into two parts: the optimization of the
number of feature parameters, and the optimization of the weights of feature parameters.
The optimization of the number of feature parameters involves calculating the highest
accuracy rate for each feature parameter. The highest accuracy rate for each quantity of
feature parameters is denoted as P(k), where k represents the number of feature parameters
selected, and P(2) represents the highest accuracy rate obtained from C2

10 combinations
when classifying with two feature values. The weight of the feature parameters refers to the
degree of influence on the accuracy of the results in the feature parameter SVM classifier.
A greater weight indicates a larger impact on accuracy, while a lesser weight suggests a
smaller influence on the classification outcome. The frequency of occurrence of ten feature
parameters in hierarchical classification combinations is counted.

p(k) =
1
N ∑N

i=1 ni(k) (k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, i = 1, 2, . . . , N) (11)

N = C1
10 + C2

10 + C3
10 + C4

10 + · · ·+ C10
10 = 210 − 1 (12)

where k represents the ten features’ parameter number, p(k) represents the weight of the
k feature parameter. The process iteratively traverses every possible combination of feature
parameters to define the classification space using an exhaustive traversal method. The total
number of combinations, denoted as N. In this experiment, ni(k) indicates whether the
feature quantity k appears in the ith classification space; if the feature quantity appears,
ni(k) = 1, otherwise, ni(k) = 0. The min–max normalization is employed, where p(k)max
is the maximum value of the sample weight data, p(k)min is the minimum value, and the
transformation function is as follows:

W(k) =
p(k)− p(k)min

p(k)max − p(k)min
(13)

(c) After optimizing the number and weights of the feature parameters, those with
greater weights were input into the EVO-MS model for training. Initially, the selected
six base classifiers—KNN, DT, NB, XGBoost, GBDT, and RF—were utilized to predict the
sample and determine the predicted class probabilities, which are denoted as a matrix P:

P =


p11 p12 · · · p1k
p21 p22 · · · p2k

...
...

. . .
...

pn1 pn2 · · · pnk

 (14)

where n denotes the number of base models, k represents the number of splits, and pij
signifies the predicted probability of the ith base model for the jth split. Subsequently,
the probability values outputted by the base models are fed as input data into a mixture
layer composed of m mixing units. The predictive probabilities from the mixture layer
are then input into the meta-model layer. A logistic regression method is employed
to synthesize the predictions of the various mixed classifiers, thereby yielding a more
accurate final forecast. The hyperparameter combinations of each base model and the
weights of the individual units in the mixture layer are optimized using the energy valley
optimization algorithm, with the optimization process utilizing cross-entropy loss as the
objective function.
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2.4. Multiple Model

The multiple stacking model is an ensemble learning algorithm that enhances the
efficiency of complex data processing by integrating the predictive capabilities of various
base models. The multiple stacking architecture comprises three levels: the base models, the
blending layer, and the meta-model. The base models include a diverse array of machine
learning algorithms, which are independently trained on data using K-fold cross-validation
to ensure the model’s generalizability. The output of the base model layer, consisting of the
prediction results of each model on the data, is fed into the blending layer. In this layer, the
predictions of the base models are used to train multiple ensemble models responsible for
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learning how to most effectively combine the predictions of the base models. The output of
the blending layer is then used as the input for the meta-model, which further optimizes
the prediction results to achieve higher accuracy than individual models. The advantage of
the multiple stacking model lies in its ability to capture the complementary information
between different models. By learning the differences in predictions of various models,
it enhances the overall predictive performance and improves the model’s generalization
ability on unknown data. The multiple stacking algorithm is illustrated in Figure 6, where k
denotes the use of k-fold cross-validation, and Predictioni,j denotes the predicted probability
of the ith model on the jth split.
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2.5. Energy Valley Optimization

The energy valley optimizer (EVO) is a metaheuristic algorithm grounded in physical
principles, inspired by the stability and decay processes of particles. In the cosmos, the
majority of particles are considered unstable, with only a select few capable of maintaining
permanence. Unstable particles release energy through decay, with the decay rate varying
slightly among different particle types. The energy valley focuses on particle stability,
determined by the binding energy of particles and their interactions with others. Depending
on the stability level of the particles, each tends to increase its stability level by adjusting
the ratio of neutrons to protons and moving towards the stability band or the bottom of the
energy valley. During the decay process, a particle with a lower energy level is produced,
while excess energy is emitted. The decay processes of particles with different stability
levels yield three types of emissions, corresponding to three position update processes.
Two of these processes occur within the decision variables, executing the exploration
process, while one position update process occurs within the candidate solutions, satisfying
exploitation. These principles provide the foundation for the EVO algorithm, enabling it
to optimize the performance of solutions by simulating the stability and decay processes
of particles.

