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Abstract: Here, we study the extension of p-trigonometric functions sinp and cosp family in complex
domains and p-hyperbolic functions sinhp and the coshp family in hyperbolic complex domains.
These functions satisfy analogous relations as their classical counterparts with some unknown
properties. We show the relationship of these two classes of special functions viz. p-trigonometric
and p-hyperbolic functions with imaginary arguments. We also show many properties and identities
related to the analogy between these two groups of functions. Further, we extend the research bridging
the concepts of hyperbolic and elliptical complex numbers to show the properties of logarithmic
functions with complex arguments.
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1. Introduction

The generalized complex numbers were introduced in [1,2] as follows:

Cp := {µ + iγ : µ; γ ∈ R; i2 = p; p ∈ R−}.

It was observed that Cp corresponds to the set of elliptical complex numbers. For ξ1 =
µ1 + iγ1 and ξ2 = µ2 + iγ2 ∈ Cp, addition and multiplication are defined by:

ξ1 + ξ2 =
(
µ1 + iγ1

)
+

(
µ2 + iγ2

)
=

(
µ1 + µ2

)
+ i

(
γ1 + γ2

)
,

and
ξ1ξ2 =

(
µ1µ2 + pγ1γ2

)
+ i

(
µ1γ2 + µ2γ1

)
.

As is well known, Cp is a field under these two operations [1]. On the other hand, the
p-magnitude of ξ = µ + iγ ∈ Cp is ∥ξ∥2

p = µ2 − pγ2. The unit circle in Cp is an Euclidean
ellipse, which is given by the equation µ2 − pγ2 = 1. Specially, if p = −1, this ellipse
matches the Euclidean unit.

Let ξ = µ + iγ ∈ Cp; it was observed in [1] that the number ξ can be expressed
with a position vector (see [1]). The arc of ellipse between this vector and the real axis
determines an elliptic angle θp. This angle is called p-argument of ξ. On the generalized
complex numbers and elliptical complex numbers in the literature, we invite the interest
of the readers to some interesting studies, namely [3–8] and the reference therein. The
authors of [1] introduced in Cp the p-trigonometric functions p-cosine, p-sine and p-tangent
as follows:
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cosp(θp) = cos
(√

|p|θp
)
, (1)

sinp
(
θp
)
=

1√
|p|

sin
(√

|p|θp
)
, (2)

tanp
(
θp
)
=

sinp
(
θp
)

cosp
(
θp
) . (3)

We may then define the other p-trigonometric functions as:

cotp(θp) =
cosp(θp)

sinp(θp)
=

√
|p| cos(θp

√
|p|)

sin(θp
√
|p|)

=
√
|p| cot(θp

√
|p|), (4)

secp(θp) =
1

cosp(θp)
=

1
cos(θp

√
|p|)

= sec(θp

√
|p|), (5)

cosecp(θp) =
1

sinp(θp)
=

√
|p|

sin(θp
√
|p|)

=
√
|p| cosec(θp

√
|p|). (6)

According to the generalized hyperbolic number system [9–13]:

Hp =
{

ξ = µ + iγ : µ, γ ∈ R, i2 = p, p ∈ R+
}

.

When p = 1, we get the hyperbolic numbers system:

H1 =
{

ξ = µ + iγ : µ, γ ∈ R, i2 = 1
}

.

We have introduced the new concept of generalized p-hyperbolic functions related to
the generalized hyperbolic number systems. We start by defining coshp, sinhp, tanhp, cothp,
sechp and cosecp functions, which generalize the standard hyperbolic functions. These
definitions run parallel to the definitions of generalization of p-trigonometric functions.
For p > 0, we define the following p-hyperbolic functions as:

coshp(µ) = cosh(
√

pµ), (7)

sinhp(µ) =
1
√

p
sinh(

√
pµ), (8)

tanhp(µ) =
sinhp(µ)
coshp(µ)

=
sinh(

√
pµ)

√
p cosh(

√
pµ)

, (9)

cothp(µ) =
coshp(µ)
sinhp(µ)

