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Abstract: Finding an optimal balance between risk and returns in investment portfolios is a central
challenge in quantitative finance, often addressed through Markowitz portfolio theory (MPT). While
traditional portfolio optimization is carried out in a continuous fashion, as if stocks could be bought
in fractional increments, practical implementations often resort to approximations, as fractional
stocks are typically not tradeable. While these approximations are effective for large investment
budgets, they deteriorate as budgets decrease. To alleviate this issue, a discrete Markowitz portfolio
theory (DMPT) with finite budgets and integer stock weights can be formulated, but results in a
non-polynomial (NP)-hard problem. Recent progress in quantum processing units (QPUs), including
quantum annealers, makes solving DMPT problems feasible. Our study explores portfolio optimiza-
tion on quantum annealers, establishing a mapping between continuous and discrete Markowitz
portfolio theories. We find that correctly normalized discrete portfolios converge to continuous
solutions as budgets increase. Our DMPT implementation provides efficient frontier solutions, out-
performing traditional rounding methods, even for moderate budgets. Responding to the demand for
environmentally and socially responsible investments, we enhance our discrete portfolio optimization
with ESG (environmental, social, governance) ratings for EURO STOXX 50 index stocks. We introduce
a utility function incorporating ESG ratings to balance risk, return and ESG friendliness, and discuss
implications for ESG-aware investors.

Keywords: discrete portfolio optimization; Markowitz; stocks; ESG; socially responsible investing;
impact investing; sustainable investing; quantum computing; quantum annealer; Wasserstein metric

1. Introduction

Finding an optimal balance between risk and return of an investment is the primary
goal for every investor. For investments in securities markets, this problem has been
formalized by Markowitz (1952) in the sense that one needs to find optimal weights for
each security, so that the portfolio maximizes the return and minimizes the risk within a
given universe of considered securities. Mathematically, this amounts to minimizing the
utility function Qc : Rk → R by finding the appropriate weights x⃗ ∈ Rk:

min{Qc (⃗r, Σ, ϕ)} = min
{

ϕ

2
x⃗TΣx⃗ − r⃗T x⃗

}
. (1)

Here, r⃗ denotes the expected returns of each portfolio component, ϕ controls the level
of risk-aversion and Σ ∈ Rk×k is the asset price correlation matrix. The minimization is
subject to the following constraints, which ensure that the entries of x⃗ can be interpreted as
non-negative weights in a long-only portfolio:

x⃗T x⃗ = 1,

xi ≥ 0 i ∈ 1, . . . , k .
(2)
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Since the correlation matrix is positive-definite and symmetric, the utility function Qc is
convex, so that a solution to this optimization problem can be found in polynomial time
with linear and quadratic algorithms (Kolm et al. 2014).

The vector x⃗ contains non-negative real numbers, which represent the relative weights
of capital allocation to the considered assets. These weights can be multiplied by the
amount of available capital to obtain the capital allocation to the respective assets. This
approach faces problems when implementing such portfolios in a realistic environment,
where traded contracts are discrete and security prices are finite. Hence, the theoretical
capital allocation is in general not commensurate with discrete security prices. In practice,
this challenge is easily overcome by rounding to the nearest multiple of the security price.
The consequences for large portfolios are mild, since the relative weights of asset allocation
are hardly changed by the rounding. For small and intermediate portfolios, this rounding
may affect the relative weighting significantly and create sub-optimal implementations of
originally optimal portfolios.

Discrete extensions of the Markowitz portfolio optimization, where the discreteness
of securities contracts is considered from the start, have been studied for a long time,
because such discrete portfolios also facilitate the inclusion of further realistic features such
as transaction costs or Boolean constraints on stock selection (Mugel et al. 2022; Rubio-
García et al. 2022; Young 1998). Intensive studies have been conducted on the problem of
transaction costs and the optimal investment trajectory in a multi-period setting. These
studies revealed that the discrete Markowitz portfolio theory (DMPT) is a non-polynomial
hard problem (Bonami and Lejeune 2009; Coleman et al. 2006; Jobst et al. 2001; Kellerer
et al. 2000; Mansini and Speranza 1999), even if the trajectory problem is only formulated
for a single period (Rosenberg et al. 2016).

The main problem is that the number of possible portfolio compositions grows fac-
torially with the number of assets in the investment universe and the allowed number of
assets in the portfolio. If our portfolio may contain n not necessarily different lots out of an
investment universe of k different assets, where each asset can be bought multiple times,
the total number of possible portfolio combinations is given by a binomial coefficient:

M =

(
n + k − 1

k

)
=

(n + k − 1)!
k!(n − 1)!

. (3)

For a moderate portfolio size of n = 1000 and a small investment universe of k = 4 stocks, the
number of possible portfolios is already M > 1010. If we extend the number of considered
stocks to k = 50 and keep n = 1000, the number of possible portfolios grows to M > 1086,
which is larger than current estimates of the number of atoms in the entire universe. At
the same time, there is no efficient algorithm for finding the optimal combination out
of these M combinations on a classical computer, so that only a brute force approach
guarantees success. However, most realistic problems are too large to be solved by testing
each of the M combinations, so finding the exact solution of large problems is not feasible
on classical machines. Therefore, these problems have been approached using heuristic
and approximate methods on classical computers, which do not guarantee an optimal
solution (Castro et al. 2011; Li and Tsai 2008; Mansini and Speranza 1999; Streichert et al.
2004; Vielma et al. 2008).

In recent years, the rapid progress in manufacturing of quantum processing units
(QPUs) and the development of hybrid quantum-classical workflows, not only for universal
quantum computers (Abrams and Lloyd 1998; Brandhofer et al. 2022; Chen et al. 2023;
Farhi et al. 2014; Zheng 2021), but also for quantum annealers (Cohen et al. 2020a, 2020b;
Elsokkary et al. 2017; Grant et al. 2021; Jacquier et al. 2022; Orús et al. 2019; Palmer
et al. 2022; Phillipson and Bhatia 2021; Romero et al. 2023), has reignited interest in this
type of problem. Meanwhile, quantum annealers have been shown to provide a quantum
advantage for certain classically intractable problems (King et al. 2023) and seem to provide
a promising platform for solving quadratic binary optimization and integer quadratic
optimization, even in the presence of hard and weak constraints. Based on these prospects,
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portfolio optimization is a natural application for quantum computing in finance, and in
particular quantum annealers. For a broader review of quantum computing applications in
finance, see refs. (Herman et al. 2023; Jacquier et al. 2022; Orús et al. 2019).

