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Abstract: In this work, we derived a new type model for spatial Hill’s system considering the
created perturbation by the parameter effect of the continuation fractional potential. The new model
is considered a reduced system from the restricted three-body problem under the same effect for
describing Hill’s problem. We identified the associated Lagrangian and Hamiltonian functions of the
new system, and used them to verify the existence of the new equations of motion. We also proved
that the new model has different six valid solutions under different six symmetries transformations as
well as the original solution, where the new model is an invariant under these transformations. The
several symmetries of Hill’s model can extremely simplify the calculation and analysis of preparatory
studies for the dynamical behavior of the system. Finally, we confirm that these symmetries also
authorize us to explore the similarities and differences among many classes of paths that otherwise
differ from the obtained trajectories by restricted three-body problem.

Keywords: RTBP; Hill’s problem; CFP; symmetry

1. Introduction

The diversity of activities in space, especially those related to the motion of celestial
objects or spacecrafts, leads also to the diversity in applying of mathematical models that
describe the motion of such bodies, such as the motion of two, three, or more bodies, or even
modified ones, to simplify their analysis while maintaining the accuracy of obtaining results.
Some considerable works, which represent a large range in in both celestial mechanics and
astrodynamics, were studied in [1–8].

In general, the three-body problem describes the motion of three particles that move
under the mutual attraction forces among them. This problem can be applied in outer space
to the motion of stars. But scientists realized that there is no general solution to such a
problem, and this prompted them to make restrictions and simplifications about the motion
through scientific thinking in accordance with the mechanics laws to find some solutions
or study the dynamic behavior of motion or its characteristics. For instance, the mass of the
Sun or Jupiter is clearly much greater than a comet’s mass, so the effect of a comet’s gravity
on the motion of Jupiter or the Sun is so small that it does not affect the motion of either of
them. This leads immediately to the restricted models of the N-body problem [9–16].

In addition to the aforementioned restrictions, variables changing can lead to special
models for a restricted three- or four-bodies problem to the so-called Hill’s systems [17–23].
A precise mathematical technique for specifying these limiting processes through the Hamil-
tonian formula and symmetric scaling methods is presented. Hill’s system approximations
in the framework of restricted three-body problem (RTBP) provide the first term in its
own Hamiltonian’s expansion when canonical transformations are performed. After Hill’s
system was constructed, the early researchers devoted their efforts to identify the families
of periodic orbits in this dynamical system. Perturbation approaches can be applied to
demonstrate the existence of periodic orbits and KAM tori, which reveal regions of limited
motion [24–29].
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Although the RTBP has been considered as the underlying framework in many studied,
to analyze the dynamical properties of celestial objects motion or design space missions,
there are numerous motivating transfers that can be developed under utilizing Hill’s system,
which was constructed by Hill in 1978 to study the Moon’s motion. This system, depicted
as “luminous” by Henrard [30], offers the non-negligible feature of unpretentiousness
while precisely investigating the nonlinear dynamics of interest. Thus, this little transfer in
modeling admits us to explore a range of physical cases while greatly simplifying equations
of motions. A wide range of researchers are attracted to Hill’s system because it represents
a simple formulation of a nonintegrable model. Furthermore, it can be employed in both
dynamical astronomy and astrodynamics. It is used to investigate dynamical properties
of star clusters, the analysis of motion in the Earth–Moon–Sun system, as comets and
asteroids [31–33].

