
Citation: Ahmad, H.H. The Efficiency

of Hazard Rate Preservation

Method for Generating Discrete

Rayleigh–Lindley Distribution.

Mathematics 2024, 12, 1261. https://

doi.org/10.3390/math12081261

Academic Editor: Manuel Alberto

M. Ferreira

Received: 21 March 2024

Revised: 16 April 2024

Accepted: 20 April 2024

Published: 22 April 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Efficiency of Hazard Rate Preservation Method for
Generating Discrete Rayleigh–Lindley Distribution
Hanan Haj Ahmad 1,2

1 Department of Basic Science, The General Administration of Preparatory Year, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia; hhajahmed@kfu.edu.sa

2 Department of Mathematics and Statistics, College of Science, King Faisal University,
Hofuf 31982, Al-Ahsa, Saudi Arabia

Abstract: In this study, we introduce two novel discrete counterparts for the Rayleigh–Lindley
mixture, constructed through the application of survival and hazard rate preservation techniques.
These two-parameter discrete models demonstrate exceptional adaptability across various data types,
including skewed, symmetric, and monotonic datasets. Statistical analyses were conducted using
maximum likelihood estimation and Bayesian approaches to assess these models. The Bayesian
analysis, in particular, was implemented with the squared error and LINEX loss functions, incor-
porating a modified Lwin Prior distribution for parameter estimation. Through simulation studies
and numerical methods, we evaluated the estimators’ performance and compared the effectiveness
of the two discrete adaptations of the Rayleigh–Lindley distribution. The simulations reveal that
Bayesian methods are especially effective in this setting due to their flexibility and adaptability. They
provide more precise and dependable estimates for the discrete Rayleigh–Lindley model, especially
when using the hazard rate preservation method. This method is a compelling alternative to the
traditional survival discretization approach, showcasing its significant potential in enhancing model
accuracy and applicability. Furthermore, two real data sets are analyzed to assess the performance of
each analog.

Keywords: discretization methods; hazard rate; maximum likelihood; Bayesian inference; simulation;
Monte Carlo Markov Chain
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1. Introduction

With every passing day, the data available in our world are growing rapidly, requiring
the development of new statistical distributions to create more accurate representations
of various phenomena and experiments being examined. Although most lifetime data
appear continuous, the reality is that these are discrete observations, promoting the search
for more suitable techniques to convert continuous distribution into discrete forms that
more closely align with the data of interest. There are multiple motivations for frequently
employing discrete distributions in statistical modeling.

Discrete distributions model data that assume a countable or finite set of numbers,
like the number of units being tested, the tally of people in a queue, the occurrence of tails
in flipping a coin, or the count of failed products in the manufacturing process. These
distributions are particularly straightforward and interpretable because they represent data
that adopt a specific range of values. The probability mass function (pmf)and the probability
generating function (pgf) associated with discrete distribution are basic functions specifying
the likelihood of each potential result. Moreover, discrete distributions often come with
closed-form formulas for their pmf or pgf, facilitating their mathematical handling and
enabling efficient calculation of probabilities and statistical moments without needing to
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resort to integration. Additionally, discrete distributions are versatile in modeling numerous
real-life scenarios, such as species distribution within ecosystems, genetic variation within
populations, or traffic flow across networks. Hence, they are computationally efficient, as
their pmf or pgf can be used to compute probabilities and moments without having to
integrate over an interval.

Recently, different discrete models have been created, mainly in medical, engineering,
reliability, and survival analysis, among others. For detailed insights and employment
for discrete distributions, one might consult references [1,2] in addition to other sources.
Consequently, numerous researchers have extensively contributed to the creation and
enhancement of discrete reliability theory from diverse perspectives. The analysis of
continuous random variables commonly employs a range of techniques, including the
probability density function (PDF), cumulative distribution function (CDF), moments, and
hazard rate functions, along with other methods. To convert these continuous models
into discrete ones, several discretization techniques have been proposed and documented
in scholarly articles, aiming to establish a suitable discrete distribution that mirrors the
continuous model. Different discretization methods appeared in the literature, see for
example, Refs. [3–5] that provide a review of several discretization methods.

Commonly, researchers adopt a widely recognized discretization method based on the
survival function. In references [6,7], the discrete analogs of normal and the Rayleigh distri-
butions were presented, respectively, with the authors employing the survival technique for
the discretization method. Following this methodology, the discrete version of Burr Type-II
distribution was explored in [8]. Also, Ref. [9] discussed the discrete additive analog of the
Weibull distribution. Ref. [10] discretized the half-logistic distribution and employed it in a
reliability and risk analysis. One may refer also to [11–17] for more examples of discrete
versions of the distributions.

Haj Ahmad and Almetwally [18] used three different discretization methods for the
generalized Pareto distribution, the results look stimulating and there is motivation to
continue using them in this field. Still, there is an enduring necessity to refine existing
discrete models and develop new ones for better representation and fitting of big data that
appear and spread constantly in everyday human life.

In this paper, we apply two distinct discretization techniques to convert the continuous
Rayleigh–Lindley distribution (RLD) into a discrete form.

• The survival discretization method: The advantage of employing the survival dis-
cretization technique lies in its ability to preserve the statistical characteristics of the
basic distribution, such as the median and percentiles, alongside the distribution’s
general shape. However, a limitation of this approach is its computational demand,
often necessitating the use of numerical methods to handle complicated distributions.

• The hazard rate preservation method: This technique is designed to maintain the
hazard function’s structure when transitioning from a continuous to a discrete setting.
The hazard function, which represents the instant rate of failure at any given time, is
crucial for understanding the likelihood of an event occurring at a specific moment,
provided the event has not yet occurred. One of the primary benefits of this method
is its ability to closely replicate the behavior of the original continuous distribution
in a discrete framework. This is particularly valuable in reliability engineering and
survival analysis, where the timing of events is critical. A limitation of this approach
is that it may require substantial computational resources, especially for complex
distributions or when high precision is needed. This may limit its applicability in
real-time or resource-constrained environments.

Efficiency in discretization methods is defined by how effectively these methods can
transform continuous data into discrete forms while ensuring accuracy and retaining the
usefulness of the data with minimal information loss. There are several ways to measure
the efficiency of discretization methods, depending on the specific application and the type
of data being discretized. Some common measures of efficiency include information loss,
number of intervals, discretization error, and robustness, among others. The efficiency in
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this work is examined through the idea of minimizing the bias and mean squared error of
the estimated parameters; this is established for each discrete analog of the RLD.

This study aims to achieve several key objectives. Firstly, to present two new discrete
versions of the continuous RLD and explore their characteristics. Secondly, to conduct
inferential statistics for the parameters of these newly generated distributions and assess
the estimation performance. Thirdly, to evaluate the effectiveness of the new discrete
distributions by examining the bias and mean square error (MSE) of the estimators through
simulations and numerical methods, including the Monte Carlo technique, and finally, to
use real data examples as illustrative examples of the applications of the discrete analog
of RLD.