Recently, awareness of environmental, social and governance (ESG) aspects of investing
has grown among private and institutional investors alike. A growing number of financial
products caters to the growing demand and incorporates ESG aspects into the product
design. The trend toward more ESG awareness is likely to get further amplified by regulatory
updates on international and national levels. See, for example, Bruno and Lagasio (2021)
for an overview of ESG regulation in the banking sector across Europe. In January 2023,
European authorities agreed on a European implementation of the internationally developed
Basel III update that will result in an updated capital requirement regulation (CRR) and capital
requirement directive (CRD), including requirements on ESG awareness and inclusion in risk
management. Up to now, integrating ESG constraints in investment decisions has been up to
individual preference, but it can be expected to become a required standard in the near future
in the EU. The inclusion of ESG risk as an additional risk factor besides historical covariance
into the Markowitz framework (see Equation (1)) is actively being investigated (Chen et al.
2021; López Prol and Kim 2022; Pedersen et al. 2021; Utz et al. 2014).

Meanwhile, ESG data in different formats are available from a number of data
providers such as MSCI, ISS ESG, Refinitiv, Sustainalytics, and others. The approach
for establishing ESG ratings varies. Some providers offer ESG ratings or scores that aim to
capture investment risks by assessing how effectively a company manages ESG risks in
its business (”financial”). Other providers aim to characterize the impact of a corporation
on the environmental, social and governance dimensions, with the goal of facilitating
informed decisions for investors (“impact”). The ISS ESG data used in this analysis capture
both the financial and impact aspects of ESG ratings. The scores can be given on the level
of environmental, social and governance dimensions, with focus on smaller sub-areas, or
as a single aggregate score on a company level, which seeks to represent the average of
all relevant aspects. For a critical review of available data sets and methodologies, see
refs. (Berg et al. 2022; Larcker et al. 2022).

How ESG ratings should be best included into the Markowitz framework is an
open question. Both inclusion of the expected ESG score into the vector of expected
returns (Alessandrini and Jondeau 2021; Lauria et al. 2022; Shushi 2022; Varmaz et al. 2022)
and optimizing the ESG score in the form of a multi-objective optimization (Cesarone
et al. 2022; De Spiegeleer et al. 2023; Hirschberger et al. 2013; Utz et al. 2014) have been
investigated in the literature. Including the ESG score into the returns vector is intrinsically
ambiguous, since it compares the ESG score and monetary returns as if these quantities
had the same units. This introduces a conversion law between returns and ESG scores,
which depends on the exact form of the ESG score data, which may differ between various
providers. However, it would be preferable to have a unique framework for incorporating
ESG scores into the Markowitz utility function (see Equation (1)). The multi-objective
optimization approach, on the other hand, may be unable to control the interplay between
returns, variance and ESG performance, depending on the exact implementation.

In this work, we extend the Markowitz portfolio theory to include the ESG scores
directly in the utility function in a way that avoids the ambiguity in relation to the returns.
Furthermore, we can investigate and control the interplay between returns, variance and
ESG performance. Our formulation is applicable to standard (continuous) and also discrete
mean-variance (Markowitz) portfolio optimization, allowing for application in realistic
scenarios. We demonstrate the feasibility of our method on classical computers for the
continuous case and on quantum annealers for the discrete portfolio optimization case. The
results are based on real market data of selected stocks from the EURO STOXX 50 index,
as well as actual respective ESG scores from ISS ESG.

The paper is divided as follows: Section 2 contains the main results of our study.
In Section 2.1, we establish the correct normalization approach for the discrete Markowitz
problem, so that solutions for the continuous and the discrete formulation may be compared.
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We provide a relationship between the total number of stocks in the portfolio and the risk-
aversion parameter, which needs to be considered. In Section 2.2, we introduce a budget
constraint into the discrete portfolio problem, so that realistic scenarios with limited budgets
may be investigated. We compare the usual rounding approach to a direct search of discrete
optimal portfolios and find that rounding produces sub-optimal portfolios for small to
medium investment budgets. In Section 2.3, we introduce a novel framework for including
ESG scores into both continuous and discrete Markowitz portfolio optimization, which is
applicable even to ESG data with heterogeneous scales. In Section 3, we discuss our results
and potential implications for ESG-aware investors. Finally, in Section 4, we summarize
our results and provide an outlook on future research topics.

2. Results
2.1. Discrete Markowitz Portfolio Theory and the Role of the Risk-Aversion Parameter

Here, we investigate the connection between the continuous and the discrete Markowitz
portfolio theory. Naively, one could expect that the discrete approach should yield the same
results as the continuous version for large portfolios, where the discreteness becomes less
relevant. As mentioned in the introduction, the single period DMPT is already an NP-hard
problem (Castro et al. 2011; Rosenberg et al. 2016).

To explore this connection in detail, we formalize the DMPT problem with a fixed
number of stocks in the portfolio in the following way:

min{Qd (⃗r, Σ, ϕ, Ntot)} = min
{

ϕ

2
x⃗TΣx⃗ − r⃗T x⃗

}
. (4)

The crucial difference with the continuous case (see Equation (1)) lies in the discrete nature
of the constraints:

x⃗ = (x1, . . . , xk) with xi ∈ N ∀i,
k

∑
i=1

xi = Ntot .
(5)

Note that the return vector r⃗ and the covariance matrix Σ do not change their meaning,
since these quantities are dimensionless. Therefore, no special care has to be taken when in-
terpreting the return vector r⃗ or covariance matrix Σ in the continuous vs. the discrete case.

