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Abstract: The potential outcomes framework serves as a fundamental tool for quantifying causal
effects. The average dose–response function µ(t) (also called the effect curve) is typically of interest
when dealing with a continuous treatment variable (exposure). The focus of this work is to determine
the impact of an extreme level of treatment, potentially beyond the range of observed values—that
is, estimating µ(t) for very large t. Our approach is grounded in the field of statistics known as
extreme value theory. We outline key assumptions for the identifiability of the extreme treatment
effect. Additionally, we present a novel and consistent estimation procedure that can potentially
reduce the dimension of the confounders to at most 3. This is a significant result since typically, the
estimation of µ(t) is very challenging due to high-dimensional confounders. In practical applications,
our framework proves valuable when assessing the effects of scenarios such as drug overdoses,
extreme river discharges, or extremely high temperatures on a variable of interest.

Keywords: causal inference; potential outcomes; extreme value theory; extreme causal effect;
dimension reduction
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1. Introduction

Quantifying causal effects is a fundamental problem in many diverse fields of re-
search [1–4]. Some prevalent examples include the impact of smoking on developing
cancer [5], the influence of education on increased wages [6], the effects of various mete-
orological factors on precipitation [7] or the effect of policy design on various economy
factors [8].

The potential outcomes framework [9] has been the fundamental language to express
the notion of the causal effect. The crux of this framework lies in acknowledging that,
in any given scenario, multiple potential outcomes exist based on different interventions or
exposures [10]. This perspective challenges researchers to consider not only the observed
outcome but also the unobserved outcomes that could materialize under alternative condi-
tions. The typical focus in causal inference is on the binary treatment variable (exposure).
However, binary treatment is unable to differentiate between different levels of the treat-
ment variable. This issue can be partially solved by assuming a continuous treatment.
For example, Refs. [11,12] proposed an estimator based on local linear smoothing. Ref. [13]
discussed the combination of parametric and non-parametric models for the effect curve
estimation. Refs. [14,15] utilized marginal structural causal models framework. Refs. [16,17]
applied neural networks for the effect estimation. However, typical methods that work
with a continuous treatment variable are not well suited for the inference that goes beyond
the observed range of the data.

In this paper, we are interested in the extreme treatment effect, that is, the quantity
of interest is the effect of an extreme level of treatment, outside of the observed range.
Consider the following example from medicine: Assume that the data of a study (either
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randomized or observational) are available to us, with the health status (Y) of patients and
the corresponding dose of a medicine administrated (T). The data available only depict
Y when T ≤ 20 mg. What if then, we would like to know the change in Y when the dose
is increased to T = 25 mg? Answering this inquiry is hard, since we have zero data to
answer it (this might be considered unethical to give such a dose to a patient), and we must
rely on strong unverifiable assumptions and extrapolation. Additionally, in the case of
observational studies, high-dimensional confounders pose yet another significant challenge.

The connection between causal inference and extreme value theory has been receiving
increasing interest. Refs. [18,19] analyze the Extreme Quantile Treatment Effect (EQTE) of
a binary treatment on a continuous, heavy-tailed outcome. The paper authored by [20]
develops a method to estimate the EQTE and the Extreme Average Treatment Effect (EATE)
for continuous treatment. Ref. [21] developed a framework for Granger-type causality
in extremes. Some other approaches for causal discovery using the extreme values in-
clude [22–25]. Ref. [26] propose graphical models in the context of extremes. Ref. [27]
analyzed the the effect of climate change on weather extremes. Ref. [28] proposed a frame-
work for extreme event propagation. Ref. [29] study probabilities of necessary and sufficient
causation as defined in the counterfactual theory using the multivariate generalized Pareto
distributions. We contribute to this growing literature and provide a theoretically well-
founded approach for estimation and inference of the extremal treatment effect.