The periodic orbits (POs) play a significant role in the analysis of dynamical system,
particularly in the analysis of astronomical dynamical system. In this sense, a considerable
work on the dynamics of Hill’s system was investigated by using the amended “Grid
Search Method” for the global calculation the family of periodic trajectories orbits [34]. In
fact, this method is very effective in finding POs, and aiming to obtain precise trajectories
for these orbits, the old version of this method was improved through implementation of
two steps. The first improvement is related to the effectiveness speed of the method for
its main proceedings of global sampling in the phase space for initial conditions. While
the second improvement is accomplished by complement it with a second phase which is
a data processing proceeding for classifying the families of the POs which are identified
in the first phase. The improved method was examined through running it to retrieval
some famous POs in the Hill’s problem. Furthermore, it has been successfully employed to
identify some new results in Hill’s system. The method was used to calculate the whole
tree branches of the main family f of retrograde satellites in the classical Hill’s system,
and the mechanism of the bifurcation of these orbits from f was verified based on the
relevant self-resonance conditions. This approach has a great advantage in the calculations
of irregular families of POs regard to the complete search in its first phase. In fact, it was
applied to calculate many families of POs not only in the Hill’s system but also in the
RTBP considering several perturbation effects [35,36]. This method is recommended for
computing the family of POs in a perturbed Hill’s system, which their calculations are very
difficult by using continuation methods.

The analysis of an unperturbed dynamical system is more simple than the perturbed,
but it does not often achieve what is needed, because it is not accurate in depicting the
real features of the problem, and does not gather into consideration the perturbing forces
such as the asphericity effect, which has an efficient impact on the motion of bodies. In
this paper, we develop a new type of model for spatial Hill’s problem depending on the
potential of a massive body which is different in its own structure from that of the spherical
body, but its potential is similar to the continuation fractional potential (CFP), which gives
the same feature of the oblate body without involving the singularity when the separation
distance between two bodies equals zero. This is the substantial motivation for fulfilling
this study.

2. Model Description

Let us consider the motion of the infinitesimal body in the framework of a circular
restricted three-body problem (CRTBP). In this sense, we assume that m1 and m2 are the
masses of two bodies such as the Earth and Moon, respectively. According to the fact that
the Earth is not spherical body, its gravitational field can be described by a CFP, but the
Moon generates a potential similar to the created by a spherical body [37]. Let m be the
infinitesimal body mass, and it is moving under mutual gravitational forces of m1 and m2,
which are called the primaries bodies, where this mass is negligible with respect to the
primaries masses and does not affect their motions. We also impose that the primaries
bodies are moving in circular orbits around their center of mass.
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Now we admit some terminology to normalize the physical quantities such as dis-
tances and masses. Thus, we consider that the sum of primaries’ masses equals one, and
denote the mass of smaller primary as µ; hence, m1 = 1 − µ and m2 = µ. The separation
distance between the primaries and the gravitational constant are also taken as unity. Thus,
the equations of motion of the infinitesimal body in rotating reference frame can be written
as in [38] by

ẍ1 − 2ωẏ1 =Θx1 ,

ÿ1 + 2ωẋ1 =Θy1 ,

z̈1 =Θz1 ,

(1)

where Θ(x1, y1, z1) is called the effective potential and written as

Θ(x1, y1, z1) =
1
2

ω2(x2
1 + y2

1) +
(1 − µ) r11

r2
11 + ε

+
µ

r12
, (2)

ω2 =
1 − ε

(1 + ε)2 , (3)

and r11 = |r11| and r12 = |r12| are the separation distances among the infinitesimal body,
the massive, and smaller bodies, respectively, where these distances are identified by

r2
11 = (x1 + µ)2 + y2

1 + z2
1,

r2
12 = (x1 + µ − 1)2 + y2

1 + z2
1.

(4)

In Equations (2) and (3), the parameter ε represents the effect of perturbation force,
which comes from the CFP, while ω indicates the perturbed mean motion. We would
like to remark that the parameter ε plays the same role of oblateness or zonal harmonic
coefficients effects; see [37] for more details. Hence, the order of ε effect belongs to the
interval [O(10−3), O(10−6)] from the major force. Furthermore, the functions Θx1 , Θy1 ,
and Θz1 denote the first-order partial derivatives of Θ(x1, y1, z1) with respect to x1, y1, and
z1, respectively; thus, formulae of these derivatives can be written:

Θx1 = (x1 + µ)[λ1(r11) + λ2(r12)]− λ2(r12),

Θy1 = y1[λ1(r11) + λ2(r12)],

Θz1 = z1

[
λ1(r11) + λ2(r12)− ω2

]
,

(5)

where

λ1(r11) = (1 − µ)

(
ω2 −

r2
11 − ε

r11(r2
11 + ε)2

)

λ2(r12) = µ

(
ω2 − 1

r3
12

)
.

