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Abstract: The qualities of precooked foods can be significantly changed by the microorganisms
produced during room temperature storage. This work assessed the effects of different antibacterial
treatments (CK, without any treatment; microwave treatment, MS; microwave treatment and biologi-
cal preservatives, MSBP) on the physicochemical properties and microbial communities of precooked
crayfish tails during room temperature storage. Only the combination of microwave sterilization
and biological preservatives significantly inhibited spoilage, as evidenced by the total viable count
(4.15 log CFU/g) after 3 days of room temperature storage, which satisfied the transit time of most
logistics companies in China. Changes in pH and TVB-N were also significantly inhibited in the
MSBP group compared with those in the CK and MS groups. More than 30 new volatile compounds
were produced in the CK groups during room temperature storage. However, in the MSBP groups,
the volatile compounds were almost unchanged. The correlations between the microbial composition
and volatile compounds suggested that specific bacterial species with metabolic activities related
to amino acid, energy, cofactor, and vitamin metabolism, as well as xenobiotics biodegradation
and metabolism, were responsible for the changes in volatile compounds. These bacteria included
Psychrobacter, Arthrobacter, Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, Dietzia, and
Acidovorax. Overall, our findings provide a foundation for the development of strategies to inhibit
spoilage in precooked crayfish tails stored at room temperature.

Keywords: precooked seasoned crayfish tail; microwave sterilization; biological preservatives;
microbial composition; volatile compounds

1. Introduction

Crayfish (Procambarus clarkii) is highly valued in China for its tasty and nutritious
qualities, and it is rich in protein and low in fat [1]. The crayfish breeding industry in
China has witnessed remarkable growth, with a total output of approximately 2.89 million
tons in 2022, accounting for 60% of the overall Crustacea output. However, the industry’s
progress is hindered by the seasonal nature of crayfish production. To overcome this
limitation, the production of off-season crayfish has gained momentum, allowing for
the processing of frozen crayfish tails and precooked commodities [2]. These precooked
products, known for their convenience and delightful taste, have captured the attention
of consumers and enjoy a vast market. Nevertheless, challenges arise because of the high
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initial microbial load, protein content, and moisture levels in crayfish products, rendering
them susceptible to spoilage microorganisms. This compromises product quality and
poses potential health risks to consumers [3,4]. Therefore, it is crucial to effectively control
microbial contamination in precooked crayfish tail products.

There are many methods used to control microbial contamination in precooked prod-
ucts. Thermal sterilization is widely used for eliminating microorganisms [5]. However,
the quality of the products, such as texture, can be significantly affected during thermal
sterilization [6,7]. Compared with traditional thermal sterilization, microwave process-
ing is considered a more friendly method, which not only effectively reduces potential
microorganisms but also helps retain the nutrients and quality of food [8,9]. Although
the treatments above can be used to reduce the initial microorganism count in the prod-
uct, residual microorganisms can still grow during storage and transportation, leading
to spoilage. The growth of spoilage microorganisms during storage and transport can
be effectively inhibited by controlling the storage temperature. Refrigerated conditions
can be used to maintain the quality of raw rainbow trout fillets for up to 14 days [10].
Similarly, crayfish can be stored at 4 ◦C for extended periods of up to 24 h, compared
with 6 h at 25 ◦C, as indicated by the levels of microorganisms and biogenic amines [11].
Freezing is another commonly used preservation method to extend the shelf life of food.
Cooked crayfish can be stored at −20 ◦C for up to 6 months [12]. As it is convenient to
maintain a low storage temperature in cooked crayfish products, most of these kinds of
products are stored under freezing conditions to inhibit the growth of microorganisms.
However, the formation of ice crystals during freezing and subsequent thawing has been
found to impair food quality by damaging the cellular structure [13]. Additionally, the
costs are significantly increased because of the maintenance of freezing conditions during
transportation and storage. Therefore, it is important to develop optimal preservation
techniques that minimize quality changes and costs during the storage and transportation
of precooked crayfish tails.

To reduce the costs of precooked crayfish products during transportation, we are
trying to develop an optimal processing technique that can control microbial contamination
tails at room temperature. In recent years, natural preservatives derived from organisms
have gained popularity in food preservation. One such example is the antimicrobial peptide
nisin, which has shown great potential in preserving processed meat products because
of its effective antibacterial activity and food safety characteristics [14]. Moreover, the
antibacterial activity of nisin can be enhanced when combined with other agents, such
as sodium lactate [15]. The techniques mentioned above provide valuable insights for
controlling microorganisms in precooked crayfish tails. Our previous study analyzed the
effects of microwave treatment time and different concentrations of sodium lactate on the
microorganisms and qualities of precooked crayfish tails stored at room temperature. We
found that 18 min of microwave treatment significantly reduced the flavor of the prod-
uct [16]. Only 15 min of microwave sterilization combined with 4% sodium lactate and
0.5 g/kg nisin could effectively inhibit microbial growth and reproduction and the deterio-
ration of crayfish tails during storage at room temperature [16]. Using these techniques,
precooked crayfish tails could be stored at room temperature for 3 days according to the
microorganisms, which satisfied the transit time of most logistics companies in China.
Therefore, precooked crayfish tails can be transported at room temperature rather than
cold-chain transportation, which reduces the cost of transportation.