If the raw solution of this naive approach (Equations (4) and (5)) is denoted as X⃗naive,
we can calculate the relative portfolio weights x⃗d,naive, which may be compared to the
solution x⃗c from the continuous case, by dividing through the portfolio size Ntot:

x⃗d,naive =
X⃗naive

Ntot
. (6)

If we calculate the Euclidean distance between the continuous solution x⃗c and these naive
weights from Equation (6), we would expect the difference from x⃗c to vanish with increasing Ntot:

lim
Ntot→∞

||⃗xc − x⃗d,naive||2 = 0 . (7)

We calculated this difference with the formalism described so far. The continuous solution
was extracted using the CVXPY (Agrawal et al. 2018; Diamond and Boyd 2016) software
package for the Python programming language. For solving the discrete portfolio opti-
mization problem, one could use a heuristic classical algorithm (García et al. 2022), an
algorithm for gate-based quantum computers (Mugel et al. 2022; Shunza et al. 2023), a
quantum-inspired approximate algorithm for classical computers (Mugel et al. 2022) or a
quantum annealer (Jacquier et al. 2022; Sakuler et al. 2023). For an overview of the use of
various computing approaches in portfolio optimization, see Buonaiuto et al. (2023).
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D-Wave quantum annealers implement the Ising model, known from theoretical
physics, in a specialized quantum processing unit. These annealers are not universal
quantum computers. Therefore, their applicability is limited to problems which can be
represented in terms of the Ising model (Lucas 2014). The solution of the optimization
problem is extracted via a physical annealing process, which gradually cools the quantum
processing unit down to temperatures close to absolute zero. Subsequently, the quantum
state of the system is measured and translated back to the original problem space.

We have decided to use a quantum annealer because the discrete portfolio optimization
problem can be rewritten as an Ising model (Jacquier et al. 2022; Lucas 2014). Therefore,
the quantum annealer is a natural choice when solving discrete portfolio problems. Other
previously mentioned approaches are also viable (Buonaiuto et al. 2023), but either cannot
reach the problem sizes considered here or have no guarantee of providing an optimal
solution. Nevertheless, heuristic approaches may yield very good results, as demonstrated
by García et al. (2022).

The Ising model is formulated in terms of discrete variables, which represent magnetic
moments. These can be in one of two quantum states si ∈ {+1,−1}. A simple transforma-
tion allows us to convert these magnetic moments into zeros and ones ai ∈ {0, 1}, which
can be used to represent integer numbers in binary encoding:

ai =
si + 1

2
(8)

This transformation between integer optimization problems and the Ising model is
well known (Lucas 2014) and automatically carried out in various software packages like
D-Wave Ocean.1 The optimization problem can be entered into Ocean in a declarative way
using a domain-specific language. In particular, this means that no imperatively formulated
solution algorithm is required. This software package also handles the transformation of
constraints into penalty terms in a proprietary way. For details on the technical implementa-
tion of D-Wave solvers, see D-Wave Systems Inc. (2021). Note, however, that going beyond
long-only portfolios would require a type of optimization constraint that is currently not
supported by D-Wave software packages.

Now, we estimate a theoretical upper bound to the number of qubits required by our
approach. Since D-Wave Ocean uses binary encoding for integer variables, the upper bound
for the required number of qubits Nqubit scales with the logarithm of the portfolio size Ntot
and linearly with the number of assets k within our investment universe:

Nqubit ≤ k ·
(

log2(Ntot + 1) + 1
)

. (9)

Of course, the proprietary algorithm of D-Wave may require an overhead of additional
qubits to encode the problem on real-world hardware. Unfortunately, these details are not
public and cannot be investigated here further.

The results of our calculations using CVXPY for the continuous problem and D-Wave
Ocean for the discrete problem are shown in Figure 1a. We realized that the difference in
Equation (7) does not converge to zero with the growing portfolio size. This is the case
because risk-aversion parameters for the continuous and discrete portfolio cases are not
directly comparable. This phenomenon does not depend on the exact value of ϕ > 0.

If we view the continuous problem of Equation (1) as a particular discrete problem, in
which the solution vector x⃗ is rescaled by 1/Ntot and the limit Ntot → ∞ is applied, we can
write it in the following way:

min{Qc (⃗r, Σ, ϕ)} = min
{

lim
Ntot→∞

(
ϕ
2

x⃗TΣx⃗
N2

tot
− r⃗T x⃗

Ntot

)}
= min

{
lim

Ntot→∞

(
1

Ntot

)(
( 1

Ntot
) ϕ

2 x⃗TΣx⃗ − r⃗T x⃗
)}

.
(10)
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The constraints are the same as in Equation (5). It is clear that the discrete problem of
Equation (10) can only converge to the continuous problem of Equation (1) if the additional
factor of 1/Ntot in front of the covariance term is absorbed into the risk-aversion parameter.
Hence, the risk-aversion parameter of the discrete case ϕd is connected to the risk-aversion
parameter of the continuous case ϕc in the following way:

ϕd =
ϕc

Ntot
. (11)

Therefore, we need to respect the mapping for the normalized risk-aversion parameter ϕ in
Equation (11) if we want to compare portfolios from continuous and discrete optimization.
Doing this correctly and re-calculating the difference in Equation (7) with the normalized
risk-aversion parameter, one obtains the second curve in Figure 1a, which clearly converges
to zero for a large number of stocks Ntot.

101 102 103 104

Ntot

10 8

10 6

10 4

10 2

||x
c

x d
|| 2

a)

naive
normalized

101 102 103 104

Ntot

b)

covariance only

Figure 1. Euclidean norm of the difference vector between optimal relative portfolio weights x⃗
for the continuous (⃗xc) and discrete optimization case (⃗xd). The risk-aversion parameter is set to
ϕ = 8, but different choices of ϕ > 0 give similar results. The investment universe comprises BMW
(ISIN DE0005190003), Deutsche Post (ISIN DE0005552004), Deutsche Telekom (ISIN DE0005557508)
and Infineon (ISIN DE0006231004). Data were taken from the period between 1 January 2010 and
1 January 2021. Lines are guides for the eye. (a) Difference between continuous solution and naive
discrete approach (circles), as well as the difference between continuous and normalized discrete
solutions (squares). Obviously, the naive approach does not converge to the continuous solution, even
for very large portfolios. The normalized discrete approach converges to the well-known continuous
solution for large portfolios. The remaining differences in portfolio composition are purely due to
the discreteness. (b) Difference between continuous and naive discrete solutions for the modified
utility function Qmod = x⃗TΣx⃗, which only includes the covariance term. It is clearly visible that both
the continuous and discrete approaches converge to the same minimum variance portfolio for this
modified utility function Qmod. Also here, the remaining differences in portfolio composition are
purely due to the discreteness.