(6)

After integrating Equation (1), we obtain

2Θ(x1, y1, z1)− (ẋ2
1 + ẏ2

1 + ż2
1) = C, (7)

Relation (7) represents the first integral of motion, where C is the constant of integration
and is well known as the Jacobian constant. The importance of this constant is behind
its own properties, which can be employed to calculate the curves of zero velocity and
recognize the regions of admissible and prohibited motion.
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3. Perturbed Hill’s System

Now we assume that the infinitesimal body (planetesimal) orbits in the proximity of
the earth (protoplanet) which has lower mass than the sun (protosun). This means that
the motion can be formulated by Hill’s approximation to the circular restricted three-body
problem (CRTBP). To employ this approximation, we will follow Szebehely’s transforma-
tion [17]. Firstly, we have to subordinate the equations of motion of the perturbed CRTBP
in System (1) and its related formulae to a translation along the X1-axis. In this manner, we
admit that the origin of coordinates moves to the center of the smaller primary body. Thus,
the old variables (x1, y1, z1) and new (x2, y2, z2) are linked by the following transformation:

x1 = x2 − µ + 1,

y1 = y2,

z1 = z2.

(8)

Utilizing Equation (8) with Equations (1) and (2), we obtain

ẍ2 − 2ωẏ2 =
∂

∂x2
Υ(x2, y2, z2),

ÿ2 + 2ωẋ2 =
∂

∂y2
Υ(x2, y2, z2),

z̈2 =
∂

∂z2
Υ(x2, y2, z2),

(9)

where the new derivatives, which related to Equation (5), can be rewritten as

Υx2 = (1 + x2)[λ1(ρ11) + λ2(ρ12)]− λ2(ρ12),

Υy2 = y2[λ1(ρ11) + λ2(ρ12)],

Υz2 = z2

[
λ1(ρ11) + λ2(ρ12)− ω2

]
,

(10)

Here, λ1(ρ11) and λ2(ρ12) are identified by Equation (6), while Υ ≡ Υ(x2, y2, z2) and is
given by

Υ =
1
2

ω2
(

x2 − µ + 1)2 + y2
2

)
+

(1 − µ) ρ11

ρ2
11 + ε

+
µ

ρ12
, (11)

and substituting Equation (8) into Equation (4), we obtain

ρ2
11 = (1 + x2)

2 + y2
2 + z2

2,

ρ2
12 = x2

2 ++y2
2 + z2

2.
(12)

Secondly, we again follow Szebehely in [17] to scale the variables by introducing

x2 = µβx,

y2 = µβy,

z2 = µβz.

(13)

The aforementioned scale will preserve the magnitude of Coriolis and centrifugal
terms in the same order of the previous equations.
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Substituting Equation (13) into in Equations (9)–(12), we obtain

ẍ − 2ωẏ =µ−2β ∂

∂x
U(x, y, z)

ÿ + 2ωẋ =µ−2β ∂

∂y
U(x, y, z)

z̈ =µ−2β ∂

∂z
U(x, y, z),

(14)

where U ≡ U(x, y, z) is given by

U =
1
2

ω2
[
(µβx − µ + 1)2 + µ2 βy2

]
+

(1 − µ) ρ1

ρ2
1 + ε

+
µ

ρ2
, (15)

and

ρ2
1 = 1 + 2µβx + µ2βρ2,

ρ2
2 = µ2βρ2,

ρ2 = x2 + y2 + z2,

(16)

Utilizing Equations (15) and (16), the derivatives Ux, Uy, and Uz are identified by the
following formulae:

Ux = µβ(1 − µ)(1 + µβx)
[
ω2 − Γ(ρ1)

]
+ µ2βx

[
µ2βω2 − µ1−3β

ρ3

]
,

Uy = µ2βy
[

µ2βω2 − µ1−3β

ρ3 − (1 − µ)Γ(ρ1)

]
,

Uz = − µ2βz
[

µ1−3β

ρ3 + (1 − µ)Γ(ρ1)

]
.

