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Abstract: Cyclodextrin–based porous materials have been widely applied in removing various
organic pollutants from water environments, due to their unique physical and chemical properties,
like the size–matching effect and hydrophobic interaction. Large numbers of hydroxyl groups in its
external structure give cyclodextrin a high solubility in water, but the existence of these hydroxyl
groups also endows cyclodextrin with the ability to be chemically modified with various functional
groups to reduce its solubility in water and, meanwhile, to develop some novel functionalized
cyclodextrin–based porous materials for selective removal of the target organic pollutants. This
review focuses on the recent development in the synthesis of cyclodextrin–based porous materials
(crosslinked cyclodextrin polymers and immobilized cyclodextrins), as well as highlighting their
applications and mechanisms in the removal of dyes, endocrine disruptors, and mixed pollutants
from water. Finally, the challenges and future perspectives in related research fields are discussed.
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1. Introduction

Cyclodextrins (CDs) are cyclic oligosaccharides constructed by multiple D–glucose
units connecting end–to–end via α–1 and 4–glucoside bonds, occurring naturally from
starch through degradation with the enzyme cyclodextrin glucanosyltransferase [1,2].
Based on structural characteristics, cyclodextrins are divided into three types, namely
α–cyclodextrin (α–CD), β–cyclodextrin (β–CD), and γ–cyclodextrin (γ–CD), and the num-
ber of glucopyranose units contained in the molecular structure of these three cyclodextrins
is 6, 7, and 8, respectively [3,4]. Some important physicochemical parameters of the three
CDs are listed in Table 1. Throughout the entire research and application history of cyclodex-
trins, the development of efficient and scalable methods for the preparation of cyclodextrins
and their homologues has always been a popular topic of researchers worldwide. Recently,
to solve the problem of the availability of cyclodextrins with smaller or larger cavity sizes,
chemists have developed some novel chemical or enzymatic synthetic strategies for efficient
preparation of multiple cyclodextrin homologues [5,6]. However, all known cyclodextrins
were previously only composed of D–glucose. This situation changed when Prof. J. Fraser
Stoddart of Northwestern University and Prof. Daniel W. Armstrong of the University of
Texas at Arlington collaborated to report the synthesis of three mirror–like cyclodextrins
for the first time [7]. In that work, two simple and easily available monosaccharide donors
and acceptors were designed and synthesized from commercially available L–glucose. The
diastereoselective construction of multiple consecutive 1,2–cis L–glycosidic bonds, one–pot
rapid assembly of linear glycans, and efficient cyclization were achieved. More importantly,
the half–gram preparation of α–, β–, and γ–L–CDs was completed. These advances made
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in the preparation of cyclodextrins and their homologues greatly promotes the industrial
application of cyclodextrins and cyclodextrins–based functional materials.

Table 1. Physicochemical parameters of three naturally formed CDs [8].

α–CD β–CD γ–CD

Number of glucose units 6 7 8
Molecular weight (g/mol) 972.0 1135.0 1297.0

Inside diameter (Å) 4.7–5.3 6.0–6.5 7.5–8.3
Outside diameter (Å) 14.6 ± 0.4 15.4 ± 0.4 17.5 ± 0.4
Cavity volume (Å3) 174.0 262.0 427.0

Seen from a top view in three–dimensional space, cyclodextrin exhibits a conical
cylinder structure with a cavity of 4.7~8.3 Å built by the glucose units. All the hydroxyl
groups connected to these glucose units are distributed on the outer side of the cylinder,
and thus a hydrophobic region is formed in the inner cavity due to the shielding effect of
C–H bonds, which gives the cyclodextrin molecule the characteristics of “outer hydrophilic
and inner hydrophobic” [9]. It is precisely because of this structural property that some
hydrophobic guest molecules can be identified by cyclodextrins to form the inclusion
compounds via the size–matching effect and hydrophobic interactions, and to selectively
separate the guest molecules from aqueous solutions [10]. Until now, cyclodextrin–based
porous materials have been widely used in removing dyes [11–13], heavy metal ions [14–16],
endocrine disruptors (EDCs) [17,18], and other organic pollutants from aqueous solutions
due to their wide availability of raw material, low cost, environmental friendliness, and
ease of degradation [19]. Among the three cyclodextrins, β–CD, as shown in Figure 1,
has attracted the most extensive attention due to its greater advantages of low cost, easy
availability, and moderate cavity size compared with other two cyclodextrin molecules.
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Figure 1. Molecular structure of β–CD (left) and its model diagram (right).

However, the high solubility of β–CD in aqueous solutions resulting from its hy-
drophilic nature also limits its application in the removal of contaminants from aqueous
solutions [20,21]. At present, two main methods have been used to reduce the solubil-
ity of cyclodextrin in aqueous solutions while improving the adsorption performance of
cyclodextrin–functionalized materials for guest pollutants. One is to directly use cyclodex-
trin molecules as monomers to polymerize with the addition of crosslinking agents to
obtain crosslinked cyclodextrin polymers [22,23]. The other is to load cyclodextrin onto
the different supports by crosslinking agents to prepare cyclodextrin–based porous ma-
terials. In addition, researchers have also developed some other new methods, such as
molecular imprinting (MIP) [24–26] and ionic imprinting (IIP) [27,28] to synthesize some
cyclodextrin–functionalized adsorbents for special applications.
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In contrast to other outstanding reviews that have been reported, the latest progress
of cyclodextrin–based materials (cyclodextrin polymers, immobilized cyclodextrins, and
imprinted cyclodextrins) for removal of pollutants (including inorganic and organic pollu-
tants) from aqueous solutions is presented in detail from a broad perspective. This review
minutely summarizes the reported synthetic methods for the preparation and modification
of β–CD–based porous materials including crosslinked β–CD polymers and immobilized
β–CD composite materials. Additionally, the adsorption properties of β–CD porous ma-
terials for some specific pollutants such as dyes, EDCs, and mixed pollutants are also
summarized, and the adsorption mechanisms of these materials for specific pollutants are
discussed. Furthermore, the challenges and future research directions for β–CD–based
porous materials are also discussed.

