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Abstract: Alzheimer’s disease (AD) is distinguished by the gradual loss of cognitive function, which is
associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases
(PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as
the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1
and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly
shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major
causing factor of AD through the deregulation of the tau protein. Here, we review recent advances
on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A
better understanding of this problem may lead to the development of phosphatase-targeted therapies
for neurodegenerative disorders in the near future.

Keywords: protein phosphatase; amyloid beta; Alzheimer’s disease; neurodegenerative diseases;
tau protein

1. Introduction

Protein phosphatases (PPs) are enzymes that remove a phosphate group from the phos-
phorylated amino acid residues of substrate proteins [1]. Hundreds of biological targets are
dephosphorylated by protein phosphatases as they create highly specialized holoenzymes
with over 200 regulatory proteins [2]. The key reversible post-translational modification of
protein phosphorylation and dephosphorylation regulates the shape, activity, localization,
and stability of substrate proteins to regulate several regulatory circuits in eukaryotes [3].
While eukaryotic protein kinases appear to have evolved from a single progenitor [4],
there are several potential sources from which protein phosphatases are thought to be re-
cruited [5,6]. PPs exist in a variety of complexes with regulatory and targeting subunits that
control the activity and specificity of catalytic subunits and target the enzymes to particular
sites [7,8]. Phosphatases are classified into several categories, which are represented here,
along with their therapeutic significance in human disorders. Protein phosphatases (PPs)
are the key dephosphorylation effectors and are classified into three major types based
on sequence, structure, and catalytic activity. These are the phosphoprotein phosphatase
(PPP) family, which includes PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7, and the protein
phosphatase Mg2+- or Mn2+-dependent (PPM) family, which includes PP2C [9] (Table 1).

Alzheimer’s disease (AD) is a brain neurodegenerative disorder that slowly destroys
social life, particularly memory [10]. It is estimated that over six million USA individ-
uals with aged 65 years and older are affected by AD [11]. Furthermore, many people
experience Alzheimer’s in their lives as family members and friends of those with this
disease. The general symptoms of AD are variations in thinking, memory and a behavior
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known as dementia [12–14]. This is why the term “dementia” is occasionally used to refer
to Alzheimer’s. However, AD is the most prevalent cause of dementia in older persons,
although other diseases and disorders can also contribute to it. AD is not a typical aging
process. It is the outcome of sophisticated brain alterations that begin years before the
symptoms show up and cause the death of neurons and their interactions [15]. In AD,
the tau protein undergoes hyperphosphorylation, forming soluble phospho-tau molecules
which aggregate into paired helical filaments (PHFs) and produce neurofibrillary tangles
(NFTs) [16]. Moreover, amyloid peptides are made by cleaving the amyloid precursor
protein (APP) using β-site APP cleaving enzyme 1 (BACE1) and γ-secretase and are then
excreted and deposited in extracellular senile plaques [17]. Protein kinases (PKs) and pro-
tein phosphatases (PPs) regulate the tau phosphorylation and dephosphorylation processes,
respectively. Tau hyperphosphorylation and AD pathogenesis are aided by a functional
imbalance between PKs and PPs [18,19].

Table 1. Comparison data of PP1–7 and their correlation with neurodegenerative diseases.

Protein Name Amino Acid Coding Gene Disease Ref

PP1 330 PPP1CA

AD, Parkinson
disease (PD),

Huntington’s disease
(HD),

Schizophrenia

[20–23]

PP2A

Structural 595 Structural PPP2R1A

AD, PD,
Down syndrome,
Frontotemporal

dementia,
Glioblastoma
multiforme

[24–30]

Catalytic 309–310 Catalytic PPP2CA

Regulatory 285–595 Regulatory

PPP2R2A
PPP2R2B
PPP2R2C
PPP2R3A
PPP2R3B
PPP2R5A
PPP2R5B
PPP2R5C
PPP2R5D

PP2B 526 PPP3CA AD, PD, HD
Schizophrenia [31–33]

PP4

Catalytic 320 Catalytic PPP4C

AD [34]
Regulatory 1700, 500 Regulatory PPP4R2

PPP4R3

PP5 525 PPP5C AD, PD, HD [35,36]

PP6

Catalytic 348 Catalytic PPP6C

AD, PD [34,37]
Regulatory 343, 382 Regulatory PPP6R1

PPP6R2

PP7 653 PPM1G Retinitis Pigmentosa
Retinoblastoma [38]