It is also instructive to examine the solutions of the naive approach for different
portfolio sizes (without renormalizing ϕ) and their position in volatility–return space. This
is shown in Figure 2. All solutions lie on the ‘efficient frontier’, as the surface of the
maximum return as a function of volatility is commonly called. This efficient frontier in the
background was generated by sampling random portfolio compositions.
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Figure 2. Portfolio positions in volatility–return space for the naive discrete optimization approach
as a function of the total number of stocks Ntot in the portfolio. The risk-aversion parameter is set
to ϕ = 1. The investment universe comprises BMW (ISIN DE0005190003), Deutsche Post (ISIN
DE0005552004), Deutsche Telekom (ISIN DE0005557508) and Infineon (ISIN DE0006231004). The
light blue background is generated by randomly sampling the space of possible portfolios. The upper
boundary of the light blue area is commonly called the ‘efficient frontier’. Data were taken from the
period between 1 January 2010 and 1 January 2021. Lines and arrows are guides for the eye.

As we can see, the solutions from the naive discrete approach trend towards the
minimum-variance solution if we naively fix ϕ = 1. The reason is clear from Equation (11):
with Ntot ≫ 1, we should have adapted the risk-aversion parameter to the portfolio size. For
example, we should have used ϕ = 1/1000 for Ntot = 1000 in order to obtain comparable
solutions. Fixing ϕ = 1 irrespective of the portfolio size leads to portfolios for which risk
aversion becomes increasingly important as the size of the portfolio grows. Therefore, the
naive approach always converges to the minimum-variance portfolio for Ntot ≫ 1. Also
note how the scale of variations in volatility in Figure 2 is already small for Ntot = 10 due
to the overemphasis on risk aversion. The convergence to the minimum variance portfolio
occurs rapidly as a function of the number of stocks Ntot. At Ntot = 1000, the composition
is already practically indistinguishable from the minimum variance portfolio.

As a final test, we carried out another calculation, in which we have neglected the
term related to maximizing the return in the utility function (see Equation (4)). If only
the covariance term is considered, the optimization should always yield the minimum-
variance portfolio irrespective of the portfolio size. This is clearly the case, as shown in
Figure 1b. The remaining difference in portfolio compositions between the continuous and
discrete solutions is purely due to the discrete stock allocation in the latter case. Thus, we
have shown that renormalizing the risk-aversion parameter ϕ according to Equation (11)
is crucial.

Now that we have established a discrete portfolio optimization approach, which is
comparable to the well-known continuous approach, we introduce budget constraints in
the following subsection to mimic realistic portfolio selection problems.

2.2. Discrete Markowitz Portfolio Theory with a Limited Investment Budget

To now, we have only solved the portfolio problem with a limited number of stocks.
In practice, the number of stocks that can be purchased is usually not directly limited
but indirectly limited via the total available investment budget. To make our study more
realistic, we now fix the total available investment budget. This means that the algorithm



Risks 2024, 12, 66 8 of 20

will not optimize different stocks like for like, but rather optimize portfolios with many
low-price stocks versus portfolios with few high-price stocks.

As explained in Section 2.1, the total number of stocks in discrete Markowitz portfolio
theory plays a crucial role in the risk-aversion parameter, which determines the compro-
mise between risk and return of the portfolio. With the risk-aversion parameter for the
continuous portfolio ϕc, we write the utility function for the discrete portfolio theory in the
following way:

Qd (⃗r, Σ, ϕc, Ntot) =
ϕc

2Ntot
x⃗TΣx⃗ − r⃗T x⃗ . (12)

The minimization of this utility function is subject to the following constraints:

x⃗ = (x1, . . . , xk) with xi ∈ N ∀i,
k

∑
i=1

xi = Ntot,

p⃗T x⃗ − B ≤ 0 .

(13)

Here, p⃗ is the vector which contains the price per stock for each stock. Therefore, p⃗T x⃗ is the
initial value of the portfolio. B is the initially available investment budget. In this sense, we
constrain the optimization to the space of portfolios that can be purchased with the initially
available budget. Since we also maximize return via the utility function (Equation (12)), the
algorithm will yield portfolios which use the available budget to the maximum extent.

In practice, we will study the problem defined by Equations (12) and (13) at a fixed
number of stocks Ntot. If the number of stocks Ntot is chosen as too small, the initial
portfolio value will be far below the initial budget B. If we choose a too large number
for Ntot, the number of possible portfolio combinations will exceed the capabilities of
contemporary quantum hardware. Therefore, we start with low Ntot and gradually increase
this number until the difference between portfolio value and available budget p⃗T x⃗ − B
becomes sufficiently small. As we will see, this approach yields good results even in
realistic settings.

Of course, we would like to compare these discrete solutions to portfolios that are
based on the usual continuous Markowitz theory. In the continuous case, the solution x⃗c
provides a relative allocation of the available investment budget to the respective stocks.
The actual portfolio is then usually constructed by multiplying the relative weights x⃗c by
the available budget B. This gives the budget which is allocated to each stock. To obtain
the integer number of stocks that has to be bought for each sort, one divides by the price of
the respective stock and rounds to the next integer, which is denoted as ⌊⌉. Therefore, we
can write the integer portfolio composition based on the rounding approach as:

(x⃗c,r)i =

⌊
B · (x⃗c)i

pi

⌉
. (14)

Here, (x⃗c)i is the i-th component of the vector of relative allocation from the continuous
Markowitz theory and pi is the price of the i-th stock. Interestingly, the rounding approach
according to Equation (14) yields portfolio compositions, which are substantially different
from the discrete approach using Equations (12) and (13), even if consistent values for the
risk-aversion parameter ϕc are used. Remember that these two approaches only coincide in
the limit of an infinite available budget, as explained in Section 2.1.