2. Crosslinked β–CD Polymers

Crosslinked β–CD polymers with a large crosslinking network and intrinsic meso-
porous structure can be prepared through the crosslinking reaction between β–CD molecules
and crosslinking agents. These crosslinked β–CD polymers have unoccupied cavities
and can form inclusion compounds with pollutant molecules through host–guest interac-
tions [29]. In addition, some chemical groups, such as –OH, –COOH, and –NH2–, contained
in these crosslinkers can serve as active sites for adsorption pollutants through electrostatic
or hydrogen bonding interactions [30].

To date, the main crosslinking agents that have been reported for crosslinking poly-
merization of β–CD include epichlorohydrin (EPI) [31–33], diisocyanate [34–36], anhy-
dride [37,38], citric acid (CA) [39–41], ethylene diamine tetraacetic acid (EDTA) [42,43],
and tetrafluorophenonitrile (TFN) [44–46]. The molecular structures of these crosslinking
agents are shown in Figure 2.

Separations 2024, 11, x FOR PEER REVIEW 3 of 25 
 

 

In addition, researchers have also developed some other new methods, such as molecular 
imprinting (MIP) [24–26] and ionic imprinting (IIP) [27,28] to synthesize some cyclodex-
trin–functionalized adsorbents for special applications. 

In contrast to other outstanding reviews that have been reported, the latest progress 
of cyclodextrin–based materials (cyclodextrin polymers, immobilized cyclodextrins, and 
imprinted cyclodextrins) for removal of pollutants (including inorganic and organic pol-
lutants) from aqueous solutions is presented in detail from a broad perspective. This re-
view minutely summarizes the reported synthetic methods for the preparation and mod-
ification of β–CD–based porous materials including crosslinked β–CD polymers and im-
mobilized β–CD composite materials. Additionally, the adsorption properties of β–CD po-
rous materials for some specific pollutants such as dyes, EDCs, and mixed pollutants are 
also summarized, and the adsorption mechanisms of these materials for specific pollu-
tants are discussed. Furthermore, the challenges and future research directions for β–CD–
based porous materials are also discussed. 

2. Crosslinked β–CD Polymers 
Crosslinked β–CD polymers with a large crosslinking network and intrinsic mesopo-

rous structure can be prepared through the crosslinking reaction between β–CD molecules 
and crosslinking agents. These crosslinked β–CD polymers have unoccupied cavities and 
can form inclusion compounds with pollutant molecules through host–guest interactions 
[29]. In addition, some chemical groups, such as –OH, –COOH, and –NH2–, contained in 
these crosslinkers can serve as active sites for adsorption pollutants through electrostatic 
or hydrogen bonding interactions [30]. 

To date, the main crosslinking agents that have been reported for crosslinking 
polymerization of β–CD include epichlorohydrin (EPI) [31–33], diisocyanate [34–36], an-
hydride [37,38], citric acid (CA) [39–41], ethylene diamine tetraacetic acid (EDTA) [42,43], 
and tetrafluorophenonitrile (TFN) [44–46]. The molecular structures of these crosslinking 
agents are shown in Figure 2. 

 
Figure 2. The structure of some crosslinking agents. 

EPI is an inexpensive crosslinking agent and has been widely used to prepare the 
polymer materials for over past 50 years due to its much more easily achievable crosslink-
ing reactions compared with other crosslinking agents [47]. Under alkaline conditions, 
EPI can crosslink β–CD molecules by the condensation reaction between the chemical 
groups of EPI and hydroxyl groups present in β–CD, forming a network structural poly-
mer containing β–CD units (Figure 3) [48]. The β–CD polymers crosslinked by EPI are 
among the most widely studied β–CD materials so far; they are not only simple to 

O

Cl
N

N
C

C

O

O

HO OH

O O

OH

HO O
N

N

O

O
OH

OH
O

O
OH

HO

CN

CN

F

FF

F

O

O

O

O

O

O

Epichlorohydrin (EPI) 1,2,3,4-butanetetracarboxylic dianhydrideHexamethylene diisocyanate (HDI)

Citric acid (CA) Ethylene diamine tetraacetic acid (EDTA) Tetrafluorophenonitrile (TFN)

Figure 2. The structure of some crosslinking agents.

EPI is an inexpensive crosslinking agent and has been widely used to prepare the
polymer materials for over past 50 years due to its much more easily achievable crosslinking
reactions compared with other crosslinking agents [47]. Under alkaline conditions, EPI can
crosslink β–CD molecules by the condensation reaction between the chemical groups of EPI
and hydroxyl groups present in β–CD, forming a network structural polymer containing
β–CD units (Figure 3) [48]. The β–CD polymers crosslinked by EPI are among the most
widely studied β–CD materials so far; they are not only simple to synthesize, but also have
excellent adsorption performance for organic pollutants (Table 2) [47,49].