The rapid proliferation of microorganisms promotes the spoilage of aquatic products
during storage. The metabolites produced by these spoilage microorganisms result in a
fishy odor and sensory aversion, which could be reflected by volatile compounds [17–19].
Although our previous study investigated effective treatments for inhibiting microbial
growth and reproduction during the room temperature storage of precooked crayfish tails,
changes in microbial communities were not analyzed. To further prolong the storage of
precooked crayfish tails at room temperature, changes in the microbial communities in
the products should be analyzed during storage. In this paper, we analyzed the effects
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of microwave and biological preservative treatments, which we previously used, on the
changes in the quality (pH, total volatile basic nitrogen (TVB-N), and volatile compound
profiles) and microbial communities (16S rRNA amplicon sequencing and bioinformatics
analyses) of precooked crayfish tails stored at room temperature. Additionally, we investi-
gated the spoilage microorganisms in precooked crayfish tails according to the relationship
between the volatile compound profiles and microbial communities. Ultimately, the find-
ings from this study can contribute to the development of optimal preservation techniques
for precooked crayfish tails and facilitate their transportation at room temperature without
compromising their quality.

2. Materials and Methods
2.1. Materials, Sample Preparation, and Storage

The crayfish tails were purchased from a commercial company. The crayfish tails
were produced as follows: crayfish of similar weight were collected and boiled in boiling
water for 2–3 min. Then, the boiled crayfish were cooled in cold water. The cephalothorax
was removed, and the crayfish tails were frozen in liquid nitrogen. The tails were kept
at −20 ◦C until they were processed. Precooked crayfish tails were prepared according
to the methods of a commercial company and our previous study [16]. The seasoning
solution is composed of oil and soup. The seasoned oil contained soybean oil, salt, sugar,
scallion, celery, ginger, garlic, chili sauce, fine herbs, clove, fennel, aniseed, nutmeg, and
other ingredients. The seasoned soup mainly contained water, sugar, salt, sodium D-
isoascorbate, gourmet powder, ginger powder, glycine, and other additives. To prepare
the crayfish tails, a mixture of 4 parts of tails, 2 parts of seasoned oil, and 3 parts of
seasoned soup was created. This mixture was then placed in polyester polyethylene trays
and sealed with polyvinylchloride film using a modified atmosphere packaging machine
(FD-Z1, Fudi, China). The gas used in this study consisted of 80% CO2, 15% N2, and
5% O2. For the control group (CK), the packaged precooked crayfish tails were used as is.
For the microwave sterilization group (MS), the packaged precooked crayfish tails were
treated with a microwave sterilizer (YQ7G-05, Nanjin Yongqing Food New Technology
Development Co., Ltd., Nanjin, China) using a power of 900 W. The temperature was set at
95 ◦C for 15 min. After microwave sterilization, the precooked crayfish tails were cooled in
ice water. For the microwave sterilization combined with biological preservatives group
(MSBP), 4% sodium lactate (w/w) and 0.05% nisin (w/w) were added to the seasoned soup.
The microwave sterilization process was the same as that for the MS group. The packaged
crayfish tails in trays were then stored at 25 ◦C for three days. Three trays from each group
were collected at the beginning and every day during the storage period for further analysis
and evaluation.

2.2. Determination of Total Viable Count

The total viable count (TVC) of the precooked crayfish tails was measured referring to
the TVC detection method in the Chinese National Standard GB/T 4789.2 [20]. Twenty-
five grams of crayfish tail (without shell) was homogenized with 225 mL of 0.85% sterile
saline solution. Then, the homogenized samples were serially diluted, and 1 mL of the
dilutions was spread onto the nutrient agar and incubated at 30 ◦C for 48–72 h. The colony
counts were recorded. The TVC results were expressed as the logarithm base 10 colony
forming units per gram (log CFU/g).

2.3. Chemical Analyses

After being stored at room temperature for 3 days, the crayfish tails were collected
for further analysis. The method in Rajkumar’s paper was used to measure the pH of the
crayfish tails [21]. The procedure involved homogenizing 5 g of precooked crayfish tails
(shell removed) with 45 mL of ultrapure water for 1 min. The resulting homogenate was
then filtered, and the pH of the filtrate was measured using a pH meter (pHS-3C, INESA
Scientific Instrument Co., Ltd., Shanghai, China).
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Total volatile basic nitrogen (TVB-N) was determined following the method de-
scribed in the Chinese standard GB 5009.228-2016 using an automatic Kjeldahl apparatus
(KDN-103F, Shanghai Xianjian Instrument Co., Ltd., Shanghai, China) [22]. A sample
weighing 20 ± 0.001 g of crayfish tail (without shell) was homogenized in 100 mL of
ultrapure water and allowed to sit at room temperature for 30 min. The homogenate
was then filtered using filter paper. Then, 10 mL of the filtrate was mixed with 10 mL
of water and 5 mL of MgO (10 g/L) and loaded onto an automatic nitrogen analyzer.
The volatile basic nitrogen in the sample was absorbed by 10 mL of boric acid solu-
tion (20 g/L). After adding 5 drops of a mixed indicator, the resulting distillate was
titrated with a standard hydrochloric acid solution (0.01 M) until a purple-red color change
occurred. The TVB-N content (mg/100 g) was calculated using the following formula:
TVB-N (mg/100 g) = 1.4 × (V − V0)/m, where m is the mass of the crayfish tail (without
shell), the unit of which is grams. V and V0 are the volumes of the standard hydrochloric
acid solution consumed in the sample and blank groups, respectively. The units of V and
V0 are milliliters.