We have carried out continuous and discrete portfolio optimization with a risk-
aversion parameter of ϕc = 8 and a total investment budget of B = EUR 100,000. For
simplicity, the investment universe is again limited to BMW (ISIN DE0005190003), Deutsche
Post (ISIN DE0005552004), Deutsche Telekom (ISIN DE0005557508) and Infineon (ISIN
DE0006231004). In the discrete case, we have used Ntot = 3401, which produces an
initial portfolio value of p⃗T x⃗d = EUR 99,999.87 for the optimal solution. The rounding
approach (see Equation (14)) may of course slightly violate the budget constraint. Thus,
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the rounded solution yields an initial portfolio value of p⃗T x⃗c,r = EUR 100,006.32 and a total
number of stocks of Ntot = 4026. A larger number of stocks for the rounded continuous
case appears because the standard Markowitz approach puts a large relative weight on
Deutsche Telekom, which has the lowest Euro value per stock within the considered invest-
ment universe. This means that a larger number of these stocks will be bought with the
available budget.

The resulting portfolio compositions for the discrete and rounded continuous cases are
shown in Figure 3, both in terms of the number of stocks bought per ISIN and the invested
budget per ISIN. We observe that the respective portfolio compositions are strikingly
different. The rounded continuous approach yields a solution which is well diversified in
terms of the allocated budget. The discrete approach, on the other hand, yields a portfolio
which is slightly more concentrated in terms of budget allocation. This effect is likely due
to the strict budget constraint in the discrete case, which forces the optimization to pick
allocations that fit the specific budget constraints.

Figure 3. Best portfolio compositions for a budget of B = EUR 100,000 and risk-aversion parameter
of ϕ = 8. The discrete solution is obtained by minimizing the utility function in Equation (12)
under the constraints of Equation (13). We use Ntot = 3401. The continuous results were obtained
by multiplying the relative allocation by the available budget and rounding to integer stocks via
Equation (14), which resulted in Ntot = 4026. The investment universe comprises BMW (ISIN
DE0005190003), Deutsche Post (ISIN DE0005552004), Deutsche Telekom (ISIN DE0005557508) and
Infineon (ISIN DE0006231004). Data were taken from the period between 1 January 2010 and
1 January 2021. (a) Portfolio composition in terms of number of stocks. (b) Portfolio composition in
terms of Euro value.

We also investigated the position of the obtained portfolios in the volatility–return
space (see Figure 4). The discrete solution is right at the efficient frontier, i.e., it yields
an optimal return for the given volatility. The rounded continuous portfolio has a lower
volatility, but also yields a significantly lower than optimal return. The deviation of nearly
two percentage points in return is larger than one may expect from the seemingly harmless
rounding approach. The effects of the rounding observed here are likely relevant in practical
applications. In fact, one can expect even larger deviations for portfolios with a larger
number of components.
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Our results clearly show that the continuous and discrete approaches only converge
to identical results in the limit of an infinite portfolio size. For a limited investment
budget, the approach of minimizing the utility function for the discrete case directly on
a quantum computer yields results which are far superior to the widely used rounding
method based on the standard Markowitz approach, even for moderately sized portfolios
and a limited investment universe. We expect that the quantum computing approach
will have even stronger appeal for large investment universes, since the discreteness of
individual components will play an even more important role there.

Now that we have established the superiority of the quantum computing approach in
the case of a limited budget, we come to the main idea of our study: the inclusion of ESG
data into the discrete portfolio optimization problem.

Figure 4. Position of the best portfolio compositions in volatility–return space for a budget of
B = EUR 100,000 and a risk-aversion parameter of ϕ = 8. The discrete solution is obtained by
minimizing the utility function in Equation (12) under the constraints of Equation (13). We use
Ntot = 3401. The continuous results were obtained by multiplying the relative allocation by the
available budget and rounding to integer stocks via Equation (14), which results in Ntot = 4026. The
investment universe comprises BMW (ISIN DE0005190003), Deutsche Post (ISIN DE0005552004),
Deutsche Telekom (ISIN DE0005557508) and Infineon (ISIN DE0006231004). Data were taken from
the period between 1 January 2010 and 1 January 2021. The discrete solution is clearly at the efficient
frontier, while the rounded continuous solution is visibly sub-optimal. Arrows are guides for the eye.

2.3. Incorporation of ESG Data into Markowitz Portfolio Theory

We have to address two questions in order to include ESG data into Markowitz
portfolio optimization: (i) how to classify portfolios in terms of ESG scores and (ii) how
to incorporate such information into the optimization scheme. The current literature on
this topic can be divided into two main approaches: The most commonly found method of
including ESG data is to constrain the Markowitz utility function so that it yields a portfolio
with the weighted average of the expected ESG scores (Alessandrini and Jondeau 2021;
Branda 2015; Cesarone et al. 2022; Chen et al. 2021; De Spiegeleer et al. 2023; Hirschberger
et al. 2013; López Prol and Kim 2022; Maree and Omlin 2022; Shushi 2022; Utz et al. 2014;
Varmaz et al. 2022), which actually constrains the possible portfolio compositions. The
second approach (Lauria et al. 2022) employs an affine transformation between returns and
ESG scores, which is controlled by an additional parameter.

Obviously, the composition-weighted average of expected ESG scores is not the only
property that can be used to classify portfolios. In this subsection, we introduce a novel
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scheme for classifying portfolios in terms of the ESG score, which we incorporate into the
discrete portfolio optimization scheme explained in Section 2.2.

We assume that the value of the ESG score S in every scoring system is bounded
by the best and worst possible scores S ∈ [S−, S+]. Let us consider a relative portfolio
composition π⃗ with respect to the ESG scores of a given scoring system. Since the entries of
π⃗ are non-negative and their sum is one, the entries of π⃗ can be interpreted as a probability
distribution. As a reference point, we take a portfolio which only contains stocks with
the best possible ESG score S+. With the result of Wasserstein (Peyré and Cuturi 2019),
the distances of other relative portfolio compositions with respect to this best possible
portfolio can be calculated. Note that there may be multiple portfolio compositions in terms
of stock allocation which possess the best possible score S+, e.g., more than one stock in
the investment universe has the best possible score. However, this possible degeneracy is
irrelevant in our approach, as we will see.