In 2003, Crini et al. [50] synthesized three insoluble β–CD polymers, polymer 1 (150 mg
of β–CD per gram of polymer), polymer 2 (200 mg of β–CD per gram of polymer), and
polymer 3 (240 mg of β–CD per gram of polymer), using EPI as the crosslinking agent.
The adsorption capacities of these materials towards some typical dyes (Figure 4a) were
investigated. Compared with that of starch, the adsorption capacity of polymer 3 for C.I.
Acid Blue 25 (AB 25), C.I. Reactive Blue 19 (RB 19), C.I. Disperse Blue 3 (DB 3), and C.I. Direct
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Red 81 (DR 81) was much higher (Figure 4b), which was mainly attributed to the strong
host–guest interaction of β–CD. However, the adsorption capacity of polymer 3 to C.I. Basic
Blue 3 (BB 3) was very low, which was possibly because BB 3 is a cation dye (Figure 4b),
and its dye–polymer interaction was thus weakened by the electrostatic repulsion effect.
Meanwhile, with an increase in β–CD content in polymers from 1 to 3, the adsorption
capacities of the material for five dyes gradually increased (Figure 4c), demonstrating that
β–CD played a key role in the adsorption of dyes from aqueous solutions.
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Table 2. The specific surface area and adsorption capacities of crosslinked β–CD polymers on pollutants.

Adsorbents Crosslinking Agents Specific Surface
Area (m2/g) Pollutants Adsorption

Capacities (mg/g) Ref.

β–CD nanospheres epichlorohydrin 1.5 p–nitrophenol 17.2 [33]
PhAEs–β–CD phthalic anhydride 332.1 basic green 4 3288.8 [38]

crystal violet 2407.9
astrazon pink FG 2264.4

CA–β–CD citric acid 0.8 bisphenol A 83.0 [40]
methylene blue 295.2

Cu2+ 585.6
polyCTR–β–CD citric acid 0.6 paraquat 20.8 [41]
β–CD polymer tetrafluorophenonitrile 270.8 Pb2+ 196.4 [45]

Cu2+ 164.4
Cd2+ 136.4

CDP epichlorohydrin 2.4 C.I. Basic Blue 3 42.4 [51]
C.I. Basic Violet 3 35.8
C.I. Basic Violet 10 53.2

β–CD–TDI 2,4–toluene
diisocyanate 2.5 2,4–dinitrophenol 3.9 [52]

β–CD–HDI hexamethylene
diisocyanate 14.0 2,4–dinitrophenol 3.4 [52]

CDPU–HCP 4,4′–diphenylmethane
diisocyanate 1133.1 bisphenol A 371.8 [53]

BnCD–HCPP formaldehyde
dimethyl acetal 1225.0 4–chlorophenol 141.4 [54]

BnCD–DCX dichloroxylene 1209.0 bisphenol A 278.0 [55]

To overcome the drawback of the low adsorption capacity of β–CD polymers for
cationic dyes, Crini et al. [51] improved the synthetic method of β–CD polymers. In the
presence of carboxymethyl cellulose (CMC), one β–CD polymer (CMC–β–CDP) adsorbent
modified with carboxylic groups was prepared in one step when using EPI as the crosslink-
ing agent (Figure 5). The results showed that CMC–β–CDP had strong adsorption ability
for some cationic dyes like BB 3, C.I. Basic Violet 3 (BV 3), and C.I. Basic Violet 10 (BV 10),
indicating that the introduction of carboxyl groups was favorable for adsorption of cationic
dyes. This was mainly because, in alkaline media, the hydroxyl and carboxyl groups in
the material structure are deprotonated, and thus can be strongly bonded to the positively
charged cationic dyes through electrostatic interaction.
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Anne et al. [52] prepared two kinds of β–CD polymers (β–CD–HDI and β–CD–TDI) us-
ing hexamethylene diisocyanate (HDI) and toluene–2,4–diisocyanate (TDI) as crosslinking
agents, respectively, and studied the adsorption of 2,4–dinitrophenol (2,4–DNP) by these
two polymers. It was found that both β–CD–HDI and β–CD–TDI had strong adsorption
ability for 2,4–DNP. Compared with β–CD–HDI, β–CD–TDI showed a higher removal
rate for 2,4–DNP. However, the surface areas of β–CD–HDI (14.0 m2/g) and β–CD–TDI
(2.5 m2/g) were relatively low, which significantly reduced their adsorption capacities
for organic pollutants. Zhou et al. [53] crosslinked β–CD with 4,4′–diphenylmethane
diisocyanate (MDI), and then further used a diplomatic coupling reaction to synthesize
hyper–crosslinked β–CD polyurethane (CDPU–HCP, Figure 6a), which had a very high
specific surface area (1133.1 m2/g). The results showed that CDPU–HCP had a high adsorp-
tion capacity for bisphenol A (BPA) (371.8 mg/g). After six adsorption–desorption cycles,
CDPU–HCP still maintained a high removal efficiency for BPA (>90%). In combination
with the results of the DFT calculation, it was found that the formation of the inner inclu-
sion compounds through the hydrophobic interaction of the β–CD cavity with the lowest
binding energy (94.4 kJ/mol, Figure 6b) was the main reason for the adsorption of BPA. In
addition, the π–π interaction of aromatic rings and the bonding ability of carbamates were
also beneficial to the removal of BPA (Figure 6c,d).
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Later, Kono et al. [37] developed water–insoluble β–CD polymers (β–CDPs) using
1,2,3,4–butanetetracarboxylic dianhydride (BTCA) as the crosslinking agent and pyridine as
the solvent. The results showed that the water solubility of the obtained β–CDPs depended
on the molar feed ratio of β–CD and BTCA, as well as the reaction temperature. When
the molar feed ratio of β–CD and BTCA was low and the reaction temperature was high,
the water-insoluble β–CDPs could be obtained. At the same time, adsorption experiments
showed that water-insoluble β–CDPs showed high adsorption capacity for BPA, especially
when the molar feed ratio of β–CD and BTCA was 1:3.5.

However, these crosslinking agents, like epichlorohydrin, diisocyanate, and anhydride,
are more toxic than EPI, and can cause serious harm to the human body and environment,
thus limiting their further practical application. To overcome this disadvantage, numer-
ous environmentally friendly crosslinking agents, such as CA and EDTA, have attracted
more attention.