(17)

where Γ(ρ1) is defined by

Γ(ρ1) =
ρ2

1 − ε

ρ1(ρ
2
1 + ε)2

(18)

Thirdly, after utilizing Equations (14) and (17), and letting the mass parameter µ tend
to zero, the existing of such limit leads to Hill’s equations. Thereby, Equation (14) can be
rewritten as

ẍ − 2ωẏ =Lx1 + Lx2

ÿ + 2ωẋ =Ly1

z̈ =Lz1,

(19)

where the limits Lx1, Lx2, Ly1, and Lz1 are identified by

Lx1 = lim
µ→0

(1 − µ)(1 + µβx)
1

µβ

[
ω2 − Γ(ρ1)

]
,

Lx2 = lim
µ→0

[
µ2βω2 − µ1−3β

ρ3

]
x,

Ly1 = lim
µ→0

[
ω2 − µ1−3β

ρ3 − (1 − µ)Γ(ρ1)

]
y,

Lz1 = − lim
µ→0

[
µ1−3β

ρ3 + (1 − µ)Γ(ρ1)

]
z.

(20)
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From Equations (16) and (18), ρ1 → 0 and Γ(ρ1) → ω2 when µ → 0 if β > 0. Hence, it
is clear that from Equation (20), the last three limits can be calculated by directly substituting
µ = 0, while the first limit represents an indeterminate quantity. Furthermore, β represents
an arbitrary positive value but the proper selection is 1 − 3β = 0 (β = 1/3), because this
choice provides the associated terms to both of centrifugal and mutual gravitational forces
for second and third equations of motion (19). In this context, ρ1, ρ2, and the values of
limits Lx1, Lx2, Ly, and Lz are given by

ρ2
1 = 1 + 2µ1/3x + µ2/3ρ2,

ρ2
2 = µ2/3ρ2

(21)

and

Lx1 =
0
0

,

Lx2 = − x
ρ3 ,

Ly1 = − y
ρ3 ,

Lz1 = −
(

ω2 +
1
ρ3

)
z.

(22)

The indeterminate quantity of Lx1 means that we have to use some analysis methods
and limits rules alongside proper approximation to estimate its value instead of using
direct substituting. Thus, we will expand the values of ω(ε) and Γ(ρ1) to first order term of
ε; thus, we obtain

ω(ε) = 1 − 3
2

ε +O(ε2), (23)

and

Γ(ρ1) =
1
ρ3

1
− 3ε

ρ5
1
+O(ε2), (24)

Utilizing Equations (21) and (24) with expanding in terms of µ, we obtain

Γ(ρ1) = 1 − 3 ε − 3µ1/3(1 − 5 ε)x +O(ε2, µ2/3), (25)

Now utilizing Equations (22)–(25), we obtain

Lx1 = 3(1 − 5ε)x,

Lx2 = − x
ρ3 ,

Ly1 = − y
ρ3 ,

Lz1 = −
(

1 − 3ε +
1
ρ3

)
z.

(26)

Substituting Equations (23) and (26) into Equation (19), we obtain

ẍ − 2(1 − 3
2

ε)ẏ = 3(1 − 5ε)x − x
ρ3 ,

ÿ + 2(1 − 3
2

ε)ẋ = − y
ρ3 ,

z̈ = − (1 − 3ε)z − z
ρ3 .