The novelty of this research stems from the fact that the hazard preservation dis-
cretization method has been virtually unused by researchers. Hence, we will explore the
two analogs, examining how the frequentist and Bayesian estimation techniques perform
when determining the point estimation for the parameters of the proposed discrete distri-
butions. Ultimately, our goal is to identify which analog demonstrates greater efficiency in
reducing bias and mean squared error (MSE) within the estimation framework

The remainder of this paper is structured as follows: Model descriptions and the
discretization methods are detailed in Section 2. Section 3 is dedicated to evaluating some
statistical functions for both analogs. In Section 4, the maximum likelihood estimation is
carried out, while Section 5 delves into Bayesian inference. Simulation analysis, results, and
discussions are provided in Section 6. Section 7 showcases real data analysis, and finally,
concluding remarks are offered in Section 8.

2. Rayleigh–Lindley Distribution and Methods of Discretization

The Rayleigh–Lindley Distribution (RLD) is a continuous distribution that builds
upon the foundations of both the Rayleigh and Lindley distributions. The statistical
characteristics, inferential statistics, and reliability analysis of the RLD have been thoroughly
investigated by Haj Ahmad et al. [19]. This distribution offers several advantages over the
original distributions and numerous others. Additionally, previous research has shown that
the Rayleigh–Lindley Distribution (RLD) is more effective at handling datasets with smaller
values than larger ones. Moreover, as the hazard rate increases, the Rayleigh–Lindley
model demonstrates superior performance in fitting data sets from the engineering field
when compared to the Weibull, Lindley, Rayleigh, Burr X, and Power Lindley distributions.
However, its continuous nature restricts its applicability for originally discrete datasets.
By discretizing the RLD, we obtain a new distribution that can handle count data while
retaining the RLD’s capacity for tail modeling. This paper introduces two discrete analogs
of the RLD.

The probability density function (pdf) for the continuous RLD is given as follows

f (x; α, θ) =
θ2

α2 (θ + 1)(x + 1)eθx

[
eθx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3

]
exp

[
−1
2α2 (

(1 + θ)eθx

(1 + θ + θx)
− 1)2

]
, x > 0, (1)

and the survival function (S ) is given by

S(x; α, θ) = exp

[
−1
2α2

(
(1 + θ)eθx

(1 + θ + θx)
− 1
)2]

, (2)

in which θ, α > 0 are the scale parameters.
The hazard rate function for the RLD is

h(x; α, θ) =
θ2

α2 (θ + 1)(x + 1)eθx

[
eθx(θ + 1)− (1 + θ + θx)

(1 + θ + θx)3

]
. (3)

In this study, our objective is to establish a new discrete version of the RLD, leading
to the creation of two discrete analogs. The first analog is derived using the survival
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discretization method and is referred to as DRLD1. The second discrete analog is derived
using the hazard preservation method and is denoted by DLRD2. The pmf and the CDF of
each distribution and their properties are presented in the following subsections.

2.1. The Method of Survival Discretization

Roy [6,7] introduced the pmf for a discrete distribution, utilizing the survival function
for its definition, and expressed it in the following manner:

P(X=k)=S(k)−S(k+1), k= 0, 1, 2, . . . (4)

with S(x) denoting the survival function given by Equation (2); therefore, the pmf for the
first Discrete Rayleigh–Lindley distribution analog (DRLD1) is given by:

P(k) = e−ω(α,θ,k) − e−ω(α,θ,k+1) (5)

where ω(α, θ, i) = 1
2α2

[
(1+θ)eθi

1+θ+θi − 1
]2

.
The DRLD1 distribution under the survival discretization method has a CDF

F(k)=1 − e−ω(α,θ,k+1) (6)

The hazard rate function for the DRLD1 is given by

hDRLD1(k) = exp[−ω(α, θ, k) + ω(α, θ, k + 1)] − 1

Figures 1 and 2 illustrate the behavior of the pmf and the hazard rate function, respectively,
for DRLD1 with different parameter values.

Figure 1. Graphs for the pmf of the DRLD1 distribution with various parameter values of α and θ.

(a) (b)
Figure 2. 3D surface plot of hazard rate of DRLD1 distribution. (a) α = 1.5, (b) θ = 1.

The limiting behavior of DRLD1 at the boundary points are:
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limk→∞ P(k) = 0
limα→∞ P(k) = 0
limk→0 P(k) = 1 − e−ω(α,θ,1)

limθ→∞ P(k) = 0
From the limiting behavior and Figure 1, we can summarize the effect of the parameters

on the pmf of DRLD1 as follows:

• Effect of α: As the value of α increases, the pmf curves tend to flatten, indicating a
broader spread of the probabilities across different values of k. This suggests that a
larger α parameter will reduce the rate at which probabilities decay, leading to a more
uniform distribution of the probability mass over the range of k. It highlights α’s role
in controlling the dispersion of the distribution.

• Effect of θ: The parameter θ affects the shape and skewness of the pmf curves. For a
fixed α, varying θ alters how quickly the probabilities decrease as k increases. Higher
values of θ tend to produce curves that drop off more sharply. This effect might be
due to the exponential terms involving θ in the ω function, affecting the exponential
decay rate of the pmf .

In summary, the parameter α primarily influences the spread or variation of the
distribution, with higher values leading to a flatter pmf curve. On the other hand, θ plays
a crucial role in determining the distribution’s shape and how the probability mass is
concentrated across different k values, with higher values leading to a more pronounced
decay in probabilities as k increases.

This analysis illustrates the importance of these parameters in shaping the behavior
of the distribution and highlights the flexibility of the DRLD1 model in accommodating
various probability distributions based on the choice of parameter values.

In Figure 2, the hazard rate function is plotted with different parameter values for
DRLD1, from which we can illustrate the behavior of the hazard function. The effect of the
parameters on the hazard rate is presented as follows:

• Hazard rate with θ = 1: With a fixed θ, the increasing values of α tend to modulate the
hazard rate’s sensitivity to changes in k. Specifically, lower values of α yield steeper
curves, indicating a higher hazard rate change rate over k. Conversely, higher α values
result in more gradual curves, suggesting a slower change in the hazard rate over k.
This style highlights α’s influence on spreading the risk over time, with higher values
smoothing the rate of change in the hazard rate.

• Hazard rate with α = 1: Keeping α constant, the variation in θ values reveals distinct
trends in the hazard rate’s evolution. Lower θ values produce relatively flat curves,
indicating a more uniform hazard rate across k. As θ increases, the curves show a
sharper descent, underscoring a rapid decrease in the hazard rate after an initial peak.
This behavior showcases θ’s role in determining the hazard rate’s peak and subsequent
decline, with higher values accelerating the peak’s onset.