2.4. Volatile Compounds

The analysis of volatile organic compounds was conducted using a gas chromatography-
ion migration spectrometry (GC-IMS) instrument from G.A.S., Dortmund, Germany, fol-
lowing the method described previously [19]. In this study, approximately 2 g of precooked
crayfish tail (shell removed) was placed in a 20 mL headspace glass vial. The vial was
then incubated at 40 ◦C for 15 min at a rotational speed of 500 rpm. A total of 500 µL
of the extracted sample was injected into the GC-IMS system, with the syringe temper-
ature set at 60 ◦C. To separate the volatile compounds, a gas chromatographic column
(MXT-WAX, 30 m × 0.53 mm, 1 µm) was used. Nitrogen gas with a purity of ≥99.999% was
used as the carrier gas. The column temperature was maintained at 60 ◦C throughout the
30 min run time. The flow rate of the carrier gas was set as follows: initially, 2 mL/min for
2 min, then increased to 10 mL/min at 10 min, further increased to 100 mL/min at 20 min,
and maintained at 100 mL/min for the remaining 10 min. In the IMS ionization chamber
equipped with a tritium ionization source, the volatile analytes underwent ionization. The
drift gas, consisting of nitrogen with a purity of ≥99.999%, was maintained at a flow rate of
150 mL/min. The temperature of the drift tube was set at 45 ◦C.

Volatile compounds in the precooked crayfish tails were analyzed using GC-IMS
and VOCal 1.0 software. The identification of these volatile compounds was based on
the retention index (RI) and drift time, which were matched against the NIST and IMS
databases. To quantify the volatile compounds, a fingerprinting analysis was conducted
using the gallery plot plug-in. The intensity of the signal peak was utilized to represent
the relative concentrations of the compounds. Additionally, the OPLS-DA method was
employed to discriminate the differences in volatile compounds in different groups.

2.5. DNA Extraction and 16S rRNA Sequencing

After being stored at 25 ◦C for three days, the crayfish tails (without shells) were
collected for microbial community analysis. Three samples were collected from each group
for parallel analyses. Total DNA was extracted using the PowerFood Microbial DNA
Isolation kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions and
stored at −20 ◦C for future use. The quantity of DNA was measured using a Nanodrop
spectrophotometer (Thermo Scientific, Waltham, MA, USA). Additionally, the quality of
the DNA was verified through agarose gel electrophoresis.
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Sequencing libraries were prepared using Q5® High-Fidelity DNA Polymerase (NEB,
Ipswich, MA, USA) to amplify the V3 and V4 regions with 338 F (ACTCCTACGGGAG-
GCAGCA) and 806 R (GGACTACHVGGGTWTCTAAT). The PCR conditions were as
follows: initial denaturation at 98 ◦C for 2 min, followed by 25–30 cycles of denaturation at
98 ◦C for 15 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s, and final extension at
72 ◦C for 5 min. The reaction was then held at 10 ◦C. After purification and quantification,
the PCR products were subjected to paired-end sequencing using the Illumina NovaSeq
platform (San Diego, CA, USA).

2.6. Data Processing and Microbial Community Analysis

The raw data were acquired in FASTA format and subsequently analyzed using
QIIME 2. Initially, the raw data underwent demultiplexing and primer trimming. Next, the
sequences were subjected to thorough quality filtering, denoising, merging, and chimera
removal using the DADA2 method [23]. De-duplication was performed, resulting in the
generation of Amplicon Sequence Variants (ASVs) at 100% similarity. Classification of
these ASVs was achieved by aligning representative sequences to the Greengenes database
(Release 13.8) using the classify-sklearn function in QIIME2 [24]. To assess alpha diversity,
Chao1 and Shannon indices were calculated. Beta diversity was evaluated using the Bray–
Curtis dissimilarity index. The prediction of microbial functions was conducted using
PICRUSt2, which compares microbial functions to the KEGG pathway database [25].

2.7. Statistical Analysis

All experiments were conducted with three biological replicates, and the results are
presented as the mean ± standard deviation (SD). Statistical analysis was performed using
a one-way analysis of variance, and the significance was determined using Duncan’s test
in SPSS 22 (IBM, Armonk, NY, USA). Statistical significance was set at p < 0.05. Figures
were constructed using GraphPad Prism 9 (GraphPad, La Jolla, CA, USA) and Origin Pro
(OriginLab, Northampton, MA, USA).