=

√
p cosh(

√
pµ)

sinh(
√

pµ)
, (10)

sechp(µ) =
1

coshp(µ)
=

1
cosh(

√
pµ)

, (11)

cosechp(µ) =
1

sinhp(µ)
=

√
p

sinh(
√

pµ)
. (12)

In recent times, properties involving p-trigonometric and hyperbolic functions have
become a subject of intense discussion, and there exists vast literature on such functions.
For more information on this topic, one may refer to [14] and the references therein. The
purpose of this paper is twofold. We begin with a short survey of results from [3,7]. Then,
we extend the ideas from [14] to define corresponding generalization of hyperbolic functions
and study relations of p-trigonometric and p-hyperbolic functions on a complex domain.
The connection between the p-trigonometric and p-hyperbolic functions is established by
the definition of such functions of a generalized complex number. We have developed
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a generalization of the usual logarithm and power of complex functions, based on the
properties of p-generalized complex numbers. We have established some basic relations
for the proposed p-logarithmic functions. For example, the p-logarithm of product and
quotient of members of Cp.

The use generalized trigonometric functions as the basis has already been studied
by Harkin and Harkin [1]. However, many formal proofs on orthogonality and series
expansions, etc., do not exist in the literature, unlike for other special functions. The main
contribution of this paper is to show the duality between p-trigonometric and p-hyperbolic
functions. Once we develop the relationship between the p-trigonometric and p-hyperbolic
functions, this can lead to the solution of complex differential equation problems involving
p-complex numbers. It is well-known that standard hyperbolic and trigonometric functions
are solution of certain class of ODEs. Orthogonality of these basis functions can only be
developed by first investigating the duality between the p-hyperbolic and p-trigonometric
functions with complex arguments which is the main motivation of this paper.

2. The p-Trigonometric Functions with Generalized Complex Variables

In the following definitions, we introduce the concepts of p-trigonometric functions
with a generalized complex variable.

Definition 1. Following [3], for ξ = µ + iγ ∈ CP, where i2 = p < 0,

cosp(ξ) =
eiξ + e−iξ

2
, (13)

sinp(ξ) =
eiξ − e−iξ

2i
. (14)

Remark 1. When ξ = µ ∈ R,

cosp(µ) =
eiµ + e−iµ

2
, (15)

sinp(µ) =
eiµ − e−iµ

2i
. (16)

Remark 2. When ξ = µ ∈ R and p = −1 (i2 = −1), we obtain the classical relations:

cos(µ) =
eiµ + e−iµ

2
, (17)

sin(µ) =
eiµ − e−iµ

2i
. (18)

Lemma 1. For all ξ ∈ Cp with p < 0, the following identity holds:

cosp2(ξ)− p sinp2(ξ) = 1.

Definition 2. For ξ ∈ Cp, we define the p-trigonometric functions with a generalized complex variable:

tanp(ξ) =
sinp(ξ)
cosp(ξ)

, (19)

cotp(ξ) =
cosp(ξ)
sinp(ξ)

=
1

tanp(ξ)
, (20)

secp(ξ) =
1

cosp(ξ)
, (21)



Mathematics 2024, 12, 1242 4 of 13

cosecp(ξ) =
1

sinp(ξ)
. (22)

3. The p-Hyperbolic Functions with Generalized Hyperbolic Complex Variables

In the following definition, we introduce the concepts of p-hyperbolic functions with
hyperbolic complex variable [15,16].