If we use the Wasserstein metric in the case of two one-dimensional sets of measure-
ments and take the limit of infinite number of observations (Kolouri et al. 2017; Villani 2003),
we can write the Wasserstein p-distance between a given relative portfolio composition π⃗
and the best possible portfolio in the following way:

DESG(p, π⃗) =

[
∑

i

(
πi ·

∣∣S+ − S̃i
∣∣p)]1/p

. (15)

Here, i enumerates the possible values S̃i of the ESG score within the given portfolio π⃗.
This vector contains the relative number of stock allocations to the respective ESG score S̃i.
πi is the i-th component of the vector π⃗. p ∈ [1,+∞) is the parameter of the Wasserstein
p-distance. Note how the exact composition in terms of stocks is irrelevant in this approach.
The distance measure DESG is only sensitive to the ESG scores of the respective constituents.
Therefore, different allocations of stocks with the same ESG score do not affect DESG. Also
note that comparison to a best possible individual allocation would have required us to
know this specific portfolio. This target portfolio is, however, in general unknown. The
point of our method is to find it. Hence, we have chosen an approach in which knowledge
of this hard-to-find solution is not required.

If all constituents of a portfolio π⃗ have the best possible score S+, the distance measure
is DESG(p, π⃗) = 0. If all constituents of a portfolio π⃗ have the worst possible score S−,
the distance measure is DESG(p, π⃗) = |S+ − S−|. Therefore, all other portfolios have
DESG(p) ∈ [0, |S+ − S−|] independently of p. In particular, if, for two given portfolios π⃗1
and π⃗2, we have DESG(p, π⃗1) < DESG(p, π⃗2), then π⃗1 has a better ESG score.

For p = 1, our result in Equation (15) becomes the weighted average (up to a constant
factor). Therefore, we may view Equation (15) as a generalized framework for classifying
portfolios in terms of ESG scores. This framework does not depend on whether the
best score S+ has the lowest or the highest value in the respective scoring system. Also
note that our distance measure may be generalized to work with heterogeneous data
from different ESG data providers by using the relative distance of the single portfolio
component within its pertinent ESG score range by extending Equation (15) with an
additional normalization factor:

DESG(p, π⃗) =

[
∑

i

(
πi ·

∣∣S+(πi)− S̃i(πi)
∣∣p

|S+(πi)− S−(πi)|p

)]1/p

(16)

Here, S+(πi), S−(π), S̃i(πi) indicate, respectively, the best, the lowest and the spot score in
the ESG system pertinent to the component πi. Although our methodology would enable
us to mix multiple ESG scoring systems, we do not expand upon this topic in the present
manuscript and leave it for future research instead. In the present manuscript, we only use
ESG data provided by ISS ESG.
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To now, we have written the distance measure in terms of the relative composition
with respect to the ESG score. In order to include the ESG data into the discrete optimization
framework, we need to establish the ESG distance measure in terms of the composition
with respect to the allocation of individual stocks. It is easy to show that Equation (15) can
equivalently be written as:

DESG(p, x⃗) =

[
k

∑
i=1

(
xi

Ntot
·
∣∣S+ − Si

∣∣p)]1/p

. (17)

Here, xi is the i-th component of the discrete portfolio allocation vector x⃗ and Si is the ESG
score of the i-th component stock in the portfolio. All other quantities are defined as before.

The Wasserstein p-distance is defined for p ∈ [1,+∞). Since the function f (x) = xp is
strictly increasing for p ≥ 1 and x > 0, we know that DESG(p, x⃗) from Equation (17) has a
global maximum equal to Dmax = |S+ − S−|. Therefore, we can include a linear constraint
on DESG(p, x⃗) into the discrete optimization problem from Section 2.2 for every p ≥ 1. The
respective problem then reads:

min{Qd (⃗r, Σ, ϕc, Ntot)} = min
{

ϕc

2Ntot
x⃗TΣx⃗ − r⃗T x⃗

}
. (18)

The minimization of this utility function is subject to the following constraints:

x⃗ = (x1, . . . , xk) with xi ∈ N ∀i,
k

∑
i=1

xi = Ntot,

p⃗T x⃗ − B ≤ 0,

DESG(p, x⃗) ≤ D .

(19)

Note how the utility function in Equation (18) is unchanged compared to Equation (4) and
Equation (12). The difference lies only in the additional constraint in Equation (19). Here,
D is a non-negative constant. For D ≥ Dmax, this constraint has no effect on the optimal
portfolio composition x⃗. For D = 0, only stocks with the best possible score are allowed.
In between these two extremes, the constraint restricts possible solutions to the given
maximum distance in ESG rating space. In practice, we use p = 1 and the latest ESG date
in the period under investigation to calculate DESG(p = 1, x⃗). Exploring the effect of other
choices for p is left for future studies.

We now perform calculations with the following stock universe reported in order from
highest to lowest ESG score: Deutsche Telekom (ISIN DE0005557508), SAP (ISIN DE0007164600),
Intesa Sanpaolo (ISIN IT0000072618) and EssilorLuxottica (ISIN FR0000121667). The portfolio
optimization problem from Equations (18) and (19) was again solved on a D-Wave quantum
annealer for different values of the ESG constraint D. The ESG data were provided by ISS ESG.
The grading system is on a scale from 4 to 1, where a higher number indicates a better ESG
performance. We use a budget of B = EUR 100,000 and a risk-aversion parameter of ϕ = 8. The
result in volatility–return space is shown in Figure 5. We first set D = 5 and obtained a solution
with DESG = 1.6. Hence, we conclude that the actual maximum reachable ESG distance within
the given investment universe is DESG = 1.6. We gradually decreased D from there until the
solution visibly departed from the efficient frontier. The latter was again calculated by sampling
random portfolio compositions. At a certain point, stronger constraints on DESG(p, x⃗) produce
portfolios that move farther away from the efficient frontier. This finding is consistent with the
study by Cesarone et al. (2022).
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Figure 5. Position of the best discrete portfolio compositions in volatility–return space for a budget
of B = EUR 100,000, a risk-aversion parameter of ϕ = 8 and different values of the maximum
allowed ESG distance D. The ESG data were provided by ISS ESG. The grading system is on a scale
from 4 to 1, where a higher number indicates a better ESG performance. The investment universe
comprises Deutsche Telekom (ISIN DE0005557508), SAP (ISIN DE0007164600), Intesa Sanpaolo (ISIN
IT0000072618) and EssilorLuxottica (ISIN FR0000121667), which are given in order from highest to
lowest ESG score. Data were taken from the period between 1 January 2010 and 1 January 2021. The
solution portfolios move away from the efficient frontier as we restrict them into a space that becomes
gradually tighter around the best possible ESG score. Arrows are guides for the eye.