3. Results and Discussion
3.1. Changes in the TVC during Room Temperature Storage of Precooked Crayfish Tails

During the storage of precooked crayfish tails at room temperature, the TVC was
measured, and the results are presented in Table 1. The initial TVC in the CK group was
4.82 log CFU/g. As the storage time increased, the TVC drastically increased to 10.81
after 3 days. This indicated significant deterioration of the crayfish tail by the end of the
third day. After applying microwave sterilization, the initial TVC was significantly lower
than that in the CK group. However, even with microwave sterilization, the TVC rapidly
increased and reached 6.62 after two days of room temperature storage. Compared with
those in the CK and MS groups, the TVC in the MSBP group increased at a slower rate. The
TVC in the MSBP group was only 4.15 log CFU/g after 3 days of room temperature storage,
which was still below the threshold specified in the Chinese National Standard GB 10136
(2015) for read-to-eat aquatic products [26].

Table 1. Total TVC in precooked seasoned crayfish tail during storage at room temperature.

Groups
Total Viable Count (log CFU/g)

Day 0 Day 1 Day 2 Day 3

CK 4.82 ± 0.11 a 7.98 ± 0.01 a 9.52 ± 0.06 a 10.81 ± 0.02 a

MS 1.43 ± 0.60 b 2.40 ± 0.02 b 6.62 ± 0.08 b 7.82 ± 0.06 b

MSBP 1.15 ± 0.21 b 2.04 ± 0.05 b 2.67 ± 0.08 c 4.15 ± 0.01 c

Notes: Values are expressed as the mean ± standard deviation. Different letters in the column indicate that there
are significant differences between groups.
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Because of the high initial TVC in the CK group, most manufacturers must transport
precooked crayfish tails using cold-chain transportation, which significantly increases the
cost. Microwave sterilization was used to deactivate microorganisms in the precooked
crayfish tails. Although the microwave sterilization process was effective in reducing
the initial microorganisms in the precooked crayfish tail, it failed to inhibit microbial
growth during room temperature storage. Nisin, a substance known to affect microbial
cell membranes by binding to the cell wall precursor Lipid II, causes cell death [27]. The
antibacterial activity of nisin can be enhanced when combined with sodium lactate [15].
By adding nisin and sodium lactate, the microorganisms were effectively deactivated and
inhibited in the precooked crayfish tails and could be stored at room temperature for 3 days.
Thus, precooked crayfish tails can be transported without cold-chain transportation for
3 days, which satisfies the transit time requirements of most logistics companies in China.

3.2. Changes in pH and TVB-N Values during Room Temperature Storage of Precooked
Crayfish Tails

pH is an important indicator for assessing the freshness and quality of aquatic products.
In this study, the pH increased with increasing storage time, except on day 1 in the MS
group (Figure 1A). The reason for the decreased value in the MS group at the beginning
of storage still needs to be further investigated. The increase in pH during storage can
be attributed to microbial growth and the action of endogenous enzymes that lead to the
breakdown of proteins in meat products, resulting in the formation of nitrogenous alkaline
compounds [28,29]. The lower pH value on day 0 in MSBP might be mainly due to the
addition of nisin and sodium lactate. Notably, the rate of pH increase in the MS group was
lower than that in the CK group. Additionally, in the MSBP group, there was a significant
decrease in the initial pH value by more than 0.2 (Figure 1A). After storing the crayfish tails
at room temperature for 3 days, the pH values in the MS and MSBP groups were still lower
than the value on day 1 in the CK group.
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TVB-N, an indicator of protein degradation, is a valuable tool for assessing the fresh-
ness of meat [30]. The changes in TVB-N levels in the crayfish tails during storage are
shown in Figure 1B. Initially, the three groups had the same TVB-N content. However,
after 1 day of storage, the TVB-N significantly increased in the CK group, while only a
slight increase was observed in the MS group, and TVB-N in the MSBP group remained
almost unchanged. After 2 days, the TVB-N content in the CK group reached 30 mg/100 g.
In contrast, the TVB-N content in the MSBP group was only 13 mg/100 g after 3 days of
storage at room temperature. These results indicate that the deterioration of crayfish tails
was lower in the MS and MSBP groups than in the CK group.

3.3. Changes in Volatile Compounds during Room Temperature Storage of Precooked Crayfish Tails

The flavor characteristics of food are strongly associated with the types and concen-
trations of volatile compounds [31]. In previous research, several volatile compounds
were identified in cooked crayfish [19]. In this study, a total of 79 volatile compounds
were detected in the precooked crayfish tails, of which 70 volatile compounds were iden-
tified (Table S1). These 70 compounds belonged to various chemical families, including
15 alcohols, 14 esters, 13 aldehydes, 11 ketones, nine terpenes, two acids, two aromatic hy-
drocarbons, two alkanes, one pyrazine, and one furan. To compare the volatile compounds
among different groups, fingerprinting analysis was performed (Figure 2A). On day 0, the
volatile compounds in the CK, MS, and MSBP groups were similar, with approximately
half of the identified volatile compounds being detected. After storage at room temper-
ature for 1 day, more than 30 new volatile compounds were produced in the CK group.
However, the levels of the compounds 2-pentanone, 1,1-diethoxy ethane, ethyl propanoate,
2-heptanone, cyclopentanone, 2-octanone, 3-methyl-2-butanol, and 2-ethylfuran in the CK
group decreased or disappeared as the storage time increased. In comparison, the volatile
compounds in the MS group began to change after 2 days of room temperature storage.
Remarkably, the volatile compounds in the MSBP group remained relatively unchanged,
even after 3 days of storage at room temperature.