2. Protein Phosphatases and Their Involvement in AD
2.1. Protein Phosphatase 1 (PP1)

PP1 is a crucial enzyme involved in the regulation of various cellular processes, in-
cluding cell division, glycogen metabolism, muscle contraction, and the neuronal signaling
pathways [39]. PP1 has been implicated with AD in several aspects, including tau pro-
tein phosphorylation, amyloid precursor protein (APP) processing, synaptic dysfunction,
neuronal survival, and therapeutic targeting, respectively [40]. The dysregulation of PP1 ac-
tivity or localization may lead to the hyperphosphorylation of tau, disrupting microtubule
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stability and contributing to the formation of NFTs, a pathological hallmark of AD [41].
Furthermore, it has also been observed that the dysregulation of PP1 activity may influence
the cleavage of APP by secretases, leading to the altered production of amyloid-beta (Aβ)
peptides, which results in the formation of amyloid plaques and leads to AD [20,42]. PP1
is also linked to the regulation of cell survival pathways, and altered PP1 activity may
disrupt the signaling pathways implicated in neuronal survival and apoptosis, which may
contribute to the neuronal loss observed in AD [43].

Moreover, PP1 is also linked to ionic conductance, long-term synaptic plasticity, [44]
and dephosphorylating substrates in postsynaptic densities (PSDs) associated with Ca2+/
calmodulin-dependent protein kinase-II (CaMKII) [45]. Mammalian PP1s are particularly
inhibited by the heat-stable inhibitors I-1 and I-2 and preferentially dephosphorylate
the subunit of phosphorylase kinase [46]. Long-term potentiation (LTP) and long-term
depression (LTD) are two neuronal processes that underpin learning and memory, and
they are regulated by PP1 through synaptic plasticity [47]. Therefore, modified PP1 activity
results in changes in the phosphorylation status of synaptic proteins that is essential for the
induction, maintenance, and reversal of synaptic plasticity [48].

Additionally, PP1 is also connected to AD through the hyperphosphorylation of
microtubule-associated proteins (MAPs) in the brain. Moreover, it has been found that
there is significantly lower PP1 activity in both gray and white matters in AD brains,
which clearly demonstrates that dysfunctional phosphatases play a significant role in
AD [49]. In contrast to PP1, PP2As are insensitive to I-1 and I-2 and dephosphorylate the
phosphorylase kinase subunit [50]. By examining PP1 as a single entity, we can see that the
PP1 holoenzyme is composed of a catalytic subunit (PP1c) and one (or occasionally two)
regulatory (R) subunit. These subunits comprise a huge collection of over 200 potential
PP1c interactors [51]. However, to put it another way, PP1 should be investigated as a
crucial component of a vast and changeable interactome (a complex representation of the
functional interactions between molecules within a cell or within an organism). Through
the comprehension of the PP1 interactome, its suitable role in the etiology of heart failure
becomes visible [52]. The 3D protein model is depicted in Figure 1.
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2.2. Protein Phosphatase 2A (PP2A)

The PPP2CA in humans encodes the enzyme protein phosphatase 2 (PP2), commonly
known as PP2A [53]. The heterotrimeric PP2A is widely expressed and contributes signifi-
cantly to phosphatase activity in eukaryotic cells [54]. Many cellular processes are carried
out by its serine/threonine phosphatase activity with substrate specificity. The published
data show that the targets of PP2A are proteins of oncogenic signaling cascades, such
as Raf, Mitogen-activated protein kinase (MEK), and AKT, with PP2A acting as a tumor
suppressor [55]. The structure of PP2A is shown in Figure 2.
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PP2A is an evolutionarily conserved enzyme that regulates the majority of signal
transduction pathways and physiological functions [56,57]. The mammalian PP2A holoen-
zyme is a heterotrimer made up of catalytic (C or PPP2C), structural (A or PPP2R1), and
regulatory (B-type) subunits [57]. There are four known families of regulatory “B-type”
subunits, including PPP2R2, PPP2R5, PPP2R3, and PPP2R6, and two isoforms of the A
and C subunits (α and β). A highly complicated and currently little understood mech-
anism that ensures PP2A substrate specificity is the control of PP2A biogenesis, activity,
and targeting [58]. They are partially regulated by the binding of a certain B subunit and
other regulators to the PP2A (AC) core protein, in addition to post-translational alterations
(methylation, phosphorylation, and ubiquitination) of the catalytic domain [59]. The partic-
ular targeting of PP2A by several pathogenic viruses and parasites serves as an illustration
of the crucial role that PP2A plays in cell signaling and homeostasis [60]. Based on the
critical role which the PP2A family plays in the control of key cellular processes, it is not
surprising that PP2A malfunction is linked to human disorders, such as neurodegenerative
diseases [61], heart disease, diabetes [62], asthma [63], and cancer [57]. Numerous human
tumorigeneses have altered PP2A subunit expression. For instance, the PP2A Cα [64] and
Bα [65] subunits are downregulated in prostate cancer, whereas breast and lung carcinomas
have a downregulated A subunit [66]. Furthermore, CIP2A and SET, the endogenous PP2A
inhibitors, are elevated in several malignancies [67]. As a result, PP2A has been believed
to be a tumor suppressor [68]. However, in certain malignancies, the expression of PP2A
subunits is also increased. For instance, pancreatic cancer has increased Bα levels that
support oncogenic activation and encourage metastasis [69].