Preparation of the β–CD polymer using CA and EDTA as crosslinking agents is not
only environmentally friendly during the synthesis process, but also can introduce negative
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carboxyl groups, so that the obtained polymer can also adsorb some cationic dyes and heavy
metal ions through electrostatic interaction, in addition to removing organic pollutants
through the host–guest interaction of β–CD. It provides one method for the development
of multifunctional adsorbents based on β−CD for the simultaneous removal of organic
and inorganic metal ions pollutants from aqueous solution.

For example, Huang et al. [40] synthesized a β–CD based polymer (CA–β–CD) at
140 ◦C using CA as the crosslinking agent and potassium dihydrogen phosphate as the
catalyst, which can simultaneously remove BPA, methylene blue (MB), and Cu2+ from
aqueous solutions (Figure 7a). In a mono–component system, the maximum adsorption
capacity for BPA by CA–β–CD was 83.0 mg/g, and the maximum adsorption capacity for
MB and Cu2+ was 295.2 mg/g and 58.6 mg/g, respectively. Multi–component experiments
(Figure 7b–d) exhibited that the adsorption of BPA and MB onto CA–β–CD was independent
from each other, while the adsorption of MB and Cu2+ belonged to a competitive adsorption
mechanism. Therefore, it can be concluded that the adsorption mechanism of CA–β–CD
towards BPA was through the host–guest interaction occurring in the hydrophobic cavity of
β−CD, while adsorption of positively charged MB and Cu2+ was through the electrostatic
interactions and the bonding interaction between carboxyl oxygen atoms and metal ions.
Furthermore, the loaded–β–CD could be easily regenerated and reused many times without
significant loss of efficiency.
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Unfortunately, it was found that the CA–crosslinked β–CD (CA–β–CD) cannot effec-
tively adsorb anionic dye. To achieve the adsorption of anionic dye, 2–dimethylamino
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ethyl methacrylate (DMAEMA) containing tertiary amine groups was used to function-
alize the β–CD–based polymers, which can be converted into quaternary amines and
create the cationic centers [56]. Zhou et al. [57] utilized CA as a crosslinking agent
to firstly prepare one CA–crosslinked β–CD polymer (β–CD/CA) by esterification re-
action. Then, the resulting polymer β–CD/CA was grafted onto the DMAEMA using
potassium persulfate (K2S2O8) as the initiator to obtain a novel amphoteric adsorbent
β–CD/CA–PDMAEMA (Figure 8). The results showed that the maximum adsorption
capacities of BPA, methyl orange (MO), and MB by β–CD/CA–PDMAEMA were up to
79.0 mg/g, 165.8 mg/g, and 335.5 mg/g, respectively. Furthermore, the multi–component
adsorption experiments proved that β–CD/CA–PDMAEMA could effectively remove the
BPA from aqueous solutions at pH = 2.0~10.0, and it could also selectively remove the
anionic dyes under acidic conditions or cationic dyes under alkaline conditions. In ad-
dition, the material had good stability and reusability. The above results suggest that
β–CD/CA–PDMAEMA is a very promising candidate for the treatment of dye in wastewa-
ter containing multiple contaminants.
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Zhao et al. [42] used EDTA as a crosslinking agent with sodium dihydrogen phosphate
as a catalyst to prepare an EDTA-functionalized β–CD polymer (EDTA–β–CD) through a
polycondensation reaction (Figure 9a), which was also studied for its ability to simultane-
ously adsorb heavy metal ions and dye molecules. Compared with EPI–β–CD, EDTA–β–CD
had a higher removal rate for cationic dyes and metal ions, indicating that the carboxyl
groups contained in EDTA provided extra adsorption sites for cationic dyes and metal ions
(Figure 9b), but the thermal stability of EDTA–β–CD was reduced due to the presence of
EDTA groups. In a single-component system, the adsorption capacities of EDTA–β–CD for
Cu2+ and Cd2+ were 78.8 and 124.8 mg/g, respectively. The adsorption capacities of MB,
Safranin O (SO), and Crystal Violet (CV) were 83.8, 59.3, and 114.2 mg/g, respectively. After
four sorption–desorption cycles, the regeneration efficiency of EDTA–β–CD still reached
almost 95%.
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As previously reported, most of the β–CD polymers adsorbents prepared using EPI,
diisocyanate, CA, or EDTA as crosslinking agents have the drawback of a low specific
surface area. To increase the specific surface area of β–CD porous materials, some com-
pounds with rigid aromatic rings have been selected as crosslinking agents since these rigid
aromatic compounds can provide a larger specific surface area and more pore structures
for adsorption pollutants.