These findings illuminate the effects of α and θ on the DRLD1’s hazard rate. α acts
as a dispersion control, affecting the pace at which the hazard rate changes over time. θ
influences the distribution’s skewness and the rapidity of the hazard rate’s peak, affecting
how quickly the probability of an event occurring decreases after reaching a certain point.
The utilization of distinct colors for each parameter combination in the plots not only aids
in visual discrimination but also in comprehensively understanding the accurate impact
of α and θ on the hazard rate’s behavior, providing valuable insights for modeling and
interpreting the dynamics of events described by the DRLD1.

2.2. Hazard Preservation Method

This method maintains the integrity of the hazard rate function through a two-step
process. Initially, assume X is a continuous random variable with CDF F(x), ranges over
the interval [0, ∞), and is utilized to create X1, a new continuous random variable. This
new variable X1 is characterized by a hazard rate function hX1(x) = e−F(x), (x ≥ 0). A
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comprehensive understanding of this methodology is referred to in [5], which serves as
an excellent resource. The discrete analog Y has a survival function that is described
as follows:

P(Y ≥ k) =
(
1 − hX1(1)

)(
1 − hX1(2)

)
. . .
(
1 − hX1(k − 1)

)
, k = 1, 2, . . . , m (7)

The pmf is written by

P(Y = k) =


hX1(0), k = 0,(

1 − hX1(1)
)(

1 − hX1(2)
)

. . .
(
1 − hX1(k − 1)

)
hX1(k), k = 1, 2, . . . , m,

0, otherwise.
(8)

It is important to highlight that the domain of Y corresponds to the value of m (which may
not necessarily be finite), so it is chosen to ensure the condition 0 ≤ h(y) ≤ 1 is fulfilled.

For X1 we define its hazard rate as

hX1(y) = exp

e

[
−1
2α2

(
(1+θ)eθy

(1+θ+θy)−1
)2
]
− 1

,

It is obvious that the condition 0 ≤ h(y)≤ 1 holds. The survival function in Equation (7)
for the DRLD2 is written as

P(Y ≥ k) =
k−1

∏
i=1

(
1 − exp

(
e−ω(α,θ,i) − 1

) )
. (9)

Hence, the CDF is

P(Y < k) = 1 −
k−1

∏
i=1

(
1 − exp

(
e−ω(α,θ,i) − 1

) )
(10)

The pmf is written as

P(Y = k) =

{
1, k = 0

exp
[
e−ω(α,θ,k) − 1

]
∏k−1

i=1 (1−exp
[
e−ω(α,θ,i) − 1

]
), k = 1, 2, . . . , m

(11)

The hazard rate for the DRLD2 is given by

hDRLD2(k) = exp
[
e−ω(α,θ,k) − 1

]
, k = 1, 2, . . . , m (12)

It is clear from Equation (12) that the hazard rate is a decreasing function for k.
Figures 3 and 4 show the behavior of the pmf and the hazard rate function respectively

of the DRLD2 for different parameter values.

Figure 3. Graphs for the pmf of the DRLD2 with various parameter values of α and θ.



Mathematics 2024, 12, 1261 7 of 17

(a) (b)
Figure 4. 3D surface plot of hazard rate of DRLD2 distribution. (a) α = 1, (b) θ = 1.

For the pmf of DRLD2 it can be realized from Figure 3 that for different values of the
parameters, the pmf decreases, The influence of α and θ is summarized as follows:

• As k increases from 1 onwards, the probability P(Y = k) shows a decreasing trend
for all combinations of α and θ. However, the rate of decrease and the pattern of the
probabilities vary significantly with different values of α and θ. This variation illus-
trates how these parameters modulate the distribution, affecting both the likelihood
of higher k values and the distribution’s tail.

• The decay pattern of P(Y = k) as k increases suggests that the distribution’s tail
becomes thinner or heavier depending on the values of α and θ. For some parameter
combinations, the probability decreases more sharply, indicating a thinner tail. In
contrast, other combinations show a more gradual decrease, suggesting a heavier tail
and hence a higher probability of larger k values.

• Comparing curves of different colors (each representing a unique combination of α
and θ) indicates that higher values of α and/or θ generally result in a quicker drop-off
in the probability as k increases. This suggests that larger values of these parameters
make higher k values less likely, potentially due to the increased spread or dispersion
introduced by α and the rate of decrease in probability mass with k influenced by θ.

• The product term in the pmf for k > 0 accumulates the effect of all previous k values,
introducing a dependence that shapes the overall distribution. The gradual decrease
for k > 1 highlights the cumulative impact of preceding probabilities, emphasizing
the distribution’s memory of past values. This effect is particularly noticeable in
distributions where the probabilities do not drop to near-zero immediately, illustrating
the balance between the likelihood of consecutive events.

In summary, the plot and the behavior of P(Y = k) underscore the critical roles of α
and θ in determining the distribution’s characteristics. The parameters not only influence
the initial probabilities but also significantly impact the distribution’s long-tail behavior,
with implications for how likely higher k values are under different conditions.

The unimodality property of the DRLD1 and DRLD2 distribution, as well as the
decreasing hazard rate curve, are consistent with the characteristics of the continuous RL
distribution, see [19].

Figure 4 represents the hazard rate behavior for the DRLD2 under different parameter
values. In plot (a) where α is fixed at 1, the hazard rate is plotted against θ and k. The color
gradient represents the magnitude of the hazard rate, with red being higher and blue being
lower. This plot shows a more pronounced curve in the surface as θ increases, indicating
that the hazard rate is more sensitive to changes in θ than to changes in α from the next
plot (b). As θ increases, for a given value of k, the hazard rate decreases, suggesting that the
parameter θ has an inverse relationship with the hazard rate.

In plot (b) where θ is fixed at 1, the hazard rate is shown as a function of α and k.
Again, the color gradient from red to blue indicates a decrease in the hazard rate value.
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The surface plot shows that as k increases, the hazard rate decreases smoothly without any
abrupt changes. For a fixed k, as α increases, the hazard rate decreases as well, which can
be observed from the gradient of the surface.

The behavior of the hazard rate in these plots can point out the reliability of a system,
where a lower hazard rate suggests a lesser likelihood of failure over time. The exact
interpretation would depend on the context of the parameters α, θ, and k, which could
represent physical properties or design parameters in an engineering system.

Understanding these relationships can help in designing systems with desired reliabil-
ity characteristics or in making predictions about system longevity or failure rates. For a
more detailed analysis, it would be necessary to know the specific context and definitions of
these parameters. Consequently, finding the estimated values of these parameters will lead
to a better understanding and prediction of the system’s reliability and failure times. Hence,
our next step is to use statistical inference to observe classical and Bayesian estimations for
the model parameters.