During the storage of aquatic products, the growth of microorganisms is a primary con-
tributor to spoilage [32,33]. Metabolites such as aldehydes, ketones, and esters, produced
by spoilage microorganisms, have significant effects on the odor of the products [17,34].
OPLS-DA was used to discriminate the crayfish tails using the relative concentration of
volatile compounds (Figure 2B). The model exhibited good discrimination performance,
as indicated by the R2Xcum value of 0.997, R2Ycum value of 0.86, and Q2

cum value of 0.818.
To ensure the reliability of the model and exclude overfitting, permutation tests were con-
ducted for 200 iterations, resulting in R2 and Q2 intercepts of 0.151 and −0.49, respectively
(Figure S1). These results further validate the robustness of the model. The OPLS-DA score
plot clearly showed similar volatile compounds on day 0 among CK, MS, and MSBP. After
storing at room temperature for 1 day, the volatile compounds in CK showed an obvious
separation from MS and MSBP. The separation in MS began from day 2. As the storage
time increased, the volatile compounds in MSBP were almost unchanged. The change in
volatile compounds is consistent with the microorganisms in the precooked crayfish tails
during room temperature storage.

Variable importance factor (VIP) scores are commonly used to determine the con-
tribution of each compound in the PLS model. Compounds with a VIP score greater
than one are considered essential for discrimination [35]. In our OPLS-DA model, we
identified 23 volatile compounds with VIP scores greater than one (Table S1). A heatmap
was constructed to analyze the changes in the concentrations of these compounds during
storage (Figure 2C). Based on the clustering of the compounds, the compounds could be
categorized into four groups, consisting of 3, 4, 4, and 12 compounds, respectively. Overall,
the concentrations of volatile compounds in clusters 1 and 4 increased during storage,
while the concentrations of the volatile compounds in clusters 2 and 3 decreased compared
with those on day 0. We hypothesized that the volatile compounds in clusters 1 and 4 might
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be produced by microbial growth, whereas the compounds in clusters 2 and 3 most likely
originated from the soup, seasoned oil, and boiled crayfish tails.
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Figure 2. Fingerprint map of volatile compounds in precooked seasoned crayfish tails during storage
at room temperature (A); OPLS-DA difference analysis of volatile compounds in precooked seasoned
crayfish tails during storage at room temperature (B); and relative concentration cluster analysis of
volatile compounds with VIP greater than 1 among different groups in precooked seasoned crayfish
tails during storage at room temperature (C). The suffixes −0, 1, 2, and 3 represent storage days.

In cluster 1, the concentration of volatile compounds remained relatively stable in
the CK group during storage but significantly increased in the groups treated with MS
and MSBP. The main volatile compounds in cluster 1 were esters, such as propyl hex-
anoate and ethyl hexanoate. Esters play important roles in the flavor of fermented fishery
products [36]. Ethyl hexanoate contributes to the sweet and fruity aroma of fermented
common carp and sausage [37,38]. More than half of the essential volatile compounds were
categorized into cluster 4. The concentrations of these compounds showed an opposite
trend compared with those in cluster 1. In the control group, the concentrations of these
compounds sharply increased beginning on day 1, while in the MS group, they gradually
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increased beginning on day 2 and remained unchanged in the MSBP group. These results
indicate that microwave sterilization and biological preservatives promote the production
of volatile compounds in cluster 1 but inhibit the production of volatile compounds in
cluster 4. In meat products, most of the volatile compounds produced during storage
are attributed to spoilage microorganisms [39,40]. The changes observed in volatile com-
pounds in cluster 4 reflect the growth of spoilage microorganisms in the control group,
which is consistent with the higher TVC observed. Therefore, the volatile compounds in
cluster 4 are likely spoilage volatile compounds produced by spoilage microorganisms.
In cluster 2, the concentrations of the compounds sharply decreased from day 1 in the
control group and started to decrease from day 2 in the MS group but remained unchanged
in the MSBP group even after 3 days of storage. The compounds in this cluster include
2-pentanone, 1,1-diethoxy ethane, 3-methy-2-butanol, and 2-heptanone. Ketones can be
produced through the thermal oxidative degradation of unsaturated fatty acids or amino
acids [41]. 2-Pentanone and 2-heptanone are found in fermented food and contribute to
the unique flavors of meat products, such as floral, fruity, and cheesy flavors [38,42,43]. In
this study, the sterilization and inhibition of microorganisms in the MSBP group reduced
the changes in 2-pentanone and 2-heptanone during the storage of precooked crayfish
tails, thus preserving the special flavor from the soup, seasoned oil, and boiled crayfish
tails. Overall, these results demonstrate that the MSBP treatment effectively inhibits the
deterioration of precooked crayfish tails during storage at room temperature.