For this purpose, Alsbaiee et al. [44] used TFN as the crosslinking agent to prepare
one mesoporous β–CD polymer (P–CDP) in K2CO3/tetrahydrofuran (THF) suspension
(Figure 10a) and found that P–CDP had a high specific surface area and permanent poros-
ity. The specific surface area of the obtained adsorbent P–CDP was up to 263.0 m2/g
(Figure 10b,c), but with a low yield of 20%. Fortunately, when using a mixed solution of
THF and DMF (dimethylformamide) with a volume ratio of 9:1 as the reaction solvent,
the yield of P–CDP could be further increased to 45%. The batch adsorption experiments
showed that P–CDP could quickly remove 95% of BPA (0.1 × 10−3 mol/L) from aqueous
solution with an extremely fast adsorption rate (equilibrium time < 10 s). Compared with
activated carbon or non-porous β–CD adsorbents, P–CDP had the faster adsorption rate
constant of 1.5 mg/(g·min), which was 15 to 200 times larger than that of activated carbon
and non-porous β–CD type adsorbents.
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In addition to choosing TFN as a crosslinking agent, recently, the Friedel–Crafts
alkylation reaction [54] has also been reported for the synthesis of hyper–crosslinked β–
CD polymers. Li et al. [55] crosslinked benzylated β–CD (BnCD) with di–chloroxylene
(DCX) through the Friedel–Crafts alkylation reaction to synthesize a new type of hyper-
crosslinked β–CD porous polymer BnCD–DCX (Figure 11a). This polymer had a very
high specific surface area (Figure 11b) and strong thermal stability, and could effectively
remove BPA from aqueous solution with an adsorption capacity comparable with that
of other β–CD–based adsorbents. Notably, it was found that the presence of inorganic
metal ions did not interfere with the adsorption of BPA by BnCD–DCX. Based on these
results, the authors pointed out that the host–guest and π–π interactions between BPA and
BnCD–DCX contributed to the excellent adsorption performances of BnCD–DCX towards
BPA. In addition, the NLDFT calculation revealed that the mean pore size of BnCD–DCX
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was 1.3 nm (Figure 11c), which was consistent with the size of BPA and favorable for
adsorption. This synthesis strategy provided a new approach for the design of highly
efficient hyper–crosslinked β–CD–based adsorbents for removal of organic pollutants from
aqueous solutions.
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Covalent organic frameworks (COFs) are a new type of crystalline porous polymer
with high porosity, ordered mesoporous structure, large surface area, and excellent thermal
stability [58–60]. The integration of supramolecular β–CD units into the ordered frame-
work skeleton structure of COFs gives the β–CD–based materials the advantages of a
regular, highly adjustable porous structure and strong thermal stability. More recently,
Wang et al. [61] synthesized a β–CD based COF material (β–CD@COF) through polycon-
densation between heptakis(6–amino–6–deoxy)–β–CD (Am7CD) and terephthalaldehyde
(TPA) catalyzed by acetic acid and ammonia in a mixture of water and ethanol, respec-
tively (Figure 12). The characterization results proved that β–CD@COF had a large specific
surface area (79.2 m2/g), uniform pore size, and high thermal stability. Compared with
β–CD amorphous polymer (β–CD@NCP), β–CD@COF had a specific molecular recognition
effect for (S)–naproxen, 4–nonylphenol, BPA, and Rhodamine B, which resulted from the
formation of clathrates between the β–CD cavity and the carboxyl or hydroxyl groups, as
well as free phenyl or naphthyl parts contained in these adsorbate molecules.
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3. Immobilized β–CD

In addition to reducing the solubility of β–CD in aqueous solutions using the crosslink-
ing method discussed above, another widely studied method is to load β–CD onto a support
(the so–called immobilized β–CD composite materials). The supports that have been re-
ported for the preparation of β–CD composite materials are mainly divided into inorganic
supports, and organic synthetic polymer and natural polymer supports. These inorganic or
organic support-immobilized β–CD composites have the advantages of good mechanical
strength, high specific surface area, and high porosity, and thus have been widely studied
in the removal of organic pollutants from water environments [2]. Table 3 shows the
adsorption properties of some examples of immobilized β–CD on different pollutants.

Table 3. Comparison of examples of reported immobilized β–CD in the adsorption of pollutants.

Adsorbent Supports Pollutants Equilibrium
Time

Adsorption
Capacities (mg/g) Ref.

SiO2–β–CD–NH2 SiO2 bisphenol A 180 min 107.7 [62]
SiO2–β–CD–OH SiO2 bisphenol A 180 min 112.7 [62]

β–CD/rGO–
MWCNTs

graphene oxide
multiwall carbon

nanotubes
naproxen 24 h 132.1 [63]

MCG Fe3O4
graphene oxide p–phenylenediamines 120 min 892.9 [64]

CDP–MNPs Fe3O4 magnetic
nanoparticles bisphenol A 250 min 74.6 [65]

resorcin 175 min 114.9
β–CD@Si silica gel p–nitrophenol 5 s 41.5 [66]

G–Fe3O4–β–CD bisphenol A 240 min 59.6 [67]

Fe3O4–PEI/β–CD Fe3O4 magnetic
nanoparticles methyl orange 100 min 192.2 [68]

Pb2+ 200 min 73.1
β–CD@AC activated carbon naphthalene 10 s 178.7 [69]
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Table 3. Cont.

Adsorbent Supports Pollutants Equilibrium
Time

Adsorption
Capacities (mg/g) Ref.

β–CDP polyvinyl alcohol methylene blue 30 min 105.0 [70]
phenol 200 min 13.8

PVA–SS–β–CD polyvinyl alcohol methylene blue 240 min 261.1 [71]
CD@TCT@PEI polyethyleneimine hydroquinone 180 min 364.9 [72]

Pb2+ 360 min 113.5
b–PEI–PEG–β–CD polyethylenimine bisphenol A 1140 min 60.1 [73]

Cu2+ 1140 min 50.1
CDCS–EDTA chitosan acid red 73 10 min 754.6 [74]

Pb2+ 20 min 114.8
CRCSCD chitosan methyl orange 180 min 392.0 [75]

NTA–β–CD–CS chitosan methyl orange 90 min 132.5 [76]
Hg2+ 90 min 178.3

β–CD grafted cellulose cellulose beads bisphenol A 360 min 30.8 [77]

3.1. Inorganic Support-Immobilized β–CD

At present, the inorganic materials that have been reported for immobilization of β–CD
are silica gel [62,78,79], graphene oxide [63,64,80], and magnetic Fe3O4 particles [65,81].
These inorganic materials have the merits of being low cost and widely available, and
having a relatively high specific surface area. This kind of carrier can enhance the dispersion
effect of β–CD in the aqueous phase, thereby improving its adsorption performance.

As a mesoporous material, silica gel is mainly composed of SiO2, which has high
porosity, low toxicity and cost, and a large specific surface area. Furthermore, the surface of
silica gel presents high chemical reactivity due to the existence of silanol groups (Si–OH)
and large pore channels, which allow selective adsorption for specific pollutants [82].
Loading β–CD onto the surface of silica gel is beneficial to the entry of pollutants into the
adsorption site [83].