3. Statistical Functions

In this section, statistical functions such as Quantile, moments, skewness, kurtosis,
and ordered statistics are discussed for both discrete analogs of RLD.

3.1. Quantile Function

Due to the complexity of the CDF of DRLD1 and DRLD2, isolating k in the expression
of ω(α, θ, k) analytically is non-trivial and likely not possible to be exact due to the nature
of the expression involving both exponential and rational terms in k. Instead of an exact
analytical expression, one can use approximations or numerical methods for practical
applications. See Table 1 for some quantile values.

Table 1. Statistics for DLRD1 samples.

(α, θ) Q1 Median Q3 Mean Variance Skewness Kurtosis Range

(0.30, 0.80) 0.00 0.00 0.00 0.1906 0.1543 1.5755 3.4821 0–1
(1.50, 0.50) 2.00 3.00 4.00 3.0135 1.1724 −0.3520 2.8274 0–6
(1.00, 0.50) 2.00 2.00 3.00 2.3541 0.8954 −0.2713 2.7926 0–5
(0.20, 0.40) 0.00 1.00 1.00 0.8416 0.3669 0.0978 2.6259 0–3
(0.60, 0.60) 1.00 1.00 2.00 1.2112 0.4552 −0.0750 2.5224 0–3

3.2. Moments

Moments are important statistical functions. They provide comprehensive information
about the shape and characteristics of a probability distribution and have many applications
in quality control, risk management, and environmental studies among others. To find the
moments for the DRLD1, assume two non-negative random variables k∼DRLD1(α, θ), and
l∼DRLD2(α, θ). The sth moment, say µ′

s and µ∗′
s for DRLD1 and DRLD2 can be expressed,

respectively, as follows:

µ′
s =

∞

∑
k=0

ks
[
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]
. (13)

and

µ∗′
s =

∞

∑
l=0

lsP(Y = l). (14)

where P(Y = l) is defined by Equation (11). An exact expression for the sth moment cannot
be derived, therefore the Matlab (R2023a) software is useful for numerically evaluating the
moment. Tables 1 and 2 explore some functions like the mean, variance, skewness (SK), and
kurtosis (Kt) for different values of α and θ for DRLD1 and DRLD2, respectively. It can be
noticed that the DRLD1 distribution is appropriate for modeling under-dispersed data since
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in this model the variance is smaller than the mean, which is the case with some standard
classical discrete distributions. In addition, the positive and negative skewness values show
that this distribution can be skewed to the right or left. Also, a minimal skew value that
tends to zero indicates a possible symmetry curve for the pmf. The statistics for the DRLD2
indicate the suitability of this distribution to model both over and under-dispersed data
since the variance can be greater and less than the mean. For different parameter values,
the skewness can be positive and negative and some values are small enough to ensure a
symmetric pattern of the pmf. A higher kurtosis is an indicator of substantial tail risk and
are potential outliers compared to a normal distribution. One can realize the distribution
changes by varying θ and α.

Table 2. Statistics for DLRD2 samples.

(α, θ) Q1 Median Q3 Mean Variance Skewness Kurtosis Range

(0.30, 0.80) 0.00 1.00 2.00 1.25 3.58 2.29 9.67 0–15
(1.50, 0.50) 0.00 1.00 1.00 0.51 0.27 0.16 1.59 0–3
(1.00, 0.50) 0.00 0.00 1.00 0.51 0.29 0.76 7.56 0–7
(0.20, 0.40) 0.00 1.00 1.00 0.82 1.80 3.58 21.75 0–16
(2.00, 3.00) 0.00 1.00 2.00 1.36 3.91 2.14 9.18 0–17
(3.50, 0.50) 0.00 1.00 1.00 0.51 0.25 −0.01 1.07 0–2
(4.00, 0.50) 0.00 1.00 1.00 0.50 0.25 0.01 1.06 0–2

3.3. Order Statistics

Let Z1, Z2, . . . , Zn be a random sample with the DRLD1 and Z1:n, Z2:n, . . . , Zn:n denote
the corresponding order statistics. Then, the CDF of ith order statistics at the value z can be
written as follows

Fi:n(z; α, θ) =
n

∑
i=1

(
n
m

)
[Fi(z; α, θ)]m[1 − Fi(z; α, θ)]n−m. (15)

By using the negative Binomial theorem, we have

Fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Fi(z; α, θ)]m+j. (16)

Therefore,

Fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j[
1 − e−ω(α,θ,k+1)

]m+j
. (17)

Consequently, the pmf of the ith order statistic under the DRLD1 can be derived and
expressed as follows

fi:n(z; α, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j [
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]m+j
.

So, the rth moments of zi:n can be written as follows

E(Zr
i:n) =

∞

∑
z=0

n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

zr
[
e−ω(α,θ,k) − e−ω(α,θ,k+1)

]m+j
.

In a similar argument, the order statistics under the DRLD2 can be obtained by using
Equations (10) and (11).
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4. Maximum Likelihood Estimation

In this part of the study, we calculate the undetermined parameters for both versions of
the DRLD distribution by applying the Maximum Likelihood Estimation (MLE) approach.
To determine the required estimators, we use numerical methods, specifically adopting the
well-known Newton–Raphson method for the numerical computation.

Let x1, . . . , xn represent a random sampling from DRLD1. From the pmf in Equation (5),
the log likelihood function is given by:

ℓ(α, θ) =
n

∑
k=1

log(e−ω(α,θ,k) − e−ω(α,θ,k+1))

The Maximum Likelihood Estimators (MLEs) for the parameters α and θ are derived by
calculating the partial derivatives of the likelihood function ℓ(α, θ) for α and θ, respectively.
These equations are then set to zero, and the resulting system of equations is solved
numerically to obtain the estimations.

∂ℓ(α, θ)

∂α
=

n

∑
k=1

−ωα(α, θ, k)e−ω(α,θ,k) + ωα(α, θ, k + 1)e−ω(α,θ,k+1)

e−ω(α,θ,k) − e−ω(α,θ,k+1)
= 0 (18)

∂ℓ(α, θ)

∂θ
=

n

∑
k=1

−ωθ(α, θ, k)e−ω(α,θ,k) + ωθ(α, θ, k + 1)e−ω(α,θ,k+1)

e−ω(α,θ,k) − e−ω(α,θ,k+1)
= 0,

Such that ωα(α, θ, k) = ∂ω(α,θ,k)
∂α = − 2

α ω(α, θ, k) and

ωθ(α, θ, k) =
∂ω(α, θ, k)

∂θ
=

θkeθk

α2

[
(1 + θ)eθk

1 + θ + θk
− 1

][
1

1 + θ + θk
+

1 + k

(1 + θ + θk)2

]
.