3.4. Changes in Microbial Community during Room Temperature Storage of Precooked
Crayfish Tails

The microbial composition of the samples was determined using 16S RNA sequencing.
The alpha diversity, which indicates the richness and diversity of the microbial communities,
was analyzed [44]. Figure 3A shows the Chao1 and Shannon index values, which are
measures of richness and diversity, respectively. The values were initially lower on day 0,
suggesting lower richness and diversity. However, after storage at room temperature, the
richness and diversity increased across all the groups. In the CK group, the richness and
diversity were similar on days 1 and 2 but increased on day 3. On the other hand, in
the samples treated with MS and MSBP, the microbial communities showed the highest
richness and diversity on day 1 and gradually decreased after day 2. To further explore the
changes and similarities in community composition, clustering analysis was performed
based on the top 10 bacterial genera (Figure S2). The results indicated that the bacterial
compositions in the CK, MS, and MSBP groups on day 0 clustered closely together and
differed from the post-storage compositions. Moreover, the bacterial compositions on day 1
and day 2 were clustered together, except for the CK group on day 2. Finally, the bacterial
compositions in the MS and MSBP groups on day 3 were clustered together.

Figure 3B displays the top 20 bacterial genera with relatively higher relative abun-
dances in precooked crayfish tails during storage. Initially, on day 0, Aerococcus had the
highest proportion in the CK and MSBP groups, followed by Lactococcus, Weissella, Ente-
rococcus, Streptococcus, and Carnobacterium. In the MS group, Citrobacter had the highest
proportion on day 0, followed by Weissella, Aerococcus, Carnobacterium, and Enterococcus. It
is worth noting that Lactococcus, Weissella, Enterococcus, and Carnobacterium are known to
be spoilage microorganisms in food [45]. During the storage of precooked crayfish tails,
there were significant changes in the bacterial communities. After storage at room temper-
ature for more than one day, the dominant bacteria in all groups shifted to Psychrobacter,
followed by Acinetobacter or Arthrobacter. Previous studies have identified Psychrobacter
and Acinetobacter as the dominant bacteria in cooked crayfish muscle [46]. Acinetobacter
was observed to grow better at room temperature than at lower temperatures (4 ◦C or 1 ◦C)
during the storage of Litopenaeus vannamei [47]. This observation could explain the greater
proportion of Acinetobacter in crayfish stored at room temperature. In the CK group, the
abundance of Psychrobacter increased from 16.57% to 25.79% on day 2 but decreased to
10.89% on day 3. The abundance of Acinetobacter decreased on day 2 and increased on day 3.



Foods 2024, 13, 1256 10 of 17

In the MS group, the abundances of Psychrobacter and Arthrobacter gradually increased from
11.56% to 26.51% and from 6.97% to 12.30%, respectively, as the storage time increased. In
the MSBP group, the abundance of Arthrobacter increased to 12.71% on day 2 compared
with that on day 1 (5.20%), while the abundance of Acinetobacter decreased from 11.58% to
7.08%. The abundance of Psychrobacter in MSBP increased to 40.07% on day 3. It is worth
noting that Psychrobacter dominates in fishery products stored in air compared with those
stored in vacuum and modified atmosphere packaging (75% CO2 and 25% N2) because of
its preference for aerobic conditions [48,49]. In our study, the precooked crayfish tails were
packaged with 5% O2, which favored the growth of Psychrobacter. However, because of the
high growth rate in the CK group, limited oxygen inhibited the growth of Psychrobacter,
resulting in a reduction in growth on day 3. Furthermore, it has been documented that other
spoilage microorganisms can easily inhibit species of Psychrobacter [50]. These findings
reveal the dynamic changes in the composition of spoilage microorganisms during the
storage of precooked crayfish tails at room temperature and emphasize the influence of
microwave sterilization and biological preservatives on microbial populations.
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3.5. Correlation of Microorganisms and Flavor Compounds during Room Temperature Storage of
Precooked Crayfish Tails