Definition 3. For ξ = µ + iγ ∈ Hp where i2 = p > 0,

coshp(ξ) =
e(
√

pξ) + e(−
√

pξ)

2
, (23)

sinhp(ξ) =
e(
√

pξ) − e(−
√

pξ)

2
√

p
. (24)

Remark 3. When ξ = µ ∈ R,

coshp(µ) =
e
√

pµ + e−
√

pµ

2
, (25)

sinhp(µ) =
e
√

pµ − e−
√

pµ

2
√

p
. (26)

Remark 4. When ξ = µ ∈ R and p = 1 (i2 = 1), we obtain the classical relations:

cosh(µ) =
eµ + e−µ

2
, (27)

sinh(µ) =
eµ − e−µ

2
. (28)

Remark 5. When p = 1, we obtain:

coshp(µ) = cosh(µ), (29)

sinhp(µ) = sinh(µ), (30)

tanhp(µ) = tanh(µ), (31)

cothp(µ) = coth(µ). (32)

Proposition 1. For p > 0, the following identities hold:

coshp(µ) =
e
√

pµ + e−
√

pµ

2
, (33)

sinhp(µ) =
e
√

pµ − e−
√

pµ

2
√

p
, (34)

tanhp(µ) =
e
√

pµ − e−
√

pµ

√
p
(
e
√

pµ + e−
√

pµ
) , (35)

cothp(µ) =
√

p
(
e
√

pµ + e−
√

pµ
)

e
√

pµ − e−
√

pµ
. (36)

Proof.

coshp(µ) = cosh(
√

pµ) =
e
√

pµ + e−
√

pµ

2
, (37)
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sinhp(µ) =
1
√

p
sinh(

√
pµ) =

e
√

pµ − e−
√

pµ

2
√

p
, (38)

tanhp(µ) =
sinhp(µ)
coshp(µ)

=
e
√

pµ − e−
√

pµ

√
p
(
e
√

pµ + e−
√

pµ
) , (39)

cothp(µ) =
coshp(µ)
sinhp(µ)

=

√
p
(
e
√

pµ + e−
√

pµ
)

e
√

pµ − e−
√

pµ
. (40)

Remark 6. When p = 1, we obtain the following classical identities:

cosh(µ) =
eµ + e−µ

2
, (41)

sinh(µ) =
eµ − e−µ

2
, (42)

tanh(x) =
eµ − e−µ

eµ + e−µ , (43)

coth(µ) =
eµ + e−µ

eµ − e−µ . (44)

Proposition 2. For p < 0, the following identities hold:

cosp(iµ) =
epµ + e−pµ

2
, (45)

cosp(iµ) = cosh|p|
(√

|p|µ
)

, (46)

cosh|p|(iµ) = cosp
(√

|p|µ
)

. (47)

Proof. From identity (13), we have:

cosp(iµ) =
ei2µ + e−i2µ

2
=

epµ + e−pµ

2
.

On the other hand, since p = − | p | for p < 0, we my write:

cosp(iµ) =
epµ + e−pµ

2

=
e−|p|µ + e|p|µ

2

=
e

√
|p|

(√
|p|µ

)
+ e

−
√

|p|

(√
|p|µ

)
2

= cosh |p|
(√

|p|µ
) (

by (25)
)
.
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Similarly, from identity (23), we have:

cosh|p|(iµ) =
e
√

|p|iµ + e−
√

|p|iµ

2

=
ei
√

|p|µ + e−i
√

|p|µ

2

= cosp
(√

|p|µ
)

(by (13)).

Proposition 3. For p < 0, the following statements are true:

sinp(iµ) =
epµ − e−pµ

2i
, (48)

isinp(iµ) = −
√
|p| sinh|p|

(√
|p|µ

)
, (49)

√
|p| sinh|p|(iµ) = i sinp

(√
|p| µ

)
. (50)

Proof. From identity (14), we have:

sinp(iµ) =
ei2µ − e−i2µ

2i
=

epµ − e−pµ

2i
.

On the other hand, since p = − | p | for p < 0, we may write:

sinp(iµ) =
epµ − e−pµ

2i

=
e−|p|µ − e|p|µ

2i
.

From which it follows that

isinp(iµ) =
e
−

(√
|p|
√

|p|µ

)
− e

(√
|p|
√

|p|µ

)
2

=

√
|p|

(
e−(

√
|p|
√

|p|µ) − e(
√

|p|
√

|p|µ)
)

2
√
|p|

= −
√
|p| sinh |p|

(√
|p|µ

)
(by (26)).