Similarly, the MLEs of α and θ can be evaluated under DRLD2, in this case, the
log-likelihood function can be written depending on the pmf in Equation (11) as follows:

L(α, θ) =
n

∑
k=1

log

(
exp

[
e−ω(α,θ,k) − 1

] k−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

)

L(α, θ) =
n

∑
k=1

(
e−ω(α,θ,k) − 1

)
+

n

∑
k=1

k−1

∑
i=1

log
[
1 − exp

(
e−ω(α,θ,i) − 1

)]
Therefore, the partial derivatives of L(α, θ) to α and θ are

∂L(α, θ)

∂α
=

n

∑
k=1

−ωα(α, θ, k)e−ω(α,θ,k) +
n

∑
k=1

k−1

∑
i=1

ωα(α, θ, i)exp
(

e−ω(α,θ,i) − 1
)

e−ω(α,θ,i)

1 − exp
(
e−ω(α,θ,i) − 1

) = 0, (19)

∂L(α, θ)

∂θ
=

n

∑
k=1

−ωθ(α, θ, k)e−ω(α,θ,k) +
n

∑
k=1

k−1

∑
i=1

ωθ(α, θ, i)exp
(

e−ω(α,θ,i) − 1
)

e−ω(α,θ,i)

1 − exp
(
e−ω(α,θ,i) − 1

) = 0.

Solving the system of two nonlinear Equations (18) and (19) can only be done numeri-
cally. Numerous numerical methods have been employed in the literature; in this case, we
are utilizing the Newton–Raphson method. The discussion results are presented in Section 6.

5. Bayesian Inference

In this section, we employ the Bayesian approach to determine the unknown pa-
rameters of the two discrete RL distributions. The Bayesian technique assumes that the
parameters of the model are random variables adhering to a distribution known as the prior
distribution. Often, prior information is not readily available, necessitating the selection
of an appropriate prior. In this study, we opt for a joint conjugate prior distribution for
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the parameters α and θ, referred to as the modified Lwin Prior. This prior is specified by
assigning a Gamma distribution to α and a Pareto (I) distribution to θ. Consequently,

α ∼ Gamma(a1, b1) and θ|α ∼ Pareto(I)(αa2, b2)

where a1, a2, b1, and b2 are non-negative hyperparameters of the assumed distributions.
Reference [20] highlighted that expressing θ conditional on α holds more significance than
the reverse. Furthermore, they advocate that it is more pertinent to assume the prior
distributions for α and θ as independent.

Thus, the prior distributions for α and θ are presented as follows:

π1(α) =
b1

a1

Γ(a1)
αa1−1e−b1α,

π2(θ|α) =
αa2

θb2
(

θ

b2
)
−a2α

.

Therefore, the joint prior function for α and θ is

π(α, θ) ∝
αa1

θ
e−b1α(

θ

b2
)
−a2α

(20)

The joint posterior of α and θ under condition of data availability is given as

p(α, θ|x) = 1
K

L(x/α,θ)π(α, θ)

where L(x/α, θ) is the likelihood function of the DRLD, π(α, θ) is the joint prior given by
Equation (20), and K =

∫∫
L(x/α, θ)π(α, θ)dαdθ.

The process of estimating the parameters for the DRLD distribution has been examined
through the use of both symmetric squared error (SE) and asymmetric LINEX loss functions.
An evaluation of how well the estimators perform under these loss functions was conducted
via a simulation study. Criteria such as the bias and mean square error (MSE) are utilized
to determine the effectiveness of the estimation techniques.

The following loss functions are employed for estimating posterior functions.

(i) Squared error (SE) loss function: assuming SE loss function, Bayes estimation for the
parameters α and θ are defined as the mean or expected value for the joint posterior

α̂SE =
1
K

∫∫
αL(x/α, θ)π(α, θ)dαdθ

θ̂SE =
1
K

∫∫
θL(x/α, θ)π(α, θ)dαdθ (21)

(ii) LINEX loss function: under LINEX loss function, estimating parameters with Bayesian
method is written as

α̂LIN = −1
h

ln[
1
K

∫∫
e−hαL(x/α, θ)π(α, θ)dαdθ]

θ̂LIN = −1
h

ln[
1
K

∫∫
e−hθ L(x/α, θ)π(α, θ)dαdθ], (22)

where h is the value of the shape factor and it represents the orientation of asymme-
try; hence, in our study we select the values of h to be 1.5 and −1.5 in the simula-
tion analysis.

To calculate the expected values and perform the double integration required in
Equations (21) and (22), it is necessary to employ numerical approaches. We have chosen
to apply the Markov Chain Monte Carlo (MCMC) strategy, specifically utilizing the Gibbs
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sampling method, hence, we developed an appropriate R code to facilitate this process. For
additional information on this technique, interested readers can consult the reference [21].

We have to discuss two cases listed below as we developed two different discretization
methods on the continuous RLD.

Case 1
Utilizing the survival discretization method results in the derivation of DRLD1, whose

pmf is provided by Equation (5). The corresponding joint posterior density is as follows:

p1(α, θ/x) =
1
K

n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]αa1

θ
e−b1α(

θ

b2
)
−a2α

(23)

= Gα(a1 + 1, b1)Λ(α, θ),

where, Λ(α, θ) = 1
K ∏n

i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]
θ−αa2−1

b2
−αa2

, and G(.,.) denoting the Gamma
distribution.

The Bayes inference for the parameters α and θ under SE loss function is obtained
using Equation (21) and the posterior density is obtained using Equation (23)

α̂SE =
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1+1

θ
e−b1α(

θ

b2
)
−a2α

dαdθ

θ̂SE =
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

]
θ−a2α αa1 e−b1α(b2)

a2αdαdθ

Using the LINEX loss function, Bayesian estimation is derived from Equation (22) in
conjunction with the posterior density detailed in Equation (23)

α̂LIN = −1
h

ln[
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1

θ
e−(b1+h)α(

θ

b2
)
−a2α

dαdθ]

θ̂LIN = −1
h

ln[
1
K

∫∫ n

∏
i=1

[
e−ω(α,θ,i) − e−ω(α,θ,i+1)

] αa1

θ
e−b1α−hθ(

θ

b2
)
−a2α

dαdθ]

Case 2
The second discretization method of RL produces DRLD2 with the pmf presented in

Equation (11), so the joint posterior density is given by

p2(α, θ/x) =
1
K

n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1

θ
e−b1α(

θ

b2
)
−a2α

=
1
K

G
α
(a1 + 1, b1)Ψ(α, θ)

where Ψ(α, θ) = ∏n
j=1 exp

[
e−ω(α,θ,j) − 1

]
∏

j−1
i=1 (1−exp

[
e−ω(α,θ,i) − 1

]
) θ−a2α−1

b2
−a2α

Bayes estimation for the parameters α and θ under SE loss function is given as

α̂SE =
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1+1

θ
e−b1α(

θ

b2
)
−a2α

dαdθ

θ̂SE =
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
) αa1 e−b1α(

θ

b2
)
−a2α

dαdθ

With the LINEX loss function, Bayesian estimation for the parameters is obtained by:

α̂LIN = − 1
h

ln[
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,i) − 1

]
)

αa1

θ
e−(b1+h)α

(
θ

b2

)−a2α

dαdθ]
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θ̂LIN = − 1
h

ln[
1
K

∫∫ n

∏
j=1

exp
[
e−ω(α,θ,j) − 1

] j−1

∏
i=1

(1−exp
[
e−ω(α,θ,j) − 1

]
)

αa1

θ
e−b1α−hθ(

θ

b2
)
−a2α

dαdθ]

6. Simulation Analysis
Through this section, our goal is to assess how well the two discrete variants of the continuous

RL distribution perform by examining the point estimation accuracy of the unknown parameters in
terms of bias and MSE. Furthermore, we will compare their performance using various loss functions
outlined in Section 5. We will present some noteworthy findings and outcomes after this section.