The initial step of the EVO algorithm is initialization, where particles (candidate
solutions) Xi within the search space are established, representing various levels of sta-
bility. Assuming the search space is a specified section, a random initialization operation
is conducted:

Xi =



x1
1 · · · xj

1 · · · xd
1

...
...

...
...

x1
i · · · xj

i · · · xd
i

...
...

...
...

x1
n · · · xj

n · · · xd
n


,
{

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(15)

xj
i = xj

i,min + rand
(

xj
i,max − xj

i,min

)
,

{
i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(16)

where n represents the total number of particles, d denotes the dimensions of the problem
under consideration, xj

i signifies the jth decision variable of the initial position of the ith

particle, while xj
i,min and xj

i,max, respectively, represent the lower and upper bounds of the
jth decision variable within the ith particle; rand is a random number uniformly distributed
in the interval [0, 1].

The second step of the energy valley algorithm involves determining the enrichment
boundary (EB) for the particles. Each particle is assessed through the objective function,
establishing its neutron enrichment level (NELi), which is utilized to distinguish between
neutron-poor and neutron-rich particles.

EB =
∑n

i=1 NELi

n
, i = 1, 2, . . . , n. (17)

where NELi represents the neutron enrichment energy level of the ith particle, while EB
denotes the enrichment boundary for particles in the universe.

The third step of the energy valley algorithm is to evaluate the stability level of the
particles, based on the objective function:

SLi =
NELi − BS
WS − BS

, i = 1, 2, . . . , n. (18)



Bioengineering 2024, 11, 485 11 of 20

where SLi denotes the stability level of the ith particle, while BS and WS represent the parti-
cles with the best and worst stability levels within the universe, respectively. Their stability
levels are determined by the minimum and maximum values of the objective function.

Within the main search loop of the energy valley optimization (EVO), if the neutron en-
richment level of a particle exceeds the enrichment threshold (NELi > EB), it is postulated
that the particle possesses a higher neutron-to-proton ratio. Depending on the stability level
of the particle, three decay processes ( α, β, γ) are adopted accordingly. To simulate the sta-
bility boundary (SB) in the cosmos, a random number within the interval [0, 1] is generated.
Should the stability level of the particle surpass the stability boundary (SLi > EB), α and γ
decays may occur, as these decays are pertinent for heavy particles with higher stability.
In accordance with the physical principles of α decay, the emission of α rays facilitates the
enhancement of the stability of the reaction products. This process serves as one of the EVO
position update mechanisms, thereby generating new candidate solutions. Specifically, two
random integers, Alpha Index I, are generated within the interval of [1, d] to represent the
quantity of emitted α rays. Subsequently, within the [1, Alpha Index I] interval, a value for
Alpha Index I I is determined to specify the particular α rays to be emitted. The emitted
rays, being decision variables within the candidate solution, are removed and replaced by
the rays from the particle with the highest level of stability (XBS) or from the α rays within
the candidate solution. The pertinent mathematical formulas are as follows:

XNew1
i = Xi

(
XBS

(
xj

i

))
,
{

i = 1, 2, . . . , n.
j = Alpha Index I I.

(19)

where a new particle is generated, denoted as XNew1
i , while Xi represents the current

position vector of the ith particle (solution candidate) within the universe (search space).
The position vector of the particle with the optimal stability level is denoted as XBS, and xj

i
represents the jth decision variable or emitted rays. Moreover, in the gamma decay process,
γ rays are emitted to elevate the stability level of the excited particles. This process can act
as another position update mechanism for EVO, generating new candidate solutions in
the process. For this purpose, within the interval [1, d], two random integers, referred to
as Gamma Index I, are generated to represent the number of γ rays to be emitted. A value
for Gamma Index I I is determined within the interval [1, Gamma Index I] to specify the γ
rays to be considered within the particle. The γ rays within the particle, serving as decision
variables in the candidate solution, are removed and replaced by those from adjacent
particles or candidate solutions (XNg), emulating the interaction of the excited particles
with other particles or even magnetic fields. The total distance between the considered
particle and other particles is calculated as follows:

Dk
i =

√
(xi − xk)

2 + (yi − yk)
2,
{

i = 1, 2, . . . , n.
k = 1, 2, . . . , n − 1.