(27)



Math. Comput. Appl. 2024, 29, 34 7 of 13

For simple form, Equation (27) can be rewritten as

ẍ − 2 ω ẏ =Vx,

ÿ + 2 ω ẋ =Vy,

z̈ =Vz.

(28)

where

V =
1
2

[
(5 ω2 − 2) x2 − ω2z2

]
+

1
ρ

, (29)

We would like to advise that from now on, the values of ω and ω2 are approximated
by (1 − 3 ε/2) and (1 − 3 ε). Furthermore, we remark that Equations (28) and (29) represent
a new perturbed dynamical system for the spacial Hill’s problem in the framework of the
CFP effect. We emphasize that this system is generalized for the classical Hill’s system and
it can be reduced to it when the perturbation parameter equals zero (ε = 0) [17,19].

4. Lagrangian and Hamiltonian Approaches

The Lagrangian and Hamiltonian techniques give the basics for more profound results
in classical mechanics, and propose equivalent expressions in quantum mechanics such
as the path integral formula and the Schrödinger equation. The Lagrangian mechanics
is preferable to the Hamiltonian mechanics when the numerical solutions are needed
for typical undergraduate problems in classical mechanics, whilst Hamiltonian mechan-
ics has an obvious feature for addressing more deeper and philosophical questions in
physical sciences.

In classical mechanics, the Hamiltonian approach is a reformulation of the Lagrangian
approach, where in the first, the generalized velocities are replaced by generalized momen-
tum. However, both of them give an explanation for classical mechanics and each of them
can be used to describe the same physical system. But one of the most important properties
of Hamiltonian mechanics is that it has a close relationship with geometry (notably, sym-
plectic geometry and Poisson structures), and this serves as a connection between classical
and quantum mechanics.

4.1. Lagrangian Equations for Perturbed Hill’s Problem

Lagrangian mechanics is based on the principle of least action; it can be used to
describe a dynamical system in both physical sciences and classical mechanics. Since the
differentiable function is stationary at its local extreme, the Lagrange equations have some
advantageous-to-solve optimization systems that provide us with some functions that
minimize or maximize some required functionals. Lagrange equations will provide the
same equations as Newton’s laws by using the kinetic and potential energy instead of
forces, where Lagrangian functions will characterize the dynamics of the entire systems. In
general, the Lagrangian has energy unit but there is no one expression for all dynamical
systems. The function that can be used to find the proper equations of motion in the
conformity of mechanics laws can be considered as a Lagrangian function.

To find Lagrangian equations, we impose that (Q,L) defines a real dynamical system
of N degree of freedom, where Q is the configuration space and L ≡ L(q, q̇, t) is a La-
grangian function, q = (q1, q2, . . . , qN) ∈ Q, and q̇ = (q̇1, q̇2, . . . , q̇N) is the corresponding
vector velocity to the position vector q. Thus, Lagrange’s equations can be written as [39]

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0, (30)

where i = 1, 2, . . . , N, L = T −U , T , U are the kinetic and potential energy of the dynamical
system, respectively.
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Equations (28) and (29) represent Hill’s system in a rotating reference frame. To find the
Lagrangian function for such system, we have to evaluate the kinetic and potential energy
in this frame. For convenient of applying Lagrangian equations, we impose that (x, y, z) =
(q1, q2, q3) = (qx, qy, qz) = q; since the angular velocity of reference frame about the Z-axis
is ω, then the velocity vector in rotating reference frame q̇ = (q̇x − ω qy, q̇y + ω qx, q̇z).
Thereby, the kinetic and potential energy of the dynamical system are identified by