From identity (24), we have:

√
|p| sinh|p|(iµ) =

e
√

|p| iµ − e−
√

|p| iµ

2

=
ei
√

|p| µ − e−i
√

|p| µ

2

= i
ei
√

|p| µ − e−i
√

|p| µ

2i

= isinp
(√

|p| µ

)
(by (14)).
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Definition 4. For ξ ∈ Hp, we define the p-hyperbolic functions:

tanhp(ξ) =
sinhp(ξ)
coshp(ξ)

, (51)

cothp(ξ) =
coshp(ξ)
sinhp(ξ)

=
1

tanhp(ξ)
, (52)

sechp(ξ) =
1

coshp(ξ)
, (53)

cosechp(ξ) =
1

sinhp(ξ)
. (54)

Proposition 4. The following identities hold for µ ∈ R and p < 0:

tanp(iµ) =
i√
|p|

tanh|p|
(√

|p|µ
)

, (55)

cotp(iµ) = − i√
|p|

coth|p|
(√

|p|µ
)

. (56)

Proof. By taking into account the identities (46) and (49), we obtain:

tanp(iµ) =
sinp(iµ)
cosp(iµ)

=
i√
|p|

sinh|p|
(√

|p|µ
)

cosh|p|
(√

|p|µ
)

=
i√
|p|

tanh|p|
(√

|p|µ
)

.

A similar calculation based on identities (46) and (49) yields:

cotp(iµ) = − i√
|p|

coth|p|
(√

|p|µ
)

.

Proposition 5. The following identities hold for µ ∈ R and p < 0:

secp(iµ) = sech|p|
(√

|p|µ
)

, (57)

cosecp(iµ) = −i cosech|p|
(√

|p|µ
)

. (58)

Proof.

secp(iµ) =
1

cosp(iµ)
=

1
cosh|p|(µ) = sech|p|

(√
|p|µ

)
.
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Similarly,

cosecp(iµ) =
1

sinp(iµ)
=

√
|p|

i sinh|p|
(√

|p|µ
) =

√
|p|
i

cosech|p|
(√

|p|µ
)

.

4. The p-Complex Logarithmic Functions and p-Complex Powers of Generalized
Complex Numbers

The multi-valued function log is defined by:

log(ξ) = ln(|ξ|) + i.arg(ξ), ξ ∈ C, (59)

where ξ ̸= 0 is called the complex logarithm.

Remark 7. For ξ ∈ C with ξ ̸= 0, it is well known that

log(ξ) = log |ξ|+ i
(
θ + 2kπ), k ∈ Z (60)

where, −π ≤ θ < π.
Moreover,

ξa = ea log(ξ) = ea
(

ln |ξ|+i
(

θ+2kπ
))

. (61)

Let ξ = µ + iγ be a number in C∗
p, where:

C∗
p =

{
µ + iγ, ; µ, γ ∈ R, i2 = p, p ∈ R− (p < 0)

}
.

The p-magnitude of ξ = µ + iγ ∈ C∗
p is given by ∥ξ∥p =

√
|µ2 − pγ2|.

For i2 = p < 0 we have eiµ = cosp(µ) + isinp(µ) and

e
i

(
θp+

2π√
|p|

)
= cosp

(
θp +

2π√
|p|

)
+ i · sinp

(
θp +

2π√
|p|

)
= cosp

(
θp
)
+ i · sinp

(
θp
)

= eiθp .

Remark 8. We observe that

e
i 2πk√

|p| = 1, k = 0,±1, ±2, · · · . (62)

According to [1], it is well known for ξ = φ + iψ ∈ Cp that we have:

eξ = eφ+iψ

= eφ · eiψ

= eφ
(
cosp(ψ) + isinp(ψ)

)
.

For ξ ∈ Cp ̸= 0, we need to define ω = logp(ξ) for which pω = ξ.
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Definition 5. Let ξ = µ + iγ ∈ C∗
p with ξ ̸= 0. The p-complex logarithm of ξ is defined by:

logp(ξ) = log(||ξ||p) + i · argp(ξ) (63)

= log
(√

|µ2 − pγ2|
)
+ i

(
θp +

2πk√
|p|

)
. (64)

Definition 6. For ξ ∈ Cp, with ξ ̸= 0 the principal value of p-complex logarithm is defined by:

Logp(ξ) = ln(||ξ||p) + iθp, (65)

where, θp ∈
(

−π√
|p|

, π√
|p|

]
.