We also analyzed the portfolio composition for different values of D. The results
are shown in Figure 6. We found that decreasing the distance D from the best possible
portfolio in ESG terms gradually increases the weight of stocks with better ESG scores
compared to stocks with worse ESG scores, both in terms of the relative composition and
budget allocation. Stocks of Intesa Sanpaolo are not part of the optimal portfolios due
to their relatively unfavorable returns (not driven by ESG scores). We had to vary Ntot
somewhat as a function of D so that the full budget can be allocated. As can be seen from
Figure 6, allocation to Deutsche Telekom increases with decreasing D. Since stocks of
Deutsche Telekom have a much lower price per stock than SAP and EssilorLuxottica, a
higher number of stocks has to be allocated, which requires a larger Ntot. The resulting
budget allocations are summarized in Table 1.

Table 1. Number of stocks and allocated budget p⃗T x⃗ as a function of the maximum ESG distance D.

D Ntot p⃗T x⃗ in EUR

1.6 960 99,999.56
1.5 1112 99,998.61
1.4 1202 99,994.84
1.3 1305 99,932.86

In this subsection, we have introduced a novel distance measure for portfolios within
the space of ESG scores based on the Wasserstein metric. We use this distance measure to
constrain the search for optimal portfolios in volatility–return space to a certain vicinity of
the best possible portfolio in ESG space. We have demonstrated that our approach yields
sensible and interesting results in combination with discrete portfolio optimization on a
quantum annealer.
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Figure 6. Best discrete portfolio compositions for a budget of B = EUR 100,000, a risk-aversion
parameter of ϕ = 8 and different values of the maximum allowed ESG distance D. The ESG data
were provided by ISS ESG. The grading system is on a scale from 4 to 1, where a higher number
indicates a better ESG performance. The investment universe comprises Deutsche Telekom (ISIN
DE0005557508), SAP (ISIN DE0007164600), Intesa Sanpaolo (ISIN IT0000072618) and EssilorLuxottica
(ISIN FR0000121667), which are given in order from highest to lowest ESG score. Data were taken
from the period between 1 January 2010 and 1 January 2021. Decreasing the maximum distance
D to the portfolio with best possible ESG score results in compositions which gradually contain
higher amounts of stocks with better ESG scores such as Deutsche Telekom and SAP. (a) Portfolio
composition in terms of number of stocks. (b) Portfolio composition in terms of Euro value.

3. Discussion

The approach we have presented here is based on historical data of covariance and
returns. A further constraint such as the one on the ESG classification may not improve
the performance of any portfolio within this framework. However, there is an ongoing
discussion in the literature on whether ESG-aware investors generate higher returns than
comparable non-ESG benchmarks in the long term and can realize a better performance
during a global crisis. The results of investigations into the historically measured perfor-
mance of stocks with strong and weak ESG ratings vary depending on the markets, ESG
data and time periods considered for analysis (Amon et al. 2021; Atz et al. 2023; Auer and
Schuhmacher 2016; Bae et al. 2021; Breedt et al. 2018; Cesarone et al. 2022; Demers et al.
2021; García et al. 2022; La Torre et al. 2020; Nofsinger and Varma 2014).

Cesarone et al. (2022) investigate mean-variance-ESG optimal portfolios and show
how portfolio mean returns systematically move away from the efficient frontier the more
weight is placed on optimizing the ESG scores of the respective portfolio (compare Figure 5).
These authors use a continuous Markowitz framework and obtain results consistent with
ours. In addition, we show that optimal discrete portfolios can be obtained from modern
quantum annealers under realistic circumstances.
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Auer and Schuhmacher (2016) study the impact of socially responsible investments
on the performance of investment funds. They compare the returns of investment funds
with different ESG ratings to the return of their respective benchmark index. They find
that portfolios of European stocks with high ESG ratings often underperform with respect
to their benchmark, while no consistent over or underperformance was observed in the
Asia-Pacific region and the United States. This approach differs from ours in that Auer and
Schuhmacher use benchmark indices as their reference point, while we compared portfolios
on the mean-variance efficient frontier. In this sense, an overperformance of ESG-aware
portfolios is possible in Auer and Schuhmacher’s approach, since they compare benchmark
indices, which may have sub-optimal returns in the first place. Due to the different
methodology, these authors’ results are not directly comparable to ours. Nevertheless, our
results and those of Cesarone et al. (2022) can help to rationalize these findings. Both studies
find that the deviation in ESG-aware portfolios from mean-variance optimal portfolios
depends on the emphasis, which is put on the ESG optimization goal. In particular, the
novel ESG distance measure we introduced could help to clarify the results of Auer and
Schuhmacher in future studies.

Amon et al. (2021) find that portfolios with good ESG ratings can be constructed at a
small cost in terms of returns. This is consistent with our findings and those of Cesarone
et al. (2022), which both show that many portfolios with close to optimal returns can at
the same time have good ESG ratings. In future studies, our ESG distance measure could
be used to quantify the deviation in these ESG-aware portfolios from the best possible
portfolio in the respective rating system.

García et al. (2022) investigate ESG ratings within a multi-objective optimization
framework, focusing on portfolios composed of component stocks from the Dow Jones
Industrial Average (DJIA) index. These authors solve an NP-hard realistic portfolio problem
similar to ours, but use a heuristic evolutionary algorithm where we employ a quantum
annealer. They find that better ESG ratings generally imply lower returns. Nevertheless,
many portfolios with good ESG ratings possess favorable risk–return profiles and may
even outperform benchmark indices like the DJIA. These results are consistent with our
present study.

Breedt et al. (2018) perform a factor analysis based on a proprietary mean-variance
optimization method. They find that ESG is not an independent factor; i.e., ESG infor-
mation is already captured by other investment factors. They conclude that including
ESG information into the investment process neither lowers nor improves the investment
returns. We found that it is possible to construct ESG-aware portfolios which are very close
to the efficient frontier. Hence, our results can be considered consistent with those of Breedt
and coauthors.