T =
1
2

[(
q̇x − ω qy

)2
+
(
q̇y + ω qx

)2
+ q̇2

z

]
,

U =
1
2

ω2
[
q2

x + q2
y + q2

z

]
− 1

2
(5 ω2 − 2) q2

x −
1
q

,
(31)

where q is a function in the generalized variable qx, qy, qz, and is evaluated by q (qx, qy, qz) =√
q2

x + q2
y + q2

z .
Since the Lagrangian function is defined by L = T − U , then by using Equation (31),

we obtain

L =
1
2

[(
q̇x − ω qy

)2
+
(
q̇y + ω qx

)2
+ q̇2

z

]
+

1
q

− 1
2

ω2
[
q2

x + q2
y + q2

z

]
+

1
2
(5 ω2 − 2) q2

x.
(32)

For finding the equations of motion, Equation (30) can be separated to

d
dt

(
∂L
∂q̇x

)
− ∂L

∂qx
= 0,

d
dt

(
∂L
∂q̇y

)
− ∂L

∂qy
= 0,

d
dt

(
∂L
∂q̇z

)
− ∂L

∂qz
= 0.

(33)

We can obtain the perturbed dynamical System (28) by substituting Equation (32) into
Equation (33), which can be rewritten in the following form:

q̈x − 2 ωq̇y = (5 ω2 − 2)qx −
qx

q3 ,

q̈y + 2 ωq̇x = −
qy

q3 ,

q̈z = − ω2 z − qz

q3 .

(34)

One of the most paramount features of the Lagrangian function is that we can read
off from it easily conserved physical quantities. For example, the generalized momentum
“canonically conjugate” to the coordinate qi is identified by pi = ∂L/∂q̇i. By applying this
property to Lagrangian relation, we obtain q̇x = px + qy, q̇y = py − qx, and q̇z = pz.

4.2. Hamiltonian Equations for Perturbed Hill’s Problem

Hamiltonian mechanics can be employed to characterize some simple dynamical
systems such as a bouncing ball or a pendulum problem, in which the total energy is
constant, because a change in increase or decrease in kinetic energy leads to a decrease
or increase of the same amount in the potential energy, and vice versa. But the power of
Hamiltonian mechanics is that it can be used to describe more complex dynamical systems,
which express the motions of natural bodies such as planetary and stellar motion in celestial
mechanics [40,41], where an increase in the degrees of freedom of the system leads to an
increase in the complexity of the system’s dynamics and its time evolution.
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In classical mechanics, the state of a dynamical system can be described by identifying
its Lagrangian as a function in both the generalized coordinates and their associated
velocities, but it is proper, in some cases, to describe the state of system by defining its
Hamiltonian. In this context, the Hamiltonian satisfies the following relation [42,43]:

H(p, q, t) = p(t).q(t)−L(q, q̇, t), (35)

where the position vector q and its conjugate momenta p are

q = (qx, qy, qz),

ṗ = (px, py, pz).
(36)

Utilizing Equations (32), (35), and (36), the Hamiltonian of the perturbed Hill’s system
by the continued fractional potential is

H =
1
2

[(
px + ω qy

)2
+
(

py − ω qx
)2

+ p2
z

]
− 1

2

[(
5 ω2 − 2

)
q2

x − ω2q2
z

]
− 1

q
. (37)

where the time evolution of Hamilton’s equations is given by

q̇x =
∂H
∂px

, ṗx = − ∂H
∂qx

,

q̇y =
∂H
∂py

, ṗy = − ∂H
∂qy

,

q̇z =
∂H
∂pz

, ṗz = −∂H
∂qz

,

(38)

Substituting Equation (37) into (38), the spatial perturbed Hill’s equations are given by

q̇x = px + ω qy,

q̇y = py − ω qx,

q̇z = pz,

ṗx =ω q̇y +
(

5 ω2 − 2
)

qx −
qx

q3 ,

ṗy = − ω q̇x −
qy

q3 ,

ṗz = − ω2 q̇z −
qz

q3 ,

(39)

For an effective formula from practical point of view, we will write the Hamiltonian in
the following form:

H = H0 + εH1, (40)

where

H0 =
1
2

[(
px + qy

)2
+
(

py − qx
)2

+ p2
z

]
− 1

2

[
3q2

x − q2
z

]
− 1

q
,

H1 =
3
2

[
4 q2

x − q2
y − q2

z − pxqy + pyqx

]
.