Shen et al. [66] used (3–chloropropyl) trimethoxy–silane and ethylenediamine as
crosslinking agents to load β–CD onto the surface of silica gel and prepared a silica–based
β–CD@Si material for the removal of p–nitrophenol from aqueous solution (Figure 13a).
The results showed that β–CD@Si had a very fast adsorption rate for p–nitrophenol and,
at pH ≥ 8.5, the adsorption of p–nitrophenol reached equilibrium within 5 s, which was
faster than most other adsorbents. The main reason for this rapid adsorption was that
only one hydroxyl group of the β–CD molecule was connected to ethylenediamine during
the preparation of β–CD@Si, which was conducive to maintaining the hydrophobic inner
cavity of β–CD and thus reducing the diffusion resistance. Furthermore, the adsorption
capacity of β–CD@Si towards p–nitrophenol was only 41.5 mg/g at equilibrium, which
should be further improved for practical application. Additionally, 1H ROESY NMR studies
showed that the strong interaction occurred between the protons located in the phenyl ring
of p–nitrophenol and the H–3, H–5 in the cavity of β–CD (Figure 13b), which was strong
evidence for the formation of inclusion complexes. The comparison of infrared spectra
before and after adsorption (Figure 13c) showed that the hydroxyl group of cyclodextrin
and the hydrogen on the secondary amino group had a hydrogen bonding interaction with
p–nitrophenol in aqueous solution.

Graphene oxide (GO) is the oxide of graphene. After oxidation treatment, graphite
oxide still maintains the layered structure of graphite, but many oxygen–containing func-
tional groups (carboxyl, hydroxyl, epoxide, etc.) are introduced onto the graphene sheet
of each layer. These oxygen–containing functional groups are mainly distributed on the
edges of each layer of graphene sheets [84]. Graphene oxide is usually applied as an adsor-
bent [64] due to its relatively high specific surface area and multiple oxygen–containing
functional groups [85]. The introduction of magnetic nanoparticles (Fe3O4) can promote
the separation of adsorbent materials from aqueous solution by a magnetic field [86].
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Based on these considerations, Ragavan et al. [67] loaded β–CD onto the surface of
GO–Fe3O4 nanocomposites using ethylenediamine as the crosslinking agent to obtain a
β–CD–based magnetic nanocomposite (G–Fe3O4–β–CD) for removal of BPA from aqueous
solution (Figure 14a). The results (Figure 14c) showed that G–Fe3O4–β–CD had better
adsorption selectivity for BPA than for bisphenol (BP), bisphenol F (BPF), and bisphenol S
(BPS). Compared with BP (Figure 14b), the slightly curved geometry of the BPA molecule and
the presence of π–π interactions between BPA’s phenol rings and β–CD’s glucose monomers
favored adsorption to some extent. BPF and BPS have a bent geometry like BPA, but their
adsorption capacity is very low; the possible reason for this low adsorption efficiency is
the atomic hindrance of these molecules, which prevents the formation of an inclusion
complex with β–CD. The adsorption capacity of BPA by G–Fe3O4–β–CD was 59.6 mg/g,
and the adsorption process followed the Langmuir model. Furthermore, it was found that
the magnetic nanocomposite has superparamagnetic properties at room temperature and
can be effectively separated from aqueous solution by an external magnetic field.

Chen et al. [68] successfully constructed a β–CD and polyethyleneimine (PEI) bifunc-
tional magnetic nano-adsorbent (Fe3O4–PEI/β–CD) with spatial separation and adsorption
sites through combination of the merits of PEI, β–CD, and Fe3O4 magnetic nanoparticles
for simultaneous capture of MO and Pb2+ in wastewater (Figure 15a). It was found that
the adsorption capacities of Fe3O4–PEI/β–CD for MO and Pb2+ were 192.2 mg/g and
73.1 mg/g, respectively. Interestingly, the presence of MO in the Pb2+–MO binary system
significantly promoted the uptake of Pb2+ (Figure 15b). However, the coexistence of Pb2+

had almost no effect on MO uptake (Figure 15c). Based on the results of adsorption ex-
periments, diverse mechanisms (such as electrostatic attraction, host–guest inclusion, and
chelating) were involved in the adsorption process (Figure 15d). The cavity match effect of
β–CD and positively charged N-containing groups of PEI were mainly responsible for the
effective removal of MO via host–guest inclusion and electrostatic attraction, respectively,
and oxygen−bearing groups on the edge of β–CD, as well as the free amino moieties in
PEI, acted as the active sites for Pb2+ uptake.
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Activated carbon (AC) is also one of the most widely studied materials for adsorp-
tion due to its large specific surface area and rich porous structure [87]. However, some
inherent drawbacks, such as slow uptake rates for pollutants [88], lower polar organic
compound adsorption [89], and high regeneration costs [90], still limit its practical applica-
tion. He et al. [69] used HDI as the crosslinking agent and loaded β–CD onto the surface
of oxidized AC using N, N–dimethylformamide as the solvent to prepare a novel hybrid
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material β–CD@AC for rapid absorption of naphthalene (Figure 16). The batch adsorption
experiments showed that when the grafting ratio of AC/β–CD was 1:1, the adsorption
of β–CD@AC towards naphthalene could reach equilibrium within 10 s. The adsorption
capacity of naphthalene was around 178.7 mg/g, which was significantly higher than that
of AC. To maintain the completeness of the hydrophobic cavity of β–CD, only one hydroxyl
group in the β–CD molecule was employed to prepare the β–CD@AC. Furthermore, the
adsorption capacity of naphthalene by β–CD@AC reached 87.8% of the initial adsorption
capacity after four cycles, which proved that β–CD@AC has good recyclability.
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Figure 16. Synthesis route of the novel hybrid material β–CD@AC [69].