Recent advancements in machine learning research have spotlighted the extrapolation
capabilities of different models [30–33]. For instance, ‘engression’, as proposed by [34],
presents a framework that serves as an extrapolating alternative to regression-based neural
networks. Similarly, Ref. [35] explored extrapolation of conditional expectations by assum-
ing that the maximum derivative occurs within the observed range of support, and while
these approaches are not inherently causal, they can be construed as such under certain
assumptions. Despite achieving cutting-edge performance, these methods encounter two
primary limitations: difficulty handling multiple confounders and reliance on often unin-
terpretable extrapolation assumptions. In contrast, our framework focuses on the causal
aspect of the extrapolation and can handle a large number of confounders. This is achieved
under weak assumptions commonly embraced in the extreme value theory. Moreover, our
framework relies on strong yet more interpretable extrapolation assumptions; while our pri-
mary focus is on linear regression, our approach has the flexibility to integrate with various
machine learning methodologies, potentially improving the overall performance. However,
this integration may come at the expense of losing interpretability for certain assumptions.

As for the application in this work, we consider a dataset describing extreme precipi-
tation and river discharge levels in Switzerland. A historical record indicates a maximum
precipitation level near Zurich’s meteo-station on 6 June 2002, reaching an extreme of
111 mm

m2 . This event coincided with the river Reuss (near Zurich) nearly breaching its banks,
causing damage to adjacent settlements. We focus on the following question: how would
the river discharge alter if the precipitation on that day were to reach 120 mm

m2 ? Would the
river breach its banks under such circumstances? We anticipate that the effect of precipi-
tation on river discharge may vary between the body of the distribution and its tail. This
anticipation stems from several factors: During periods of light to moderate precipitation,
the ground absorbs a significant portion of the rainfall, reducing its contribution to the
river flow. In contrast, during severe rainstorms, a larger proportion of the precipitation
directly contributes to the river flow, potentially resulting in a more pronounced impact on
discharge levels. Therefore, we expect to observe differing, potentially more severe, impacts
of extreme precipitation on discharge levels compared to moderate events, highlighting the
importance of understanding such dynamics across varying levels of precipitation intensity.

The structure of this paper is as follows: we introduce the notation and preliminaries
on causal inference and extreme value theory in Section 2. In Section 3, we present the main
assumptions along with some simple theoretical implications. In Section 4, we introduce
a practical statistical methodology for estimating an extreme treatment effect from the
data. Section 5 explains our methodology using a simple simulated example and discusses
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simulation results. In Section 6, we explore the application of inferring the effect of extreme
precipitation on river discharge levels.

This manuscript includes five appendices: Appendix A introduces a second real-world
application regarding the compressive strength of concrete, which has been relocated to the
appendix for the sake of brevity. Appendix B contains a detailed simulation study, explor-
ing the methodology under various conditions, including (1) a varying dimension dim(X),
(2) comparison with classical methods from the literature, (3) a hidden confounder, (4) differ-
ent dependence structures, and (5) varying dose–response functions. Appendix C contains
a detailed inference process for the river application described in Section 6. Appendix D
provides a more detailed explanation of the bootstrap algorithm used in the inference
process and presents the theory behind the consistency result. Finally, proofs can be found
in Appendix E.

2. Problem Statement, Notation and Preliminaries

Following [36], we define dose–response functions in the potential outcomes frame-
work. We consider the triplet of (X, T, Y), where X ∈ X ⊆ Rd, T ∈ T ⊆ R, and Y ∈ Y ⊆ R
denote the confounders, treatment, and response variable, respectively, in an observational
causal study. We assume a continuous treatment setting, where T = (τL, τR) for some
τL, τR ∈ R := R∪ {−∞} ∪ {∞}. Here, τR ∈ R∪ {∞} is the right endpoint of the support
of T. For simplicity, assume that the right endpoint of the support of T | X = x is equal to
τR for all x ∈ X . Let Y(t) be a set of potential outcomes corresponding to the hypothetical
world in which T = t is set deterministically. The fundamental problem of causal inference
arise, since in the real world, each individual can only receive one treatment level T, and
we only observe the corresponding outcome Y = Y(T).

We observe a random sample {Xi, Ti, Yi}n
i=1 of size n ∈ N. It follows from our setting

that, given the observed covariates, the distribution of the potential outcome for one
unit is assumed to be unaffected by the particular treatment assignment of another unit
(Stable Unit Treatment Value Assumption). We utilize the letter H for a (possible) hidden
confounder. We denote vectors by bold letters. For any pair of continuous random variables
Z and Z′, we denote its probability distribution function PZ(·), density function pZ(·) and
a conditional density pZ|Z′(· | ·).