(41)

The first expression H0 in Equation (41) represents the classical motion of Hill’s
system, while the second H1 gives the perturbation in such motion.

Thus, the perturbed Hamiltonian (40) can be written as

H =H0 +O(ε). (42)
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The formula (40) for Hamiltonian can be used to develop the dynamical properties of
the classical Hill’s system to prove that such properties can be extended to the perturbed
problem under the effect of the continuation fraction potential parameter.

5. Symmetries

Symmetry is a substantial subject in different areas in both physical and mathematical
sciences [44–46]. There are many systems that describe different physical phenomena in
nature that possess some symmetry features that somehow affect their functionality. Con-
sidering such properties may significantly facilitate the analysis of the proposed systems.
The symmetry of a dynamical system is preserved in mathematical approaches used to
formulate it. We can explore this concept in Lagrangian and Hamiltonian systems, where
the symmetry of Lagrangian and Hamiltonian functions can be shown in their own equa-
tions of motion, which are invariant under the same transfer symmetry [47–49]. Briefly, if
the transformations take systems solutions to other solutions where all solutions satisfy
equations that describe the dynamical system, then this system is called an invariant under
these transformations.

Let (x(t), y(t), z(t)) be solutions of System (28); then, this system is invariant and the
obtained trajectories under the following transformations are solutions too.

1. S1: (x(t), y(t), z(t)) → (−x(−t), y(−t), z(−t)),
2. S2: (x(t), y(t), z(t)) → (x(−t),−y(−t), z(−t)),
3. S3: (x(t), y(t), z(t)) → (x(t), y(t),−z(t)),
4. S4: (x(t), y(t), z(t)) → (−x(t),−y(t), z(t)),
5. S5: (x(t), y(t), z(t)) → (−x(t),−y(t),−z(t)),
6. S6: (x(t), y(t), z(t)) → (x(−t),−y(−t),−z(−t)).

Since the Lagrangian function L ≡ L(qx , qy, qz, q̇x , q̇y, q̇z) and the Hamiltonian
H ≡ H(qx, qy, qz, px, py, pz), it is clear that both functions are invariant over the previous
transformation S1, S2, S3, S4, S5, and S6. Thus the perturbed Hill’s system (34) or (39)
is an invariant under the same transformations and the obtained trajectories over these
symmetries are also valid solutions. Furthermore, this property can be verified directly by
substituting components of the velocity and acceleration which are associated with coordi-
nates in each transformation into Hill’s system (34) or (39), where these components are

1. S1: →
{

Velocity: (ẋ(−t),−ẏ(−t),−ż(−t)),

Acceleration: (−ẍ(−t), ÿ(−t), z̈(−t)),

2. S2: →
{

Velocity: (−ẋ(−t), ẏ(−t),−ż(−t)),

Acceleration: (ẍ(−t),−ÿ(−t), z̈(−t)),

3. S3: →
{

Velocity: (ẋ(t), ẏ(t),−ż(t)),

Acceleration: (ẍ(t), ÿ(t),−z̈(t)),

4. S4: →
{

Velocity: (−ẋ(t),−ẏ(t), ż(t)),

Acceleration: (−ẍ(t),−ÿ(t), z̈(t)),

5. S5: →
{

Velocity: (−ẋ(t),−ẏ(t),−ż(t)),

Acceleration: (−ẍ(t),−ÿ(t),−z̈(t)),

6. S6: →
{

Velocity: (−ẋ(−t), ẏ(−t), ż(−t)),

Acceleration: (ẍ(−t),−ÿ(−t),−z̈(−t)).
The transformations S1, S2, S3, S4, S5, and S6 show that the perturbed Hill’s system (27)

or (28) has different valid six solutions as well as the original one under the effect of
continuation fraction potential parameter, where the system is an invariant under these
transformations.