In the simulation scenario, 10,000 iterations of random samples are generated using suitable
R-code. Some predetermined parameters values for α and θ are {0.5, 2}, with a sample size n =
{50, 100, 150} being considered.

The simulation analysis for estimating the parameters of the two discrete analogs of RL distri-
bution is presented in Tables 3 and 4. Primary findings from the simulation study are summarized
as follows:

Table 3. The MLE and the Bayesian inference for DRLD1 with estimation bias and MSE with various
values of parameters.

MLE Bayes (SE) Bayes (LINEX-1.5) Bayes (LINEX 1.5)

α θ n Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

50 α 0.2767 0.2983 0.3212 0.2058 0.4068 0.3078 0.2397 0.1283
θ 0.0082 0.0132 0.0124 0.0089 0.0207 0.0093 0.0392 0.0086

100 α 0.2356 0.2307 0.1285 0.0419 0.1434 0.0487 0.1136 0.0359
θ 0.0363 0.0107 −0.0113 0.0045 −0.0183 0.0044 −0.0338 0.0046

150 α 0.3009 0.0997 0.0808 0.0182 0.0866 0.0197 0.0751 0.0167
θ 0.0337 0.0020 −0.0104 0.0038 −0.0144 0.0037 −0.0246 0.0038

2

50 α 0.5566 0.3608 0.5221 0.5461 0.6359 0.7618 0.4130 0.3687
θ −0.3494 0.1234 −0.4743 0.3857 −0.4029 0.3057 −0.5439 0.4715

100 α 0.5084 0.3463 0.4526 0.2419 0.4738 0.2654 0.4059 0.2168
θ −0.3299 0.1133 −0.3927 0.1791 −0.3753 0.1629 −0.4083 0.1943

150 α 0.4642 0.3350 0.4105 0.1794 0.4233 0.1915 0.3955 0.1657
θ −0.3048 0.1024 −0.3731 0.1465 −0.3596 0.1355 −0.3847 0.1562

2

0.5

50 α 0.0949 0.0189 0.1408 0.2011 0.2307 0.2592 0.0498 0.1630
θ −0.0359 0.0015 −0.0340 0.0024 −0.0332 0.0024 −0.0349 0.0025

100 α 0.0936 0.0175 0.0366 0.0458 0.0540 0.0493 0.0193 0.0432
θ −0.0325 0.0012 −0.0328 0.0018 −0.0308 0.0018 −0.0328 0.0018

150 α 0.0828 0.0162 0.0199 0.0170 0.0263 0.0177 0.0135 0.0165
θ −0.0276 0.0011 −0.0309 0.0017 −0.0302 0.0017 −0.0309 0.0017

2

50 α 0.4530 0.3211 0.3866 0.4378 0.5541 0.6896 0.2218 0.2658
θ −0.1637 0.0295 −0.1801 0.0399 −0.1737 0.0376 −0.1866 0.0422

100 α 0.3739 0.3020 0.1408 0.0698 0.1632 0.0806 0.1182 0.0603
θ −0.1179 0.0215 −0.1206 0.0344 −0.1520 0.0335 −0.1721 0.0415

150 α 0.2530 0.2695 0.0899 0.0274 0.0982 0.0298 0.0815 0.0251
θ −0.1195 0.0176 −0.1209 0.0314 −0.1421 0.0308 −0.1621 0.0405
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Table 4. The MLE and the Bayesian inference for DRLD2 with estimation bias and MSE with various
values of parameters.

MLE Bayes (SE) Bayes (LINEX-1.5) Bayes (LINEX 1.5)

α θ n Bias MSE Bias MSE Bias MSE Bias MSE

0.5

0.5

50 α 0.2661 0.2635 0.3323 0.2177 0.4237 0.3308 0.2455 0.1332
θ 0.0026 0.0145 0.0151 0.0089 0.0236 0.0094 0.0063 0.0085

100 α 0.2373 0.2410 0.1272 0.0432 0.1426 0.0501 0.1119 0.0371
θ 0.0377 0.0125 −0.0133 0.0048 −0.0131 0.0047 −0.0054 0.0050

150 α 0.3020 0.0999 0.0801 0.0185 0.0860 0.0201 0.0742 0.0169
θ 0.0339 0.0020 −0.0125 0.0020 −0.0114 0.0038 −0.0046 0.0040

2

50 α 0.5574 0.3163 0.4552 0.2611 0.4168 0.1873 0.2431 0.1400
θ −0.3524 0.1254 −0.3046 0.1185 −0.2390 0.1031 −0.2154 0.0947

100 α 0.2587 0.2349 0.2426 0.2183 0.2045 0.1892 0.2040 0.1297
θ −0.3340 0.1162 −0.3042 0.1020 −0.2402 0.1018 −0.2044 0.0922

150 α 0.1574 0.2035 0.1421 0.1750 0.1417 0.1486 0.1390 0.1136
θ −0.3046 0.1023 −0.2380 0.0915 −0.1307 0.0901 −0.0939 0.0816

2

0.5

50 α 0.0541 0.0109 −0.0601 0.0101 0.0914 0.0103 −0.0666 0.0101
θ −0.0363 0.0015 −0.0391 0.0013 −0.0395 0.0013 −0.0393 0.0013

100 α 0.0496 0.0102 0.0479 0.0033 −0.0536 0.0035 −0.0564 0.0031
θ −0.0330 0.0012 −0.0361 0.0009 −0.0390 0.0009 −0.0385 0.0009

150 α 0.0317 0.0092 −0.0398 0.0014 −0.0231 0.0014 −0.0449 0.0013
θ −0.0288 0.0012 −0.0358 0.0008 −0.0380 0.0008 −0.0369 0.0009

2

50 α 0.0541 0.0109 0.0431 0.0070 0.0555 0.0114 0.0305 0.0037
θ −0.0363 0.0015 −0.0215 0.0013 −0.0206 0.0012 −0.0223 0.0014

100 α 0.0496 0.0102 0.0322 0.0014 0.0352 0.0017 0.0291 0.0012
θ −0.0330 0.0012 −0.0224 0.0012 −0.0218 0.0011 −0.0229 0.0012

150 α 0.0317 0.0092 0.0214 0.0013 0.0225 0.0014 0.0201 0.0011
θ −0.0288 0.0012 −0.0244 0.0012 −0.0234 0.0011 −0.0252 0.0013

• It is evident that the estimated parameter values approach the true values as the sample size
increases. This is indicated by the reduction in both MSE and bias with larger sample sizes,
demonstrating the consistency of the proposed estimators.