The average dose–response function and patient-specific dose–response function are
defined as

µ(t) = E[Y(t)], µx(t) = E[Y(t) | X = x],

respectively. Although the term “dose” is typically associated with the medical domain,
we adopt here the term dose–response learning in its more general setup: estimating the
causal effect of a treatment on an outcome across different (continuous) levels of treatment.
Our objective is to learn the behavior of µ(t) or µx(t) for t ≈ τR.

For a pair of real functions f1, f2, we employ the following notation: f1(t) ∼ f2(t)
for t → τR, if limt→τR

f1(t)
f2(t)

= 1. The sequence of random variables approaches the same
distribution as the sample size grows. In the remainder of the paper, we assume that
µ(t), µx(t) are continuous on some neighborhood of τR for all x.

2.1. Classical Assumptions

Two classical assumptions in the literature for identifying the average dose–response
function are as follows:

• Unconfoundedness: Given the observed covariates, the distribution of treatment
is independent of the potential outcome. Formally, we have T ⊥⊥ Y(t) |X, ∀t ∈ T ,
where ⊥⊥ denotes the independence of random variables.

• Positivity: pT|X(t | x) > 0 for all t, x, where pT|X represents the conditional density
function of the treatment given the covariates.
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Under these assumptions, [36] showed the identifiability of the dose–response func-
tion via

µx(t) = E[Y|T = t, X = x], and µ(t) = E[µX(t)] = E[E[Y|T = t, X = x]], (1)

where the inner expectation is taken over Y, and the outer expectation is taken over X.
Even if we are not willing to rely on the unconfoundedness assumption, it may often

still be of interest to estimate the function t → E[E[Y|T = t, X = x]] as an adjusted
measure of association, defined purely in terms of observed data. It may be interpreted
as the average value of Y in a population with exposure fixed at T = t, but it is otherwise
characteristic of the study population with respect to X [11,12,37].

When the positivity assumption is violated, a different type of extrapolation arises [38],
which is different from the one considered in this work. This scenario occurs when the
distributional support of variable T varies across different levels of confounding variables
X. Various approaches have been devised to confront this challenge, including propensity
thresholding [39].

Several algorithms were proposed to estimate the function µ(t) in the body of the
distribution of T. State-of-the-art methods estimate µ(t) via ∑i:Ti≈t wiYi for appropriate
weights wi what serve to “erase” the confounding effect of X [11,40–43]. Typically, the es-
timation of µ(t) involves a two-step procedure [5,36,44]. In the first step, we model the
distribution T | X, also known as the propensity. In the second step, we model the dis-
tribution of Y | T, suitably adjusted by the propensity, with the aim of mitigating the
confounding effect of X.

Ref. [36] introduced a generalized propensity score (GPS) defined as e(t, x) := pT|X(t |
x). One common approach is to model pT|X using a Gaussian model. In binary treatment
cases (when T = {0, 1}), the propensity score is a probability denoted as e(1, X) = P(T =
1 | X) and is typically modeled using logistic regression. Subsequently, we define weights
wi as wi := 1

ê(Ti ,Xi)
or stabilized weights wi := p̂T(Ti)

e(Ti ,Xi)
, where we additionally model and

estimate the marginal distribution of T, denoted as p̂T .
In a similar vein, Ref. [5] introduced the concept of a “uniquely parameterized propen-

sity function assumption,” which states that for every value of X, there exists a unique finite-
dimensional parameter θ ∈ Θ such that e(· | X) depends on X only through θ(X). Since
θ(X) contains all information about the confounding, we only model E[Y | T = t, θ(X) = s]
instead of E[Y | T = t, X = x] in Equation (1). In a vast majority of applications, θ(X)
corresponds to the parameters of a normal distribution; to the best of our knowledge, there
has been no exploration of the extreme value distribution in this particular context.

2.2. Extreme Value Theory

When dealing with extreme values, it is easy to introduce a strong selection bias.
A naive approach for estimating µ(t) for large values of t might involve only considering
observations where t exceeds a certain threshold, denoted as τ, and computing µ(t) using
conventional techniques, while disregarding all values below this threshold. This is a
typical approach of many classical algorithms, which estimate µ(t) by focusing solely on
a local neighborhood of observations around t. However, this approach can introduce a
significant selection bias. In its extreme manifestation, all observations where t exceeds τ
might exclusively pertain to men, for instance. The selection bias arises if the effect of T on
Y differs between men and women (see Figure 2 in Section 5.1 with τ = 3). We employ the
Extreme Value Theory technique known as peaks-over-threshold to tackle this issue.