3.2. Organic Synthetic Support-Immobilized β–CD

The organic synthetic polymer materials used for loading β–CD mainly include
polyvinyl alcohol (PVA) [70,71,91], PEI [72], and polydopamine [92]. Zhao et al. [70]
synthesized a water-insoluble β–CD polymer (β–CDP) by loading β–CD onto PVA 1799
using citric acid as the crosslinking agent and sodium dihydrogen phosphate as the catalyst
(Figure 17). The adsorption experiments demonstrated that β–CDP had certain adsorption
ability for phenol and MB, with the maximum adsorption capacities of 13.8 mg/g and
105.0 mg/g, respectively. The much larger adsorption capacity of β–CDP for MB than that
of phenol most likely resulted from the more suitable molecular size of MB for the forma-
tion of host–guest β–CD inclusion complexes with β–CD than that of phenol. Furthermore,
the electrostatic attraction interaction between alkaline MB and acidic carboxyl in β–CDP
also favored the stronger adsorption of MB than phenol. Satisfyingly, the synthesis route of
this material did not use any organic solvents or harmful chemicals, which makes β–CDP a
very environmentally friendly adsorbent.
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Zhao et al. [71] developed a new type of water–insoluble sericin/β–CD/polyvinyl
alcohol composite nanofiber adsorbent (PVA–SS–β–CD) using electrospinning technology
and a thermal crosslinking method (Figure 18). It was found that PVA–SS–β–CD fiber had
good adsorption capacity for MB, and the maximum adsorption capacity was 188.0 mg/g,
229.9 mg/g, and 261.1 mg/g at 293 K, 313 K, and 333 K, respectively. Similar to the
other β–CD–based composites discussed above, the electrostatic interaction and host–guest
interaction also played a key role in the adsorption of organic pollutants by PVA–SS–β–CD.
Positively charged MB can be adsorbed onto the negatively charged PVA–SS–β–CD fibers
via electrostatic interactions originating from the carboxyl groups of sericin or citric acid.
Furthermore, β–CD in PVA–SS–β–CD fiber and MB can capture methylene blue molecules
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by forming a host–guest inclusion complex. In addition, the PVA–SS–β–CD fiber can
be easily separated from the dye solution and has good recyclability. After 5 cycles, the
removal rate remained at 93%.
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Figure 18. The structures of crosslinked PVA–SS–β–CD and their adsorption mechanism towards MB [71].

Heavy metals (HMs) and EDCs are often present as multiplex pollutants in aquatic
environments because of their widespread industrial application. In recent years, the coex-
istence of BPA and Cu2+ has been frequently detected in soils, surface waters, and ground-
water environments [93]. The molecular chain of PEI has many free amino groups [94],
which can easily chelate with metal ions [95]. Therefore, the use of PEI as a carrier to
prepare the composite materials can improve the removal efficiency of metal ions.

To removal the multiplex pollutants of BPA and Cu2+ from water environments, Lee
et al. [73] used polyethylene glycol diglycidyl ether (PEGDE) as the crosslinking agent
to load β–CD onto a PEI support and prepared a PEI–PEG–β–CD polymer adsorbent
(Figure 19) named X–CD. The results showed that X–CD held strong affinity for both BPA
and Cu2+, with the adsorption capacity of 60.1 mg/g and 50.1 mg/g, respectively. The
multi–component adsorption experiments showed that the presence of pluronic F127 and
cetyl trimethyl ammonium bromide did not cause an adverse effect on adsorption of BPA
by X–CD, but the presence of BPA inhibited the adsorption of Cu2+. These results indicated
that the nature of the adsorption of BPA and Cu2+ by X–CD was competitive adsorption
and the strong affinity of BPA with amine groups via a hydrogen bonding interaction
resulted in a decrease in the adsorption of Cu2+. Furthermore, the adsorption rates for BPA
and Cu2+ by X–CD were slow (adsorption equilibrium time = 1140 min), and should be
further improved for practical use.
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3.3. Natural Polymer Support-Immobilized β–CD

Natural polymer materials, as carriers for preparing β–CD–based adsorbents, can be
directly biodegraded, and thus cause minimum harm to the environment. Therefore, these
natural polymer β–CD–based materials have attracted increasing attention in the removal
of pollutants from wastewater. Some common natural polymer carriers that have been
studied include chitosan [74,96], cellulose [97,98], and starch [99].
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Chitosan is the product of chitin after removing the acetyl group [100] and has good
biocompatibility. Its structure contains the active adsorption sites of amino and hydroxyl
groups, which are suitable for the adsorption of the organic pollutants from wastew-
ater [101]. Jiang et al. [75] developed a chitosan–supported β–CD composite material
(CRCSCD) using maleic anhydride as a bridge and the glutaraldehyde crosslinking agent
through a two-step reaction (Figure 20a). Under the optimal conditions, the adsorption
capacity for MO by CRCSCD reached 392.0 mg/g. This strong adsorption for MO by CRC-
SCD partly resulted from the electrostatic interaction between –SO3