(20)

where Dk
i represents the total distance between the ith particle and the kth adjacent particle,

while (xi, yi) and (xk, yk) denote the coordinates of the particle in the search space. When
considering the ith particle, compute its position relative to the other n − 1 particles and
identify the nearest kth particle. Utilizing these operations, the position update process for
generating the second candidate solution is as follows:

XNew2
i = Xi

(
XNg

(
xj

i

))
,
{

i = 1, 2, . . . , n.
j = Gamma Index I I.

(21)

where a new particle, denoted as XNew2
i , is generated, and Xi represents the current position

vector of the ith particle (solution candidate) within the cosmos (search space). Additionally,
XNg denotes the position vector of the neighboring particles surrounding the ith particle,

and xj
i represents the jth decision variable or emitted photons. If the stability level of the

particle falls below the stability threshold (SLi ≤ EB), β decay is presumed to have occurred,
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as such decay processes occur in unstable particles with lower stability. In accordance
with the physical principles of β decay, particles emit β rays to enhance their stability level;
hence, those particles with higher levels of instability should perform larger jumps within
the search space. During the position update process, particles move towards the optimal
stability level (XBS) and the particle center (XCP). This simulates the behavior of particles
gravitating towards the stability band, where most known particles congregate, typically
exhibiting higher stability. The relevant mathematical formulas are as follows:

XCP =
∑n

i=1 Xi

n
, i = 1, 2, . . . , n. (22)

XNew1
i = Xi +

(r1 × XBS − r2 × XCP)

SLi
, i = 1, 2, . . . , n. (23)

where XNew1
i and Xi, respectively, represent the future and current position vectors of the

ith particle (solution candidate) within the universe (search space). XBS denotes the position
vector of the particle with the optimal stability level, while XCP is the position vector of the
particle center. SLi is the stability level of the ith particle, and r1 and r2 are two random
numbers within the interval [0, 1], determining the amplitude of the particle’s motion. To
enhance the development and exploration level of the algorithm, a new position update
mechanism is implemented for particles with β decaying stability level. This mechanism,
without affecting the particle’s motion, is achieved by controlling the movement of the
particle with the highest level of stability (XBS), as well as the movement of adjacent
particles or candidate particles (XNg). The mathematical formula is as follows:

XNew2
i = Xi +

(
r3 × XBS − r4 × XNg

)
, i = 1, 2, . . . , n. (24)

where XNew2
i and Xi represent the future and current position vectors of the ith particle

(solution candidate) in the universe (search space), respectively. XBS is the position
vector of the particle with the optimal stability level, and XBS is the position vector of the
neighboring particles around the ith particle; r3 and r4 are two random numbers within the
[0, 1] interval that determine the amount of particle movement. If the neutron enrichment
level of a particle is below the enrichment threshold (NELi ≤ EB), it is considered that the
particle has a relatively small proton-to-neutron ratio, and the particle is more inclined to
migrate towards the stability band through processes such as electron capture or positron
emission. The random motion in the search space is characterized as the following types
of movement:

XNew
i = Xi + r, i = 1, 2, . . . , n. (25)

where XNew
i and Xi represent the future and current position vectors of the ith particle

(solution candidate) in the universe (search space), and r is a random number within the
[0, 1] interval that determines the magnitude of the particle’s movement.

At the end of the EVO main loop, if a particle’s enrichment level is above the enrich-
ment threshold, each particle generates only two new position vectors, XNew1

i and XNew2
i ,

while for particles with lower enrichment levels, only XNew
i is generated as the new position

vector. In each state, the newly generated vectors are merged with the current population,
and the best particle participates in the next search cycle of the algorithm. For decision
variables that exceed the predefined upper and lower bounds, a boundary violation flag
is determined, and the maximum number of evaluations of the objective function or the
maximum number of iterations is used as the termination criterion. The pseudo-code of
the energy valley optimization algorithm is presented in the Table 2.
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Table 2. The pseudo-code of the energy valley optimization algorithm.