Moreover, PP2 is considered a good therapeutic and biological target to discover
new chemical scaffolds and inhibitors against Parkinson’s disease (PD) and AD,
respectively [61,70]. Experimental data have clearly depicted PP2A disfunction as a main
pillar in the progress of tau pathology in AD [61]. Furthermore, PP2A also opposes the activ-
ity of many brain protein kinases upregulated in AD. Therefore, developing PP2A-targeted
therapies for AD particularly against the P-tau pathology could be highly significant in
treating AD. In this regard, multiple chemical compounds have been tested to regulate/alter
PP2A functionality by different mechanisms through direct or indirect ways [71]. Figure 3
provides an overview of PP2A dysfunction in AD and shows its linking to the deregulation
of tau.
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Figure 3. Overview of PP2A dysfunction in AD and its link to the deregulation of tau. (A) Altered
PP2A subunit expression, activity, and post-translational modifications have been described in AD
autopsy brain tissues. Some of these changes may be mediated by alterations in specific PP2A
modulatory proteins (LCMT1, PTPA, alpha4) and endogenous PP2A inhibitors (I1PP2A and I2PP2A)
that have also been reported in AD autopsy brain tissues. They also decrease the interaction of PP2A
with tau. (B) The biogenesis of the PP2A/Bα holoenzyme, the primary Ser/Thr tau phosphatase
in vivo, is believed to be controlled by the Leu-309 methylation of the PP2A catalytic subunit by
LCMT1. This reaction requires a supply of SAM, the universal methyl donor, and is inhibited by SAH.
The PP2A methylesterase, PME-1, can demethylate and inactivate PP2A through distinct mechanisms
and form a complex with inactive PP2A enzymes. These inactive complexes could be-reactivated
via the action of the PP2A activator PTPA, allowing for the subsequent methylation of the PP2A
C subunit. Many brain Ser/Thr protein kinases, including GSK3β, oppose the action of PP2A/Bα
and promote tau phosphorylation. The inhibition and/or downregulation of PP2A can enhance
tau phosphorylation directly, by preventing its dephosphorylation, or indirectly, by upregulating
tau kinases.

2.3. Protein Phosphatase 2B (PP2B)

In the brain, PP2B is known as calcineurin and is a Ca2+/calmodulin-dependent pro-
tein phosphatase. The holoenzyme is a heterodimer made up of an 18-kDa regulatory sub-
unit (B-subunit) and a 60-kDa catalytic subunit (A-subunit) [72]. The calmodulin-binding
domain and the autoinhibitory domain in the catalytic subunit’s C-terminal region often
hide the catalytic domain and maintain the enzyme’s inactive state [73]. Ca2+/calmodulin
binding to the calmodulin-binding domain causes the autoinhibitory domain to be released
from the catalytic site, activating PP2B [74]. The autoinhibitory domains of PP2B can also
be activated by proteolytic cleavage, leading to a Ca2+/calmodulin-independent, activated
phosphatase [75]. It has been reported that calpain I, a major Ca2+-activated protease in the
brain, cleaves and activates PP2B [75,76]. PP2B is one of the most abundant phosphatases in
the brain [77] and may be generated by combining two regulatory B-subunit isoforms (type-
1/2) with any of the three catalytic A-subunit isoforms (α, β, and γ) [78]. These isoforms
lack the targeted PP1 holoenzymes’ structural and functional variety; therefore, the many
functions of PP2B in biological processes are frequently mediated by a similarly broad
spectrum of interacting proteins. However, most of these interactions happen between two
different PP2B surfaces. A β-sheet on the catalytic subunit makes up the surface that has
been better defined. The PxIxIT motif, a conserved motif, interacts with this β-sheet. The
PxIxIT motif creates a brief β-strand that interacts with the catalytic subunit’s β-strand
14 and lengthens the β-sheet [79]. The predicted structure of PP2B is shown in Figure 4.
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Figure 4. 3D structure of PP2B. PP2B is associated with AD through the dephosphorylation of the tau
protein at different phosphorylation sites, and it has also been observed that PP2B activity is either
unchanged or decreased in the AD brain. Based on these speculations, PP2B might regulate tau phos-
phorylation, and a downregulation of PP2B might contribute to the abnormal hyperphosphorylation
of tau [80,81].