• When working with small sample sizes, Bayesian estimation with LINEX loss function yields the
lowest MSE and bias for estimating the parameter θ. In contrast, the SE loss function produces
the smallest MSE and bias for estimating α.

• For big sample sizes, LINEX loss function consistently achieves the lowest MSE and bias for the
two parameters α and θ.

• For both parameters α and θ, the Bayesian methods generally show a different bias and MSE
pattern compared to MLE. Specifically, the Bayesian SE method tends to have lower MSE than
MLE in many cases, suggesting that it might provide more accurate and reliable estimates under
certain conditions. For nearly all scenarios, both the LINEX and SE loss functions result in the
lowest bias and MSE values across various sample sizes.

• The LINEX penalties introduce variability in the performance, with LINEX-1.5 generally result-
ing in higher bias and MSE for α, especially when α = 2, suggesting a sensitivity to the loss
function’s shape.

• The performance of the estimation methods varies significantly between the two parameter
settings α and θ = 0.5 vs. 2. For instance when α and θ are both set to 2, the bias and MSE are
generally higher compared to when they are set to 0.5. This suggests that the true values of the
parameters can significantly affect the difficulty of the estimation problem.

When comparing the performance of the estimation methods for the parameters of the two
DGPD analogs, several insights emerge regarding the performance of these methods across different
conditions. Below are some general observations.
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• Across both distributions, the Bayesian methods, particularly with the Standard Error (SE)
approach, often show a lower MSE compared to the MLE, suggesting that in the context of these
simulations, Bayesian methods might offer a more robust approach under certain conditions.

• The bias for parameter α in DRLD2 seems to have less variability across different methods and
conditions compared to DRLD1. For example, in DRLD2, the bias values for α are generally
closer to zero, especially in the Bayesian SE and LINEX (−1.5) scenarios, indicating poten-
tially more accurate estimations. For parameter θ, the bias is also generally lower in DRLD2,
suggesting that the estimation methods may perform better on this distribution for θ.

• The MSE values for both α and θ tend to be lower in DRLD2 across most methods and conditions,
indicating a more precise estimation. This is particularly evident in the Bayesian SE and LINEX
(−1.5) methods, where the improvement in MSE is clear.

• The impact of increasing sample size on improving bias and MSE appears to be more consistent
in DRLD2 than in DRLD1, especially for the Bayesian methods. This suggests that DRLD2 may
be more amenable to these estimation techniques as the sample size increases.

• The Bayesian methods, especially with SE and LINEX (−1.5), show a notable improvement in
DRLD2 over DRLD1 in terms of both bias and MSE. This could be indicative of the Bayesian
methods being particularly well-suited for the characteristics of DRLD2.

The comparison between the two tables highlights that DRLD2 generally allows for more accu-
rate parameter estimation than DRLD1, as evidenced by lower bias and MSE across various methods
and conditions. The improvement is particularly noticeable with Bayesian estimation methods,
suggesting that these methods may be more effective for distributions with characteristics similar to
DRLD2. This could be due to differences in the underlying properties of the two distributions, such
as their sensitivity to sample size and the specific challenges they present for parameter estimation.

7. Real Data Examples
This section presents the analysis using a real dataset. The main goal of this section is to examine

the usefulness and applicability of the proposed discrete analogs to real phenomena. The first dataset
consists of the number of fires that occurred in Greece between 1 July and 31 August 1998. We only
take into account fires in forest districts. We considered a sample of data with a size of 24. The
minimum value is 1, the first quartile is 4, the median value is 7.5, the mean value is 6.88, the third
quartile is 9, the maximum value is 12, and the variance value is 8.9. The data are as follows:

Dataset I: 4, 3, 10, 5, 4, 5, 12, 3, 8, 10, 11, 6, 1, 8, 9, 9, 4, 8, 11, 8, 6, 4, 7, 9.
These data hae been discussed by [22]. We apply the Chi-square goodness of fit measure for

testing DRLD1 with the above set of data, the results are explored in Table 5. The observed p-value
indicates the suitability of DRLD1 to fit these data. Additionally, Figure 5 illustrates the connection
between observed probability distribution with the expected one, as well as the empirical CDF with
the expected CDF plot, and finally the Q-Q plot.

Table 5. MLE estimate and chi-square measure for dataset I.

Parameters MLE p-Value Test Statistics

DRLD1 α 0.1684 0.8366 0
θ 0.0849

Figure 5. P-P, Empirical CDF VS estimated CDF, and Q-Q plots for dataset I with DRLD1.

The second dataset represents a 25-day COVID-19 data set from the United States Virgin Islands,
recorded in May 2021. These data comprise daily new deaths. The data are as follows:

Dataset II: 4, 12, 3, 5, 12, 6, 9, 13, 10, 26, 32, 13, 10, 20, 18, 2, 18, 14, 24, 7, 30, 16, 26, 17, 23. The
data are available on the Worldometer website at [23]. Applying the Chi-square goodness of fit test
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to assess the appropriateness of the DRLD2 distribution for this dataset indicates that this model
is relatively well-suited for analyzing these data. The results are detailed in Table 6. Additionally,
Figure 6 displays the P-P plot, the empirical and estimated cumulative distribution functions, and the
Q-Q plot.

Table 6. MLE estimate and chi-square measure for dataset II.

Parameters MLE p-Value Test Statistics

DRLD2 α 0.1098 0.0853 0
θ 0.0305

Figure 6. P-P, Empirical CDF VS estimated CDF and Q-Q plots for dataset II with DRLD2.

8. Conclusions
Discrete distributions are a natural choice for modeling data that are limited to a finite or

countably infinite set of values, due to their simplicity, closed-form expressions, and ability to
model real-world phenomena. They are also computationally efficient and can be used to model
categorical data. In this study, the author developed two new discrete analogs of the Raleigh–Lindley
distribution. Their statistical properties are discussed, then estimation methods are applied to
assess the performance of estimation methods for the two analogs. The simulation study illustrates
the performance of MLE and Bayesian methods in estimating DRLD parameters. The choice of
estimation method and the specification of the Bayesian loss function can significantly impact the
bias and MSE of the estimates. These findings underscore the importance of considering the specific
context of the parameter estimation problem, including the sample size and the true parameter
values, when selecting an estimation approach. It was obtained that the new hazard preservation
method enhances the performance of estimation methods, this is especially evident in the Bayesian
estimation approaches, indicating that these techniques may be better suited for distributions that
share characteristics with DRLD2. This distinction could stem from the unique attributes of the two
distributions, including how they respond to changes in sample size and the particular obstacles they
pose for estimating parameters. Finally, two real data examples from the environment and health
fields are examined to assess the performance of each analog.