− contained in MO and
the positively charged –NH3+ in CRCSCD (Figure 20b,c). The formation of the clathrate
compound by trapping the MO molecule in the hydrophobic cavity of β–CD through
the host–guest interaction also strengthened the adsorption of MO. Moreover, CRCSCD
exhibited much higher selectivity towards MO over MB and Rhodamine B, verifying the
above proposed adsorption mechanism.
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Later, Usman et al. [76] prepared a new adsorbent nitrilotriacetic acid β–CD–chitosan
(NTA–β–CD–CS) for simultaneous removal of dye and metal ions from aqueous solutions.
Firstly, NTA–β–CD was synthesized using nitrilotriacetic acid as the crosslinking agent
and potassium dihydrogen phosphate as the catalyst. Then, NTA–β–CD was loaded onto
chitosan using glutaraldehyde as another crosslinking agent (Figure 21a). At lower pH
values, the surface of the adsorbent was positively charged due to the protonation of the
amino group, and NTA–β–CD–CS exhibited high adsorption for negatively charged MO
through the electrostatic attraction. As pH increased, the surface of the adsorbent became
negatively charged due to deprotonation of –NH2, –COOH, and –OH groups, contributing
to the adsorption of Hg2+. In the single-component system, the material showed high
adsorption efficiency and rapid adsorption rates for Hg2+ and MB, with the maximum
adsorption capacities of 178.3 and 132.5 mg/g, respectively. Notably, the NTA–β–CD–CS
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adsorbent was very effective for simultaneously adsorbing both metals and cationic dyes at
pH = 6.0, which was consistent with the result of the single–component adsorption system
(Figure 21b,c).
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Figure 21. (a) Synthesis of NTA–β–CD–CS; the effect of contact time on the adsorption of (b) Hg2+

and (c) MB by NTA–β–CD–CS in mono and binary systems [76].

The active hydroxyl groups on the cellulose chain can be easily chemically mod-
ified [102]. To date, β–CD cellulosic fiber and β–CD cellulose nanocrystal have been
reported for the removal of various organic pollutants. Yue et al. [103] grafted amino–
terminated hyperbranched polymer (NH2–HBP) and β–CD on cotton fibers and studied
their adsorption capacity for Congo red and MB. Dichtel et al. [97] demonstrated a facile
approach to removing micropollutants from water in a continuous manner by polymer-
izing cyclodextrin polymer networks onto cellulose microcrystals, and thus preparing
a core/shell structural adsorbent. Cellulose beads facilitate the separation operation in
batch adsorption experiments. Lin et al. [77] has used EPI as a crosslinking agent and
loaded β–CD onto the prepared fibrin beads, synthesized a β–CD–grafted cellulose–type
adsorbent, and used it to remove BPA (Figure 22). SEM and BET analysis showed that
β–CD–grafted cellulose maintains the highly porous morphology of the cellulose beads
while increasing the specific surface area of the adsorbent. The maximum adsorption ca-
pacity for BPA by the grafted cellulose bead was 30.8 mg/g. With the pH value increasing
from 2.0 to 7.0, the adsorption capacity of BPA by β–CD–grafted cellulose increased sharply.
However, under alkaline conditions, the adsorption capacity of BPA decreased greatly. This
suggested that the protonation of the material at a low pH value and the deprotonation
of BPA under alkaline conditions may influence the formation of clathrates between the
material and BPA. Based on the good adsorption capacity, simple synthetic process, and
ease of recycling, β–CD–grafted cellulose has great potential for the efficient removal of
BPA during water treatment.
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4. Conclusion and Perspectives

β–CD is a product of starch after the action of microbial enzymes, has a wide range of
sources, and is environmentally friendly. Because of its characteristics of “outer hydrophilic,
inner hydrophobic”, it has a specific recognition effect on some guest molecules, and is
thus widely used in the adsorption field for wastewater treatment. However, its “outer
hydrophilic” properties lead to its high solubility in water, which also limits its application
in the adsorption of pollutants from water environments. To reduce its solubility in water, it
is necessary to make some chemical modifications to prepare water-insoluble β–CD–based
porous materials.

From the above discussions regarding the removal of organic pollutants by β–CD–based
porous materials in recent years, some main conclusions were obtained. From the per-
spective of material synthesis, there is an increasing tendency to use green crosslinking
agents and more environmentally friendly bio–based materials to achieve the purpose
of designing removal pollutants while avoiding secondary pollution. In addition, mate-
rials synthesized using β–CD–COF with β–CD as the building block will have a regular
and highly adjustable porous structure, which further expands the types and scope of
β–CD–based porous materials. From the perspective of application, the research direction
for β–CD–based materials has begun to shift from single–function materials to multifunc-
tional materials. Because there is usually a variety of pollutants in real water samples,
the development of multifunctional materials can help to simultaneously remove these
multiple pollutants. Furthermore, the mechanisms of adsorption of organic and inorganic
heavy metal pollutants by these β–CD–based materials mainly include host–guest inter-
action, electrostatic interaction, and ligand–metal coordination bonding. Among these,
host–guest interaction is mainly achieved by the cavity of β–CD, and the other interactions
occur through the functional groups (such as carboxyl and amino groups) by selecting
specific crosslinking agents and carriers to bind with cationic or anionic dyes, as well as
heavy metal ions. The process of adsorption of pollutants by β–CD–based porous materials
usually involves the synergistic effects of host–guest interaction and other interactions.

At present, although many advances have made in the modification of β–CD–based
materials, some challenges still exist. Firstly, the high toxicity of crosslinkers used has
greatly restricted the industrial application of β–CD-based adsorbents for wastewater
treatment. At present, most of the crosslinking agents used in the process of synthesis
of β–CD-based porous materials are toxic. In the future, low toxicity and green reagents
should be selected. Secondly, the synthetic cost of β–CD-based porous materials has rarely



Separations 2024, 11, 143 20 of 24

been analyzed. The development of low-cost, high-performance, and environmentally
friendly adsorbents has always been a key research topic. Finally, to date, few natural
polymer materials have been used for the preparation of β–CD–based porous materials.
Compared with traditional materials based on inorganic or organic polymer supports,
natural polymer materials have the advantages of low cost, environmental friendliness,
and low toxicity. Therefore, the development of highly efficient natural polymer-based
β–CD–type materials should be paid more attention in future. We hope that this review can
provide some strategies for the design and development of some new β–CD-based porous
materials for the highly efficient removal of pollutants from wastewater.
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