2.4. Protein Phosphatase 3 (PP3)

PP3 is also known as calcineurin (CaN), the only serine/threonine protein phosphatase
under the control of Ca2+/calmodulin, and performs a crucial part in the connection be-
tween Ca2+ signals and cellular reactions in the body [54]. Several tissues, including the
brain, heart, kidney, liver, muscle, eye, and T-lymphocytes, have been shown to possess
CaN [54,82]. The hypertrophic growth of cardiac and skeletal muscle in response to me-
chanical stress is also dependent on Ca2+ signaling [83]. Another study has showed that
immunosuppressive medications such as cyclosporin A (lipophilic cyclic polypeptide) and
tacrolimus (FK506) control the activity of calmodulin-dependent phosphatase calcineurin
through their interaction with cyclophilin and FKBP12, respectively [84]. Therefore, it
has also been observed that CaN mediates or exacerbates AD pathophysiology through
the activation of the nuclear factor of the activated T cell (NFAT) family of transcription
factors [85]. Mouse studies have explored the signaling cascade of CaN/NFAT in hip-
pocampal neurons with increased CaN expression/activity, which plays a significant role
in transcriptional suppression. Moreover, CaN/NFAT in astrocyte signaling is associated
with neurodegeneration and AD through Ca2+ dysregulation [86] (see Figure 5).

2.5. Protein Phosphatase 4 (PP4)

PP4, also known as PPX, is allegedly involved in mammalian microtubule centrosome
interaction control [87]. PP4 is a complex protein composed of one catalytic subunit (PP4C)
and five regulatory subunits, such as PP4R1, PP4R2, PP4R3α, PP4R3β, and PP4R4, respec-
tively [88] (Figure 6). The phosphorylation status of tau and APP proteins is regulated by
PP4, either directly or indirectly. This affects both proteins’ processing and aggregation,
which are crucial to the pathophysiology of AD. PP4 is also linked to different signaling
pathways such as PI3K/Akt, MAPK/ERK, and the Wnt/β-catenin pathway, which have
been implicated in AD [89]. Therefore, the dysregulation of these pathways has been associ-
ated with synaptic dysfunction, neuroinflammation, and neuronal cell death and causes AD.
These facts show the important role of PP4 in modulating AD-related signaling cascades.
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There are multiple reports that show the functional role of PP4 in the survival of the
motor neuron complex, spliceosome assembly, and neuron disorders [90]. The survival
motor neuron (SMN) protein is typically altered in the neurodegenerative disorder called
spinal muscular atrophy (SMA) [91]. Small nuclear ribonucleoproteins (snRNPs) and
small nucleolar ribonucleoproteins (snoRNPs) are assembled in the cytoplasm, transported
to the nucleus, and matured in nuclear bodies known as cajal or coiled bodies by these
SMN multi-protein complexes [91]. PP4 is structurally and functionally linked to PP2A
and adheres to the same general assembly and regulatory principles as PP2A [92]. PP4
can form both heterodimers and heterotrimers [93]. PP4 is composed of six regulatory
subunits [94]. This phosphatase has established the idea of substrate selectivity imparted
by PP4 regulatory subunits. The phosphorylated histone 2A variant H2AX, which is a
marker of DNA damage and cell cycle arrest, is dephosphorylated by PP4, and, during
the S phase, PP4 functionally regulates H2AX phosphatase activity [95]. During DNA
replication, a particular PP4 heterotrimeric complex, including the catalytic subunit (PP4C),
the scaffolding component PP4R2, and the targeting subunit PP4R3, restores H2AX to
its dephosphorylated form [96]. Other PP4 regulatory genes, such as PP4R1 or PP4R3,



Biomedicines 2024, 12, 1097 8 of 16

however, have shown no influence on -H2AX dephosphorylation. More importantly, PP4
has a direct association with the Toll-like receptor (TLR) signaling pathways [97]. Therefore,
it is also well known that TLR4-mediated signaling is correlated with the pathogenesis of
age-related neurodegenerative diseases, particularly AD [98].