Extreme value theory is a sub-field of statistics that explores techniques for extrapolat-
ing the behavior (distribution) of T beyond the observed values. A limiting theory posits
that the tail of T can be well approximated by the Generalized Pareto Distribution (GPD),
as detailed in the following explanation.

Consider a sequence (Ti)i≥1 of independent and identically distributed (iid) random
variables with a common distribution F, and Mn = maxi=1,...,n Ti represents the running
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maximum. It is well known [45] that if there exists a non-degenerate distribution G such that
Mn−bn

an

D→ G as n→ ∞ for some sequences of constants {an, bn}∞
n=1 ∈ RN

+ ×RN, then G falls
within the Generalized Extreme Value (GEV) distribution family. This can equivalently be
expressed using the following definition:

Definition 1 ([46]). The distribution F is in the max domain of attraction of a generalized extreme
value distribution (notation F ∈ MDA(γ)) if there exist γ ∈ R and sequences of constants
an > 0, bn ∈ R, n = 1, 2, . . . such that limn→∞ Fn(anx + bn) = exp(−(1 + γx)−1/γ) for all x
satisfying 1 + γx > 0. In case γ = 0, the right side is interpreted as exp(−e−x). The parameter γ
is called the extreme value index (or shape index).

This condition is mild as it is satisfied for most standard distributions, for example,
the normal, Student-t and beta distributions. The following crucial theorem states that the
tail of T can be well approximated by GPD if the distribution of T belongs to MDA(γ).

Theorem 1 (Theorem 4.1 in [47]). Let T ∼ F ∈ MDA(γ). Then, for large τ ≈ τR, there exist
σ > 0, γ ∈ R such that the distribution of T − τ | T > τ is approximately GPD(0, σ, γ).

GPD distribution has three parameters, namely a location τ ∈ R, scale σ > 0 and a
shape γ ∈ R. Its distribution function takes the following form:

H(x) =

{
1−

(
1 + γ x−τ

σ

)−1/γ, γ ̸= 0,
1− exp

(
− x−τ

σ

)
, γ = 0,

defined on the support [τ− σ/γ, ∞), (−∞, ∞), (−∞, τ− σ/γ] for cases γ < 0, γ = 0, γ > 0,
respectively. Cases when γ > 0, γ = 0, and γ < 0 correspond to the Fréchet, Gumbel,
and Weibull distributions, respectively, [45,48].

Note that when the distribution of T − τ given T > τ follows a GPD with parameters
0, σ, and γ, an equivalent assertion can be made that T given T > τ follows a GPD with
parameters τ, σ, and γ. We denote θ = (τ, σ, γ)⊤.

Assumption 1. We assume that the distributions T and T | X are in the max domain of attraction
of a generalized extreme value distribution.

3. Our Tail Framework

We aim to model the effect of a treatment variable T in the context of extreme values
of T. However, it is essential to approach the term ‘extreme’ with caution, considering the
discrepancy between real-world implications and the interpretations within our model.
Take, for instance, if T represents a drug dose in milligrams; our model operates under the
assumption that T tends toward τR, which can be potentially larger than several kilograms.
While this mathematical abstraction lacks practical significance—given that administering
several kilograms of a drug is physically implausible—the model does include values
of T that are arbitrarily large. Of course, we do not claim that our model performs well
when T equals several kilograms but only that it performs well for T in the ’reasonable
neighborhood’ of the observed values.

3.1. Assumptions

We are not aiming to estimate the complete µ(t) but rather only its values for large t.
Therefore, we can relax the classical assumptions for the identification of µ(t); what we
specifically need is their tail counterparts.

Assumption 2 (Unconfoundedness in tail). For all x ∈ X , it holds that

E[Y(t) | X = x] ∼ E[Y | X = x, T = t] as t→ τR. (Unconfoundedness in tail)
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We always assume the existence of the expected values.

Rather than simply writing t → τR, we frequently opt for the notation t(x) → τR to
emphasize its dependence on the random variable X. Note that Assumption 2 is strictly
less restrictive than the Unconfoundedness assumption introduced in Section 2.1.