During the storage of fishery products, the presence of volatile compounds is pri-
marily due to the decomposition of fish constituents and the activity of spoilage microor-
ganisms [48,51]. To understand the relationships between the microbial community and
volatile compounds, we employed the Spearman algorithm to analyze the correlations. The
results showed a significant correlation (p < 0.05, r > 0.7) between the microbes and volatile
compounds (Figure 4A). Specifically, 21 bacteria were found to be significantly correlated
with 17 volatile compounds (p < 0.05). The heatmap displays the relative abundances of
these bacteria in the different storage groups (Figure 4B). Upon careful examination, it was
observed that most of these bacteria had a relatively low abundance on day 0 in all three
groups, but their abundance significantly increased after storage at room temperature for
more than 1 day. Among the correlated bacteria, Aerococcus exhibited a different correlation
pattern with volatile compounds compared with the other bacteria. While it showed a
negative correlation with propyl hexanoate (p < 0.05), it exhibited a significant positive
correlation with (Z)-3-hexenyl acetate, 2-heptanone, and 3-methyl-2-butanol. Additionally,
half of the correlated volatile compounds, including propyl hexanoate, (E)-2-hexen-1-al,
3-methylbutyl propanoate, 2,2,4,6,6-pentamethylheptane-D, (E)-2-octenal, ethyl hexanoate,
camphor, β-pinene, and hexyl acetate, were positively correlated with most of the bacteria.
These correlated bacteria can be divided into the following two main groups: Leucobac-
ter, Bacillus, Erysipelothrix, Pseudochrobactrum, Devosia, Pelomonas, and Acidovorax. The
relative abundances of these bacteria displayed a clustered pattern, with clusters 1 and 3
representing their growth dynamics during storage. The abundance of these bacteria was
significantly lower on day 0 but increased sharply after storage for more than 1 day. No-
tably, compared with those in the CK group, the abundance of bacteria in cluster 1 and the
growth rate of bacteria in cluster 3 were lower in the groups treated with MS and microwave
sterilization combined with nisin and sodium lactate MSBP (Figure 4C). These bacteria
exhibited a significant positive correlation with (E)-2-hexen-1-al, 3-methylbutyl propanoate,
2,2,4,6,6-pentamethylheptane-D, (E)-2-octenal, and camphor, which significantly increased
in the CK group but remained unchanged in the MSBP group as the storage time increased
(Figure 2C). These findings suggest that Leucobacter, Erysipelothrix, Pseudochrobactrum, De-
vosia, Pelomonas, and Acidovorax may be the dominant spoilage microorganisms contributing
to the production of volatile compounds in precooked crayfish tails during storage. The
combination of microwave sterilization with nisin and sodium lactate partially inhibited
the growth of spoilage microorganisms in precooked crayfish tails during storage at room
temperature. Other bacteria, including Corynebacterium, Planomicrobium, Dietzia, Facklamia,
and Jeotgalicoccus, showed a positive correlation with propyl hexanoate and ethyl hexanoate.
As mentioned earlier, propyl hexanoate and ethyl hexanoate contribute to the unique flavor
of fermented fish. Hence, it can be inferred that the bacteria in this group may contribute to
the fermentation process of crayfish tails and enhance their flavor. Overall, the analysis
of the microbial community and volatile compounds provides valuable insights into the
spoilage and fermentation processes of fishery products during storage.

Contrary to the findings mentioned above, some volatile compounds, including (Z)-3-
hexenyl acetate, 2-heptanone, 3-methyl-2-butanol, 1,1-diethoxy ethane, γ-terpinene, propyl
acetate, 2-pentanone, and 3-methyl-2-butenal, exhibited a negative correlation with the
majority of the bacteria (Figure 4A). Specifically, (Z)-3-hexenyl acetate had a negative as-
sociation with Psychrobacter, Arthrobacter, Trichococcus, Planomicrobium, Dietzia, Facklamia,
Sphingomonas, Jeotgalicoccus, Brachybacterium, and Nitriliruptor. Similarly, 2-heptanone was
negatively correlated with Psychrobacter, Trichococcus, Bacillus, Erysipelothrix, Facklamia,
Pseudochrobactrum, Devosia, Pelomonas, Acidovorax, Exiguobacterium, Brachybacterium, and
Nitriliruptor. Additionally, 3-methyl-2-butanol and 1,1-diethoxy ethane were negatively
associated with Erysipelothrix, Pseudochrobactrum, Devosia, and Acidovorax. γ-Terpinene had
a negative correlation with Arthrobacter, Dietzia, Facklamia, and Jeotgalicoccus. Finally, propyl
acetate, 2-pentanone, and 3-methyl-2-butenal were found to be negatively correlated with
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Stenotrophomonas, Acidovorax, and Dietzia, respectively. Most of these volatile compounds
initially had higher concentrations on day 0 but decreased as the storage time increased, par-
ticularly in the MS and MSBP samples (Figure 2C, clusters 2 and 3). This suggests that these
volatile compounds were potentially produced by the seasoned oil and soup. However,
as the storage time increased, the concentrations of these volatile compounds decreased
because of the production of other volatile compounds by the spoilage microorganisms.
Interestingly, most bacteria exhibited a dual correlation, both negative and positive, with
the related volatile compounds. These results imply that spoilage microorganisms may
impact the volatile compounds in crayfish tails during storage in two distinct ways. First,
spoilage microorganisms contribute to the production of volatile compounds associated
with spoilage through microbial activities. Second, the growth of spoilage microorganisms
leads to a decrease in the flavor of volatile compounds generated during processing.