The symmetry S1 comprises a reflection about the YZ-plane and S2 comprises a reflec-
tion about the XZ-plane, and both of them implicate a reflection in time. The symmetry
S3 includes reflection about the XY-plane, which admits us to perform the trajectory cal-
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culations with respect to positive Z-coordinate only. This will be applied to simplify the
evaluate of the Poincaré map. The symmetries S4, S5, and S6 directly result from composi-
tions of S1, S2, and S3, where the compositions of S1 = and S2 give the symmetry S4, and
S1, S2, and S3 yield S5, while the compositions of S2 and S3 provide the symmetry S6. The
symmetry S4 is a result for two successive reflections about the YZ and XZ planes. But the
symmetry S5 is a result for three successive reflections about the YZ, XZ, and XY planes,
which are equivalently purely symmetry about the origin point. The last transformation S6
includes the reflection in time as well as two successive reflections about XZ and XY.

We note that the several symmetries found in the Hill’s system can greatly simplify
the calculation and analysis of primary studies, and authorize us to explore similarities and
differences among many classes of trajectories that otherwise differ in the framework of
the RTBP. Several extended studies on the periodic orbits and symmetries of the classical
Hill’s lunar problem are developed with emphasis on the stability evolution of these
orbits [50,51]. Furthermore, we demonstrate that if the trajectory of a dynamical system
has a property p(ϕ), where this system is an invariant under the symmetry S, then S(p(ϕ))
will be transformed to the symmetric trajectories.

6. Conclusions

Although Hill’s problem was defined as a limiting case for a restricted three-body
problem, it can be obtained from the general three-body problem as in the motions of
Earth and the Moon around the Sun, where the two masses are very small with respect
to the Sun’s mass. In a general case, there are three zero assumptions: the solar parallax,
the eccentricity, and the lunar inclinations all of them are assumed to equal zero value.
The Hill’s problem construction can be established from a general three-body problem
by expanding its Hamiltonian using the assumptions of smallness parameters which are
related to the smallness of two masses and the separation distance between them, where
we should keep only the first-order terms in small parameters.

Hill’s approximation can be applied when two masses are nearby and small compared
to a third mass. Thus, it is a complementary approach to the restricted case, while the
Hill’s approximation is a reduction to the restricted problem. In this case, the mass of the
third body is considered to be very small in comparison to the other two bodies, which
is considered the main reason for assuming that the two bodies are moving in Kepler
circular orbits. Thus, we used the modified CRTBP under the effect of continuation fraction
potential to construct a novel type model for Hill’s problem.

In this paper, an analytical development for deriving a new model type was introduced
to describe Hill’s problem. First, an extensive review of the problem was stated. Hence, the
model description of the RTBP was proclaimed, in which case the bigger primary creates a
potential that is similar to the continuation fraction potential, while the smaller primary
creates a potential as a spherical body. After that, the obtained perturbed system was
subjected to the transformation along X-axes to allow the origin of coordinates to move
to the center of the smaller primary. Furthermore, the variables were scaled by using the
parameter of mass ratio, which yields Hill’s problem if limiting process is considered when
the mass ratio tends to zero. The associated Lagrangian and Hamiltonian functions of the
new system were also calculated and used to verify their validation for obtaining the new
Hill’s system of motion.

We studied the symmetry analysis of the new system and proved that such a system
has different six valid solutions under different six symmetries’ transformations, as well as
the original solution, where the system is an invariant under these transformations. We
remark that the several symmetries of the Hill’s system can greatly simplify the calcula-
tion and analysis of preliminary investigations for the dynamical behavior of the system,
and this authorizes us to explore the similarities and differences among many classes of
trajectories that otherwise differ in the framework of the RTBP. Finally, we emphasize that
Hill’s system has many applications in celestial mechanics, particularly in the dynamics of
exploring planetary rings and binary encounters.
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