Remark 1. To provide some intuition regarding the permissiveness of Assumption 2, we rephrase
our framework in the language of structural causal models (SCM, [49]). Assume that the data-
generating process of the output Y is as follows:

Y = fY(T, X, H, ε), ε ⊥⊥ (T, X, H).

Here, H represents a (possible) latent confounder of T and Y. Then, the dose–response function has
a form µ(t) = E[ fY(t, X, H, ε)] where the expectation is taken with respect to (X, H, ε)⊤.

Assumption 2 can be rephrased as follows: there exists a function f̃Y such that

fY(t, x, h, e) ∼ f̃Y(t, x, e) as t→ τR, (Unconfoundedness in tail in SCM)

for all admissible values of x, h, e. This assumption is valid for example in additive models; that is,
when fY(t, x, h, e) = f̃Y(t, x, e) + g(h) for some functions f̃ , g.

Additionally, we restate the positivity assumption in the context of its tail counterpart.

Assumption 3 (Positivity in tail). pT|X(t | x) > 0 for all x and all t > t0 for some t0 ∈ T , where
pT|X represents the conditional density function of the treatment given the covariates.

Note that this assumption is weaker than Assumption 1.

3.2. Adjusting Only for θ(X)

The following lemma serves as a tail counterpart of an identifiability for the classical
framework. It states that, under Assumptions 2 and 3, the tail of the dose–response function
is identifiable from the observational distribution via the propensity function π0(t, x).

Lemma 1 (Identifiability). Under Assumptions 2 and 3, it holds that

µ(t) ∼ E{π0(T, X)Y | T = t}, as t→ τR, (2)

where π0(t, x) := pT(t)
pT|X(t|x)

is the (stabilized) propensity function.

Recall that the distribution of T | X = x, conditioned on T > τ(x) for large τ(x) ≈ τR,
is approximately GPD with parameters θ(x) = (τ(x), σ(x), γ(x)). The following result
suggests that instead of conditioning on (potentially high-dimensional) covariates X, we
only need to condition on θ(X).

Lemma 2. Under Assumptions 1 and 2, for all s in the support of θ(X) holds

E[Y(t) | θ(X) = s] ∼ E[Y | T = t, θ(X) = s] for t→ τR. (3)

Hence,
µ(t) ∼

∫
E[Y | T = t, θ(x)]pθ(X)(x)dx for t→ τR.

Lemma 2 suggests that it is sufficient to condition only on θ(X) rather than on X.
This finding is pivotal for dimension reduction, effectively reducing the dimension from
dim(X) to at most 3. Nonetheless, this is merely a limiting result, and it introduces an
approximation error into the GPD approximation for finite samples.
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3.3. Model for the Conditional Expectation of Y Given a T

Under Assumption 2, modeling µX reduces to a statistical modeling of E[Y | T, X].
Furthermore, under Assumptions 1 and 2, it reduces to modeling E[Y | T, θ(X)]. In prin-
ciple, a wide range of models can be considered, ranging from simple linear models to
non-parametric neural networks. The principle of Occam’s razor suggests that, especially
when extrapolating beyond the range of observed values, simpler models often prove to
be the most effective choices [50]. The extrapolation capabilities of various models have
recently garnered attention in machine learning research. Ref. [34] introduced the ‘engres-
sion’ framework as an extrapolating counterpart to regression-based neural networks, and
while we build our framework under a linear model for simplicity, it is possible to utilize
different models, such as the engression-based ones. Figure 1 illustrates the extrapolating
properties of various commonly used models.
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Figure 1. Extrapolation of E[Y | T = t] under various models (without confounding). The upper three
figures illustrate a first-order extrapolation approach, employing a linear fit at the boundary of the
support of T. In contrast, the lower three figures depict estimations generated by distinct models: the
first utilizes a pre-additive noise model parameterized by neural networks [34], the second employs
smoothing splines [51], and the third utilizes a random forest approach [52].