EVO Pseudo-Code

Define the iteration_max, problem bounds, problem dimension (d), population size (n), objective function.
Calculate the fitness values of all candidate particles based on the neutron enrichment level (NELi)
while iteration < iteration_max do

Calculate the particle enrichment boundary (EB)
Determine the particle with the best stability level (XBS)

for i = 1 : n do
Calculate the stability level (SLi) of the ith particle
Calculate the neutron enrichment level (NELi) of the ith particle
if NELi > EB, then

Generate the stability bound (SB)
if SLi > SB, then

Generate Alpha Index I and II
for j = 1 : Alpha Index I and II do

XNew1
i = Xi

(
XBS

(
xj

i

))
end
Generate Gamma I and II
Find a neighboring particle (XNg)
for j = 1 : Gamma II do

XNew2
i = Xi

(
XNg

(
xj

i

))
end

else if SLi ≤ SB then
Determine center of particles (XCP)
XNew1

i = Xi +
(r1×XBS−r2×XCP)

SLi
Find a neighboring particle (XNg)
XNew2

i = Xi +
(

r3 × XBS − r4 × XNg
)

end
else if NELi ≤ EB then

XNew
i = Xi + r

end
i= i + 1
end

iteration = iteration + 1
end
Return the best stability level (XBS)

The flow diagram of the energy valley optimization algorithm is shown in Figure 7.
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3. Results
3.1. Feature Optimization

In the feature extraction phase, a silicone simulation experiment was initially con-
ducted to present the relationship between representative feature parameters Ra, Rq, Rp,
Rmax and the mass of the weights. As illustrated in Figure 8a–d, with the gradual increase
in the mass of the weights, the values of these feature parameters also correspondingly rise,
indicating a significant positive correlation between them. This outcome confirms that the
feature parameters can effectively reflect the changes in the mass of the weights. The blue
data points in Figure 8 represent the feature parameter values measured at different weight
masses, while the red fitting line is obtained through least squares fitting, providing us
with the best estimate of the trend within the dataset.
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In the liver CT experiments, the quantity of feature parameters was optimized using an
SVM classifier. The statistical analysis of the experimental results for the highest accuracy
rates of shape feature quantities at various counts reveals that the classifier achieves superior
classification performance when the number of feature parameters ranges from three to five.
A moderate number of feature parameters aids in enhancing the classifier’s accuracy and
efficiency. In contrast, an excess of feature parameters was observed to negatively impact
the classifier’s performance due to data redundancy, leading to a decrease in classification
accuracy. Conversely, when the number of feature parameters is insufficient, the classifier
is unable to effectively distinguish between different categories due to a lack of adequate
information. The optimization of the number of feature parameters results is depicted in the
Figure 9.
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Figure 9. Optimization of the number of feature parameters.

During the optimization of feature parameter weights, the experimental results of feature
parameter weight optimization are displayed in descending order, as shown in Figure 10.
The results demonstrate that the weights of five feature parameters—Rp, S, Sm, Rmin, and
Rmax—significantly influence the accuracy of the classification. These parameters are highly
relevant in the diagnosis of liver fibrosis, providing an accurate reflection of the degree of liver
fibrosis pathology. In the field of mechanical engineering, measurements of micro-surface
unevenness that are widely recognized as representative include the maximum height of
Rmax, Rp, Rmin. This confirms the theoretical basis for applying these micro-unevenness
quantification indicators to the medical domain, utilizing them to detect the edge roughness
associated with the degree of liver fibrosis, and serving as a criterion for grading.
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3.2. EVO-MS Model Performance