2.6. Protein Phosphatase 5 (PP5)

PP5 is a 58-kDa phosphoseryl/phosphothreonyl protein that is distinct from other
serine/threonine phosphatases because it contains tetratrico-peptide repeat (TPR) domains.
PP5 is highly expressed in the mammalian brain and has been involved in multiple cellu-
lar processes, such as MAPK-mediated growth and differentiation, cell cycle arrest, and
ATM/ATR pathways [99]. It has been observed that PP5 dephosphorylates the tau protein
in AD. Cell line studies show that the overexpression of PP5 in PC12 cells results in the
dephosphorylation of tau at multiple phosphorylation sites [100]. In the AD neocortex,
PP5 activity has been shown to be reduced by about 20%. These results have shown that
tau is most likely a physiological substrate of PP5, and the aberrant hyperphosphorylation
of tau in AD is due to diminished PP5 activity in the diseased brains. The in vitro results
show that PP5 dephosphorylates tau and that it may connect with microtubules, suggesting
that it may possibly be involved in modulating tau phosphorylation in the brain [101].
Furthermore, this study also suggested that tau phosphorylation may be regulated by PP5,
and tau hyperphosphorylation in AD may be caused by decreasing PP5 activity [100,101].
Moreover, PP5 can act as a neuroprotectant to lessen the negative consequences of Aβ

toxicity [36]. Past studies have indicated that Aβ damages mitochondrial activity and
raises the levels of ROS, which may be directly responsible for neuronal toxicity [102].
In cortical neurons in culture, increased Aβ-induced cell death has been linked to PP5
downregulation, whereas PP5 overexpression has the opposite impact. PP5 may be able
to counteract the effect of Aβ through its capability to inhibit the MAP kinase pathways
implicated in apoptosis [103]. The 3D protein structure of PP5 is shown in Figure 7.
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2.7. Protein Phosphatase 6 (PP6)

The PP6 holoenzyme is a heterotrimeric complex formed by the catalytic subunit and
an ankyrin repeat domain-containing regulatory subunit (ARS) [104]. It has also been
observed that C-terminal methylation influences PP6 holoenzyme composition and that
variations in holoenzyme assembly are associated with AD [103]. The catalytic subunit
of PP6 is involved in the signaling pathway and cell cycle progression in response to IL2
receptor stimulation [105–107]. The N-terminus domain inhibits G1-to-S phase progression
in cancer cells, in part through the control of cyclin D1 [108]. Moreover, in the mitosis
process, it regulates spindle positioning [109]. Through dephosphorylating MAP3K7, PP6
inhibits the MAP3K7 kinase activation of the IL1 signaling pathway [105]. Prior data have
also shown that specified polymorphisms in the genes encoding the α and β isoforms of
interleukin-l (IL-1) are linked to an increased risk of AD. The overexpression of IL-1 is
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linked to the development of β-amyloid plaque, and higher IL-1 levels have been seen
in Alzheimer’s brains. Furthermore, βAPP, apolipoprotein E, α1-antichymotrypsin, and
α2-macroglobulin are a few of the more recognized or speculated genetic risk factors for
AD that interact with IL-1. Moreover, IL-1 overexpression is linked to environmental risk
variables for AD, such as aging naturally and head trauma. These findings imply that
IL-1 and IL-1-driven networks play a significant pathogenic role in the development of
AD [110]. The structure of PP6 is shown in Figure 8.
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2.8. Protein Phosphatases 7 (PP7)

PP7 is another protein consisting of 653 amino acids, with a predicted molecular mass
of ~75 kDa, which belongs to the superfamily of protein phosphatases (PPs). Structural
data have shown that EF-hand and EF-hand-like motifs are five potential high-affinity
calcium-binding domains in an extensive C-terminal region of protein PP7. PP7 is involved
in various cellular processes, including cell cycle regulation, transcription, DNA repair, and
stress response, respectively [111]. Moreover, disruption in these PP7-regulated cellular
activities may play a significant role in the pathophysiology of AD, since they are essential
for preserving neuronal health. Additionally, PP7 is linked to AD through tau phosphory-
lation, Aβ toxicity, and neuroinflammation, respectively, but more studies are needed to
completely understand PP7’s role in AD. The overall protein structure of PP7 is shown in
Figure 9.
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3. Pharmacological Agents Directly Targeting PP Receptors