Remark 9. We observe that for ξ ∈ Cp with ξ ̸= 0, we have:

logp(ξ) = Logp(ξ) + i
2kπ√
|p|

, k ∈ Z. (66)

Proposition 6. Let ξ1, ξ2 ∈ Cp with ξ1, ξ2 ̸= 0, then the following identities hold:

logp(ξ1.ξ2) = logp(ξ1) + logp(ξ2). (67)

Proof. According to [1] we may write

ξ1 = ||ξ1||p
(
cosp(θp) + isinp(θp)

)
,

and
ξ2 = ||ξ2||p

(
cosp(θ′p) + isinp(θ′p)

)
.

Then,

ξ1.ξ2 = ||ξ1||p . ||ξ2||p
(

cosp(θp + θ′p) + isinp(θp + θ′p)

)
.

From which we obtain:

logp(ξ1 · ξ2) = ln
(
||ξ1||p · ||ξ2||p

)
+ i(θp + θ′p)

= ln
(
||ξ1||p

)
+ ln

(
||ξ2||p

)
+ i(θp) + i(θ′p)

= ln
(
||ξ1||p

)
+ iθp + ln

(
||ξ2||p

)
+ i θ′p

= logp(ξ1) + logp(ξ2).

Therefore, the proof is complete.

Remark 10. In general, for ξ1, ξ2 ∈ Cp with ξ1.ξ2 ̸= 0, the following identity does not hold:

Logp(ξ1.ξ2) ̸= Logp(ξ1) + Logp(ξ2), (68)

as shown in the following example.

Example 1. Consider ξ1 = ξ2 = p < 0; we have:

Logp(ξ1 · ξ2) = Logp(p2) = ln(|p2|) + i0

= 2 ln(|p|).
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However,

Logp(ξ1) = Logp(p)

= ln(|p|) + i
π√
|p|

.

Similarly,

Logp(ξ2) = ln(|p|) + i
π√
|p|

.

Therefore,

Logp(ξ1) + Logp(ξ2) = 2ln(|p|) + i
2π√
|p|

.

From the above calculation, we obtain:

Logp(ξ1 .ξ2) ̸= Logp(ξ1) + Logp(ξ2).

Proposition 7. Let ξ1, ξ2 ∈ Cp, such that ξ1 = ||ξ1||p eiθp and ξ2 = ||ξ2||p eiφp

for which {θp, φp} ∈
(

−π

2
√

|p|
, π

2
√

|p|

]
. Then,

Logp(ξ1 · ξ2) = Logp(ξ1) + Logp(ξ2). (69)

Proof. Since,

Logp(ξ1) = ln||ξ1||p + iθp,

and

Logp(ξ2) = ln||ξ2||p + iφp,

we obtain

Logp(ξ1) + Logp(ξ2) = ln||ξ1||p + ln||ξ2||p + i(θp + φp)

= ln(||ξ1||p · ||ξ2||p) + i(θp + φp).

On the other hand, according to [1], we have:

ξ1 · ξ2 = ||ξ1||p · ||ξ2||p ei(θp+φp),

and, consequently,

Logp(ξ1 · ξ2) = ln(||ξ1||p · ||ξ2||p) + i(θp + φp).

Under the condition for

{θp, φp} ∈
(

−π

2
√
|p|

,
π

2
√
|p|

]
,

we have

{θp + φp} ∈
(

−π√
|p|

,
π√
|p|

]
.
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Therefore,

Logp(ξ1.ξ2) = Logp(ξ1) + Logp(ξ2).