3.6. Predicted Functional Analysis of the Microbial Communities

Microbial activity plays a crucial role in the spoilage of fish during storage [52]. The
spoilage potential and activity of bacteria responsible for spoilage are closely related to their
metabolic and enzymatic activities [53]. To gain a better understanding of the microbiota
functions in crayfish tails during storage, we studied the predicted KEGG pathways associ-
ated with the microbiota using PICRUSt 2 [25]. Analysis of the results in Figure 5A revealed
that the bacteria in the precooked crayfish tails stored at room temperature were primar-
ily engaged in metabolic pathways, followed by genetic information processing, cellular
processes, environmental information processing, and organismal systems. The predicted
relative abundance of metabolism on day 0 in all three groups was lower than 30,000. After
storage at room temperature for more than 1 day, the relative abundance of metabolism in-
creased to more than 30,000 in all groups. We further analyzed the main metabolic pathways
among the different groups during storage. The annotated metabolic pathways with abun-
dant representation were carbohydrate metabolism, amino acid metabolism, metabolism
of cofactors and vitamins, metabolism of other amino acids, metabolism of terpenoids
and polyketides, xenobiotics biodegradation and metabolism, lipid metabolism, energy
metabolism, and glycan biosynthesis and metabolism (Figure 5B). Among these pathways,
amino acid metabolism, carbohydrate metabolism, energy metabolism, metabolism of co-
factors and vitamins, and xenobiotics biodegradation and metabolism exhibited significant
changes in the different groups during storage (Figure S3). After 1 day of storage, the rela-
tive abundance of carbohydrate metabolism decreased, while the abundance of amino acid
metabolism, energy metabolism, metabolism of cofactors and vitamins, and xenobiotics
biodegradation and metabolism increased. Crayfish are well-known for their high protein
content and amino acid content in muscle, while the carbohydrate content is relatively
low in crayfish tails [54]. This low carbohydrate and high protein composition inhibits the
growth of bacteria with high carbohydrate metabolic activity while promoting the growth
of bacteria with high amino acid metabolic activity. To evaluate the contributions of volatile
compound-producing bacteria to metabolic activity, we performed a correlation analysis
between the bacteria and the altered metabolic pathways (Figure 5C). Eleven bacteria
were found to be correlated with the five metabolic pathways. Psychrobacter, Arthrobacter,
Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, and Dietzia exhibited positive
correlations with amino acid metabolism, energy metabolism, metabolism of cofactors
and vitamins, and xenobiotics biodegradation and metabolism pathways. Conversely,
Aerococcus and Weissella exhibited negative correlations with these pathways. Acidovorax
was positively correlated with energy metabolism and xenobiotics biodegradation and
metabolism pathways. Carbohydrate metabolism was only positively correlated with Aero-
coccus. These findings suggest that changes in volatile compounds in precooked crayfish
tails during storage at room temperature may be attributed to amino acid metabolism,
energy metabolism, metabolism of cofactors and vitamins, and xenobiotics biodegrada-
tion and metabolism pathways of dominant bacteria such as Psychrobacter, Arthrobacter,
Facklamia, Leucobacter, Corynebacterium, Erysipelothrix, Devosia, Dietzia, and Acidovorax.
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Figure 5. Predicted functions in KEGG pathways of the bacteria identified in precooked seasoned
crayfish tails during storage at room temperature (A); relative abundance of metabolic pathways
of the bacteria identified in precooked seasoned crayfish tail during storage at room temperature
(B); and correlation analysis between microbial communities and altered metabolic pathways in
precooked seasoned crayfish tails during storage at room temperature (C). Asterisks stand for
significant differences, *: p < 0.05, **: p < 0.01.

4. Conclusions

Our previous study investigated the effects of the appropriate microwave time and
concentration of sodium lactate on the microorganisms and qualities of seasoned crayfish
tails stored at room temperature and prolonged the shelf life of precooked crayfish tails
at room temperature for up to 3 days. In the present study, we demonstrated that mi-
crowave treatment combined with sodium lactate and the antimicrobial peptide nisin had
a noticeable impact on the spoilage of prefabricated crayfish tails stored at room tempera-
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ture with TVC, pH, TVB-N, and volatile compounds used as the evaluation indices. The
volatile compounds detected during storage were closely associated with the presence of
specific bacteria. Notably, Psychrobacter, Arthrobacter, Facklamia, Leucobacter, Corynebacterium,
Erysipelothrix, Devosia, Dietzia, and Acidovorax were identified as the dominant bacteria that
potentially contributed to the changes in volatile compounds. Their activities in amino
acid metabolism, energy metabolism, cofactor and vitamin metabolism, and xenobiotics
biodegradation and metabolism likely played a significant role in shaping the volatile
profiles during storage.

This comprehensive study provides important insights into the changes in volatile com-
pounds, microbial communities, and their interrelationships in precooked seasoned crayfish
tails stored at room temperature. The findings lay the groundwork for further strategies aimed
at preventing spoilage in this product under room temperature storage conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13081256/s1, Table S1: Volatile compounds identified in
different periods of precooked seasoned crayfish tails during storage at room temperature. Figure S1:
Permutation test of the OPLS-DA model. Figure S2: Hierarchical clustering analysis of the bacteria in
precooked seasoned crayfish tails during storage at room temperature. Figure S3: Relative abundance
of KEGG metabolic pathways in precooked seasoned crayfish tails with different treatments during
storage at room temperature.
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