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for
Graduate Studies and Scientific Research, King Faisal University, Saudi Arabi, Grant No. [GrantA096].

Data Availability Statement: Data are contained within the article

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Xekalaki, E. Hazard function and life distributions in discrete time. Commun. Stat. Theory Methods 1983, 12, 2503–2509. [CrossRef]
2. Roy, D.; Ghosh, T. A new discretization approach with application in reliability estimation. IEEE. Trans. Reliab. 2009, 58, 456–461.

[CrossRef]
3. Bracquemond, C.; Gaudoin, O. A survey on discrete life time distributions. Int. J. Reliabil. Qual. Saf. Eng. 2003, 10, 69–98.

[CrossRef]
4. Lai, C.D. Issues concerning constructions of discrete lifetime models. Qual. Technol. Quant. Manag. 2013, 10, 251–262. [CrossRef]
5. Chakraborty, S. Generating discrete analogues of continuous probability distributions—A survey of methods and constructions. J.

Stat. Distrib. Appl. 2015, 2, 6. [CrossRef]
6. Roy, D. The discrete normal distribution. Commun. Stat. Theor. Methods 2003, 32, 1871–1883. [CrossRef]
7. Roy, D. Discrete Rayleigh distribution. IEEE. Trans. Reliab. 2004, 53, 255–260. [CrossRef]

http://doi.org/10.1080/03610928308828617
http://dx.doi.org/10.1109/TR.2009.2028093
http://dx.doi.org/10.1142/S0218539303001007
http://dx.doi.org/10.1080/16843703.2013.11673320
http://dx.doi.org/10.1186/s40488-015-0028-6
http://dx.doi.org/10.1081/STA-120023256
http://dx.doi.org/10.1109/TR.2004.829161


Mathematics 2024, 12, 1261 17 of 17

8. Al-Huniti, A.A.; Al-Dayjan, G.R. Discrete Burr type III distribution. Am. J. Math. Stat. 2012, 2, 145–152. [CrossRef]
9. Bebbington, M.; Lai, C.D.; Wellington, M.; Zitikis, R. The discrete additive Weibull distribution: A bathtub-shaped hazard for

discontinuous failure data. Reliab. Eng. Syst. Saf. 2012, 106, 37–44. [CrossRef]
10. Barbiero, A.; Hitaj, A. Discrete half-logistic distributions with applications in reliability and risk analysis. Ann. Oper. Res.

2024, 1–31. [CrossRef]
11. Sarhan, A.M. A two-parameter discrete distribution with a bathtub hazard shape. Commun. Stat. Appl. Methods 2017, 24, 15–27.

[CrossRef]
12. Yari, G.; Tondpour, Z. Discrete Burr XII-Gamma Distributions: Properties and Parameter Estimations. Iran. J. Sci. Technol. Trans.

Sci. 2017, 42, 2237–2249. [CrossRef]
13. Almetwally, E.M.; Ibrahim, G.M. Discrete Alpha Power Inverse Lomax Distribution with Application of COVID-19 Data. Int. J.

Appl. Math. 2020, 9, 11–22.
14. Eliwa, M.S.; Altun, E.; El-Dawoody, M.; El-Morshedy, M. A new three-parameter discrete distribution with associated INAR

process and applications. IEEE Access 2020, 8, 91150–91162. [CrossRef]
15. Al-Babtain, A.; Hadi, A.; Ahmed, N.; Afify, A.Z. A New Discrete Analog of the Continuous Lindley Distribution, with Reliability

Applications. Entropy 2020, 22, 603. [CrossRef] [PubMed]
16. Eldeeb, A.S.; Ahsan-Ul-Haq, M.; Babar, A. A Discrete Analog of Inverted Topp-Leone Distribution: Properties, Estimation and

Applications. Int. J. Anal. Appl. 2021, 19, 695–708.
17. Haj Ahmad, H.; Ramadan, D.A.; Almetwally, E.M. Evaluating the Discrete Generalized Rayleigh Distribution: Statistical

Inferences and Applications to Real Data Analysis. Mathematics 2024, 12, 183. [CrossRef]
18. Ahmad, H.H.; Almetwally, E.M. Generating optimal discrete analogue of the generalized Pareto distribution under Bayesian

inference with application. Symmetry 2022, 14, 1457. [CrossRef]
19. Haj Ahmad, H.; Bdair, O.M.; Naser, M.F.M.; Asgharzadeh, A. The rayleigh lindley distribution: A new generalization of rayleigh

distribution with physical applications. Rev. Investig. Oper. 2023, 44, 1–18.
20. Arnold, B.C.; Press, S.J. Compatible Conditional Distributions. J. Am. Stat. Assoc. 1989, 84, 152. [CrossRef]
21. Karandikar, R.L. On the markov chain monte carlo (MCMC) method. Sadhana 2006, 31, 81–104. [CrossRef]
22. Karlis, D.; Xekalaki, E.; Lipitakis, E.A. On some discrete valued time series models based on mixtures and thinning. In Proceedings

of the Fifth Hellenic-European Conference on Computer Mathematics and Its Applications, Athens, Greece, 20–22 September
2001; pp. 872–877.

23. Worldometers. Available online: https://www.worldometers.info/coronavirus (accessed on 1 June 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5923/j.ajms.20120205.07
http://dx.doi.org/10.1016/j.ress.2012.06.009
http://dx.doi.org/10.1007/s10479-019-03418-5
http://dx.doi.org/10.5351/CSAM.2017.24.1.015
http://dx.doi.org/10.1007/s40995-017-0396-5
http://dx.doi.org/10.1109/ACCESS.2020.2993593
http://dx.doi.org/10.3390/e22060603
http://www.ncbi.nlm.nih.gov/pubmed/33286375
http://dx.doi.org/10.3390/math12020183
http://dx.doi.org/10.3390/sym14071457
http://dx.doi.org/10.1080/01621459.1989.10478750
http://dx.doi.org/10.1007/BF02719775
https://www.worldometers.info/coronavirus

	Introduction
	Rayleigh–Lindley Distribution and Methods of Discretization
	The Method of Survival Discretization
	Hazard Preservation Method

	Statistical Functions
	Quantile Function
	Moments
	Order Statistics

	Maximum Likelihood Estimation
	Bayesian Inference
	Simulation Analysis
	Real Data Examples
	Conclusions
	References