The dataset for this study encompasses a total of 415 cases, including both patients
diagnosed with liver fibrosis via liver biopsy and individuals without a history of liver-
related diseases, examined at the First Affiliated Hospital of Guangxi from June 2009
to March 2011. The data were divided into a training set and a test set at a ratio of 7:3.
To validate the effectiveness of the model, its performance was assessed on the test set using
various evaluation metrics, including the construction of Receiver Operating Characteristic
(ROC) curves and calculation of AUC, accuracy, precision, sensitivity, specificity, and F1-
score. Moreover, the Wilcoxon signed-rank test is employed to compare the EVO-MS model
with the other six models.
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The EVO-MS model and the six individual models’ performance metrics at a prediction
threshold of 0.5, such as the validation set’s root mean square error (RMSE), test set RMSE,
accuracy, precision, sensitivity, and specificity, are shown in the Table 3. It is evident
from the Table 3 that our proposed EVO-MS outperforms the other six individual models,
achieving the highest levels among the seven models, with an accuracy of 0.864, a precision
of 0.813, a sensitivity of 0.912, a specificity of 0.824, and an F1-score of 0.860. The EVO-MS
model’s accuracy, precision, sensitivity, specificity, and F1-score are, respectively, 5.6%,
7.4%, 3.5%, 8.9%, and 5% higher than those of the lowest-scoring model. The scores of
each model on the five metrics are illustrated in the Figure 11. The results of the Wilcoxon
signed-rank test, as delineated in Table 4, reveal significant variances between the EVO-MS
model and the other six models (p < 0.05). Considering evaluation metrics such as AUC,
sensitivity, and specificity, it is inferred that the overall performance of the EVO-MS model
is superior to that of the competing models.
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Table 3. The scores of each model across five metrics.

Accuracy Precision Sensitivity Specificity F1-Score

EVO-MS 0.864 0.813 0.912 0.824 0.860
KNN 0.840 0.776 0.912 0.779 0.839

DT 0.808 0.739 0.895 0.735 0.810
NB 0.854 0.813 0.912 0.824 0.860

XGB 0.848 0.797 0.895 0.809 0.843
GBDT 0.832 0.772 0.895 0.775 0.829

RF 0.831 0.781 0.877 0.794 0.826
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Table 4. The Wilcoxon signed-rank test between the EVO-MS model and the other models.

Pair Comparison p Value

EVO-MS vs. KNN 0.041
EVO-MS vs. DT 0.040
EVO-MS vs. NB 0.039

EVO-MS vs. XGB 0.000
EVO-MS vs. GBDT 0.045

EVO-MS vs. RF 0.037

The Area Under the Curve (AUC) values for the models EVO-MS, KNN, DT, NB, XGB,
GB, and RF are 0.940, 0.916, 0.879, 0.868, 0.924, 0.921, and 0.903, respectively. The proposed
EVO-MS model achieved the highest AUC. The ROC (Receiver Operating Characteristic)
curves for each model are illustrated in the Figure 12 below:
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4. Discussion

The diagnosis and grading of liver fibrosis is a critical fundamental task. This study
has constructed a multiple stacking model, optimized by energy valley optimization (EVO),
based on 415 CT images from different stages of liver fibrosis. By analyzing and extracting
shape features, accurate grading of the extent of liver fibrosis can be achieved, which has
the potential to change the current reliance on invasive tests, such as liver biopsies.

The statistical results indicate that selecting three shape features yields better classifi-
cation performance, with the maximum peak height of the contour, the average inter-peak
distance of the contour, and the average inter-roughness distance of the contour microstruc-
ture having significant weights. In terms of model construction, the EVO-MS combines six
individual base models (KNN, DT, NB, XGBoost, GBDT, and RF). For parameter tuning,
we employ the EVO algorithm to replace the manual selection process. The EVO-MS model
demonstrates excellent performance in grading liver fibrosis on the test set, achieving com-
mendable scores across the five main evaluation metrics (an accuracy of 0.864, a precision of
0.8125, a sensitivity of 0.9123, a specificity of 0.8235, and an F1-score of 0.8595), outperform-
ing the lowest-scoring model by 3.2%, 4%, 1.7%, 4.5%, and 3.1%, respectively. This indicates
that the EVO-MS model can more effectively detect different stages of liver fibrosis.
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Our work is primarily limited by the size of the dataset. Due to patient privacy
protection, high data annotation costs, and the dispersed, non-shared nature of the data,
it is challenging to obtain large-scale liver fibrosis CT image datasets. With more abundant
data in the future, we hope to further improve the model’s performance. Moreover, after
further comparison with clinical presentations by doctors, we anticipate providing a new
tool for the grading of liver fibrosis.
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