Nofsinger and Varma (2014) find that socially responsible investment portfolios over-
perform in times of market crisis and underperform in other periods. They performed
regression using several factor models. This methodology is very different from ours and
other mean-variance approaches. Furthermore, the ESG selection is based on a screening
approach, not on optimization. Again, over- and underperformance were measured with
respect to regional benchmarks. Therefore, these results are not directly comparable to ours.

Demers et al. (2021) conduct a similar study and conclude that ESG-aware investment
does not protect against market crises. Their argument is similar to that of Breedt et al.
(2018), since they also conclude that ESG is not an independent investment factor.

Bae et al. (2021) perform a regression analysis and conclude that corporate social
responsibility dis not affect the returns of US stocks during the COVID-19 market crisis.
These authors also point out the possibility of firms having positive ESG values in certain
rating systems, while actually acting against these goals in practice. Like other factor
regression studies, these results are not directly comparable to ours.

La Torre et al. (2020) find that ESG ratings weakly affect the returns of EURO STOXX
50 component stocks. Their analysis is based on regression of a factor model, which is only
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loosely related to our study. Again, our quantitative distance measure in ESG space could
help to clarify these results in future studies.

Atz et al. (2023) perform a meta-study on the impact of sustainability on investment
returns. They argue that most studies find no discernible impact, while about one-third
of all investigated studies find a positive impact. The positive impact is attributed to the
possibility of capturing climate risk premiums and higher robustness during times of crisis.

As explained before, the question of whether ESG-aware investments produce measur-
able effects on investment performance is beyond the scope of this work. Such effects would
result from investment decisions guided by beliefs and values, which are not captured by
the Markowitz framework used in our study.

In our opinion, the question is ultimately to which degree investor expectations about
future developments are reflected in historical prices. As we explained in the introduction,
the importance of informed investment decisions based on ESG data can be expected to
grow. The degree to which non-ESG-aware investors are following these developments
is, however, unclear. Therefore, stocks with good ESG scores may outperform stocks with
worse ESG scores, as the public increasingly demands the publication of ESG data and
enforces the adoption of ESG-aware investment strategies. This effect is not captured by
Markowitz portfolio theory and would require a radically different approach.

We expect that interest in ESG topics will grow rapidly among investors, particularly
regarding portfolio classification in terms of ESG scores. Our method of using ESG data en-
ables ESG-aware investors to construct ESG-friendly portfolios without the need for further
assumptions or additional parameters. In particular, we avoid assuming additivity of ESG
data with other terms in the Markowitz utility function. In fact, we do not modify the utility
function at all, so that ESG data only appear in the linear constraint we introduced. Thus,
in our approach, ESG preference, returns and volatility can be interpreted independently,
as one would expect (Pedersen et al. 2021; Utz et al. 2014; Varmaz et al. 2022).

Our study also shows that portfolio optimization is an attractive case for combining
classical and quantum workflows. While the discrete portfolio optimization problem can
only be solved efficiently on a quantum computer, all data processing is still performed
efficiently on a classical computer. We believe that many quantum applications will be part
of such hybrid quantum–classical workflows in the future. See refs. (Cohen et al. 2020a,
2020b; Lang et al. 2022; Mugel et al. 2021; Sakuler et al. 2023; Venturelli and Kondratyev
2019) for more examples of hybrid approaches to portfolio optimization.

4. Conclusions

We have presented a study of Markowitz portfolio optimization in the presence of
discrete stock allocations, a limited budget and constraints on portfolio ESG scores. We
have studied both the usual continuous formulation of the portfolio problem as well as a
more realistic discrete version. The discrete version cannot be solved efficiently on classical
computers, at least not by enumerating all possible portfolio combinations, although some
progress has been achieved using simulated annealing on classical hardware (Rubio-García
et al. 2022). Therefore, we have employed a D-Wave quantum annealer for solving the
discrete portfolio problem.

We have established a mapping between continuous and discrete Markowitz portfolio
theories, which allows us to compare results in a meaningful way. This mapping involves
a rescaling of the risk-aversion parameter ϕ. Importantly, we have also shown that when
failing to apply this rescaling in the discrete case, the relative composition of discrete
solutions will not converge to the continuous solution, even in the limit of an infinite
portfolio size, but rather converge to the minimum variance portfolio.

Subsequently, we extended Markowitz portfolio theory to include a budget constraint.
We showed that the rounding of continuous portfolio compositions to the nearest integer
number of stocks yields sub-optimal portfolios for small and medium investment budgets.
Solutions from our discrete approach on the contrary lie on the efficient frontier in volatility–
return space.
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Furthermore, we introduced a novel way to classify portfolios in terms of their ESG
score via the Wasserstein p-distance by viewing relative portfolio compositions as discrete
probability distributions. Using the Wasserstein metric, we measured a portfolio’s distance
from the best possible portfolio using the ESG score in the respective scoring system. Our
method is a generalization of the weighted average classification scheme reported in the
literature and is applicable to any ESG scoring system without further modification. Our
framework can even be modified to accommodate ESG data from heterogeneous scoring
systems. We incorporated the ESG data into the optimization process by constraining the
portfolio search to a certain maximum distance from the portfolio with the best possible
ESG score via a linear constraint which is independent of the chosen metric.

We also reported case studies for portfolios using components of the well-known
EURO STOXX 50 index. By decreasing the maximum distance from the best ESG portfolio,
we found that portfolio compositions gradually placed more weight on stocks with better
ESG scores and less weight on stocks with worse ESG scores, both in terms of the number
of stocks and in terms of the allocated budget.

Our results can help ESG-aware investors include their preferences in an effective
way, building on the widely used Markowitz portfolio theory. How these preferences are
derived is a research field in itself and goes beyond our work.

We have only studied the Wasserstein p-distance for p = 1. Future studies should
clarify the role of p for the ESG portfolio problem. Furthermore, our method could be
applied to larger portfolios and heterogeneous ESG data from different providers. We
believe that the formalism we have presented can be applied to many practical problems,
such as finding tradeable ESG-optimized portfolios or constructing discrete ESG-aware
portfolios as a basis for exactly hedgeable indices. These topics are left for future research.
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