Proposition 8. Let ξ1, ξ2 ∈ Cp such that ξ1 ̸= 0 and ξ2 ̸= 0. Then,

logp

(
ξ1

ξ2

)
= logp(ξ1)− logp(ξ2). (70)

Proof.

logp(ξ1ξ2) = ln
( ||ξ1||p
||ξ2||p

)
+ i

(
θp − φp +

2kπ√
|p|

)

logp(ξ1) = ln||ξ1||p + i
(

θp +
2kπ√
|p|

)
and

logp(ξ2) = ln||ξ2||p + i
(

φp +
2k′π√
|p|

)

logp(ξ1)− logp(ξ2) = ln||ξ1||p − ln||ξ2||p + i
(

θp − φp +
2(k − k′)π√

|p|

)
= ln

( ||ξ1||p
||ξ2||p

)
+ i

(
θp − φp +

2rπ√
|p|

)
.

Remark 11. In general, ξ1, ξ2 ∈ Cp −
{

0
}

, then

Logp

(
ξ1

ξ2

)
̸= Logp(ξ1)− Logp(ξ2). (71)

Definition 7. Let ξ and a ∈ Cp with ξ ̸= 0; we define:

ξa = ea logp(ξ). (72)

The principal determination of ξa is given by:

ξa = ea Logp(ξ). (73)

Remark 12. For {ξ, a} ∈ Cp with ξ ̸= 0, we have:

ξa = ea logp(ξ)

= e
a

(
log

(
||ξ||p

)
+iargp(ξ)

)

= e
a

(
log

(√
|µ2−pγ2|

)
+i
(

θp+
2πk√
|p|

))
.



Mathematics 2024, 12, 1242 12 of 13

Remark 13 (Branches of Logarithms). From the identity:

logp(ξ) = log(||ξ||p) + i
(

θp +
2πk√
|p|

)
,

and by assuming Θp = θp +
2πk√
|p|

, we can write:

log(ξ) = ln(∥ξ∥p) + iΘp.

Now, let α be any real number. If we restrict the value of α so that α < Θp <

(
α +

2πk√
|p|

)
,

then the function
log(ξ) = ln(∥ξ∥p) + iΘp,

is a single-valued function in the above stated domain.
Observe that for each fixed α, the single-valued function log(ξ) = ln(∥ξ∥p) + iΘp is a

branch of the multiple-valued function log . The function Log(ξ) = ln(∥ξ∥p) + iΘp, where

− π√
|p|

< Θp ≤ π√
|p|

is called the principal branch.

Example 2. If i is generalized imaginary number, find ii.
According to (72), we may write

ii = ei(log ||i||p+i·argp(i))

= e
i

(
log

(√
|p|
)
+i
(

θp+
2πk√
|p|

)) (
since, log ∥i∥p =

√
|p|

)
= e

i log(
√

|p|)+i2
(

θp+
2kπ√
|p|

)
where, i2 = p

= e
i log

√
|p|+p

(
θp+

2kπ√
|p|

)
.

Remark 14. Now, the question is when p = −1 what happens? We obtain

ii = ei(log(i)

= ei log
√

1+i
(

θ−1+2kπ
))

= e−
(

θ−1+2kπ
)

= e−
π
2 e−2kπ ; k = 0, ±1 ± 2 · · · .

The principal branch of ii is e−
π
2 .

Remark 15. According to Example 2 and Remark 14, we observe that for p = −1, ii is real number;
however, for p ̸= −1, ii is general complex number.

5. Conclusions

In this paper, we provide rigorous proofs for some important identities related to
bridging the family of p-trigonometric and p-hyperbolic functions, involving the p-complex
numbers. We also extend these properties to the logarithmic functions with complex
arguments. The study of these special functions will also help in the development of the
unknown properties and identities involving other classes of p-special functions.

In future, study can be extended to similar relationships between the inverse p-
trigonometric functions and inverse p-hyperbolic functions [17,18]. The study of ordinary
differential equations (ODEs) involving complex numbers and their solutions in the gen-
eralised p-trigonometric and hyperbolic function basis can also be explored in the future.
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This may also involve the study of the orthogonality properties of the basis of complex
ODEs and their solution using various integral transforms.
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