There is ongoing research on the potential use of protein phosphatase inhibitors as a
treatment for AD, but, currently, there are no FDA-approved AD drugs that target protein
phosphatases. However, below is a list of some of the commercially available drugs that
have been studied for their effects on protein phosphatases and their potential use in
treating AD.

3.1. Lithium

The activity of PP2A, which has been linked to the pathophysiology of AD, has been
demonstrated to be inhibited by this drug [112,113]. Lithium is studied as a potential
treatment for the cognitive symptoms of AD [112,114].

3.2. Okadaic Acid (OKA)

OKA is not a drug, but it is one of the most common polyether toxins generated
by marine microalgae, responsible for diarrhetic shellfish poisoning. It induces tau hy-
perphosphorylation both in vitro and in vivo and is a selective and powerful inhibitor of
serine/threonine phosphatases 1 and 2A. [115]. OKA is a potent inhibitor against PPs and
has been employed in research studies to investigate the role of PP2A in AD [115,116].

3.3. Cantharidin, Cyclosporine A, and Tideglusib

Cantharidin is a natural compound and a potent inhibitor of PP2A and has been stud-
ied for its potential therapeutic effects in AD [117]. Cyclosporine A, which is used primarily
as an immunosuppressant, has been shown to inhibit the activity of calcineurin, a protein
phosphatase which is involved in AD [118]. Furthermore, there are some experimental
drugs that are being studied for their effects on protein phosphatases in AD. Tideglusib is a
glycogen synthase kinase 3 (GSK-3) inhibitor that increases the activity of PP2A, which is
reduced in the AD brain. It is currently in phase II clinical trials for AD [119].

3.4. CIGB-300, Anle138b, LB-100, and Salubrinal

CIGB-300 is a peptide that targets the interaction between PP2A and tau, a protein
which forms tangles in the brains of people with AD. It has shown promising results in
preclinical studies and is currently in phase I clinical trials [120,121]. Anle138b, a drug
which targets the aggregation of tau, has been shown to increase the activity of PP2A
in preclinical studies [122]. LB-100 is another drug that is effective as a PP2A inhibitor
and has been demonstrated to be promising in preclinical research for the treatment of
AD [123,124]. Similarly, Salubrinal is a drug that inhibits a specific protein phosphatase,
eIF2α phosphatase, and has been shown to improve cognitive function in preclinical studies
of AD [125].

3.5. AV-1451 and Fingolimod

AV-1451, also known as flortaucipir, is a positron emission tomography (PET) imaging
agent that can detect tau protein deposits in the brain [126]. While not a drug in itself,
AV-1451 is being used in clinical trials to assess the effects of potential tau-targeting drugs
on protein phosphatases in the brains of people with AD [127]. Fingolimod, a drug which
is currently used to treat multiple sclerosis, has been shown to increase the activity of PP2A
and reduce the accumulation of amyloid beta, a protein which forms plaques in the brains
of people with AD [128]. It is currently in the early stage of clinical trials for AD [129].
Again, it is important to note that these drugs are still in the experimental stages, and more
research is needed to determine their safety and efficacy for the treatment of AD. Clinical
trials are ongoing to further evaluate these drugs, and it may take several years before any
of them are approved for use in treating AD.
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4. Conclusions and Future Prospects

In this review, we discussed various PPs and highlighted their significant role in
brain-related diseases such as AD. Collectively, PP1-PP7 have direct and indirect influences
on AD through the activation and deactivation of downstream signaling pathways. Overall,
our knowledge about the critical role of phosphatases in neurodegeneration is constantly
growing, and, additionally, there is urgent need for research identifying changes in PP
expression, activity, or mutation that affect AD onset and progression. Therefore, new
connections to human illness are being revealed, and advancements in understanding PP
function are being made. It is feasible that significant information about treatment develop-
ment may emerge either from targets inside the pathways they modulate or from protein
phosphatases directly. In the future, attention should be given to phosphatase-targeted
therapies for neurodegenerative disorders, and we hope that this will open promising new
avenues for developing effective drugs.
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