A straightforward approach to model E[Y | T = t, X = x] under the assumption of
linearity-in-the-tail would be assuming an existence of functions α̃, β̃ such that

E[Y | T = t, X = x] ∼ α̃(x) + β̃(x)t, as t→ τR. (4)

Following the notation in Remark 1, this corresponds to assuming

fY(t, x, h, e) ∼ α̃(x) + β̃(x)t as t→ τR,

for all admissible values of h, e. This assumption is valid for example in additive models
where fY(t, x, h, e) = α̃(x) + β̃(x)t + g(x, h, e) for some function g. However, using the
result from Lemma 2, it is sufficient to condition only on θ(X) instead of potentially high-
dimensional X. Therefore, we introduce the following model assumption:
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Assumption 4 (Conditional linearity of tail). There exist functions α and β such that for all s in
the support of θ(X), the following holds:

E[Y | T = t, θ(X) = s] ∼ α(s) + β(s)t, as t→ τR. (5)

Such an assumption was explored in various contexts (typically where θ(X) represents
parameters of a normal distribution, see [5] or Section 2.2.1 in [44]; to the best of our
knowledge, the extreme case was not yet explored). We can construct our inference method
by estimating α and β using various machine-learning methodologies. This is discussed
in Section 4.

4. Inference and Estimation

Let (xi, ti, yi)
n
i=1 be the observed data. In the following, we propose a methodology for

the estimation of µ(t) for t ≈ τR under Assumptions 1, 2, and 4.
Consider the following two-step procedure. In the first step, we approximate the

tail of T | X using GPD (that is, we estimate the location, scale, and shape parameters
θ(X) = (τ(X), σ(X), ξ(X))). In the second step, we estimate the expectation of Y given a
large T conditional on the estimated GPD parameters θ̂(X).

1. Estimate θ(x):

• Choose q ∈ (0, 1).
• Estimate the covariant-dependent threshold τ(x) using a quantile regression,

that is, estimate q-quantile of T | X = x.
• From now on, restrict our inference on the observations from S := {i : ti > τ̂(xi)}.
• Estimate θ(x) in the tail model, that is, estimate (σ, ξ) from the data points in S

in the model, where

T | T > τ̂(x), X = x ∼ GPD(τ̂(x), σ(x), ξ(x)).

2. Estimate µ(t) or µx⋆(t) using θ̂(x):

• Estimate α, β in model (5) from the data points in S (that is, we only consider
t > τ̂(x)).

• Return µ̂(t) := 1
n ∑n

i=1 α̂[θ̂(xi)] + β̂[θ̂(xi)]t or µ̂x⋆(t) := α̂[θ̂(x⋆)] + β̂[θ̂(x⋆)]t.

The first step is a very standard procedure in the extreme-value literature called ’peak-
over-threshold’ [47]; it is standard to assume a constant shape parameter γ(x) ≡ γ ∈ R
since in practice, it is untypical for the shape parameter to change with covariates [53,54].
For the estimation of τ(x), σ(x), α(x), β(x), we use either linear parametrization (that is,
τ(x) = τ⊤x, σ(x) = σ⊤x, α(s) = α⊤s, β(s) = β⊤s for some real coefficients τ, σ, α, β and
their estimation is carried out via classical maximum likelihood) or non-parametric smooth
estimation using splines (GAM, [51]), but any method can be used in practice. In case of
a very small sample size, we can also assume a constant scale parameter σ(x) ≡ σ ∈ R in
order to reduce the dimension of the estimation.

The choice of q in the first step is a standard issue in extreme value theory [55–57].
For theoretical results, q should be growing with the sample size; that is, q = qn satisfying
limn→∞ qn = 1 and limn→∞ n(1− qn) = ∞. In practical terms, q should be set as high
as possible while ensuring that a sufficient amount of data remains above the threshold
to maintain good inferential properties. Classical choices include q = 0.9, q = 0.95, or
q = 0.99, depending on the size of our dataset.

We utilize the basic bootstrap technique (sometimes also called Efron’s percentile
method, see Chapter 23 in [58]) to establish confidence intervals. This involves random
sampling, with replacement, from our dataset to generate multiple bootstrap samples,
each matching the size of our original dataset. For each bootstrap sample, we calculate
the estimate of the statistic µ̂⋆(t). Subsequently, we determine the α-percentiles of the re-
sampled statistics to derive the confidence intervals. Details can be found in Appendix D.1.
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Remark 2. One must be cautious when interpreting confidence intervals during extrapolation.
Generally, estimation of µ(t) is subject to two primary sources of bias: (1) bias stemming from model
misspecification, and (2) bias arising from estimation variance; while the former bias can be mitigated
within the body of the distribution by comparing different models and employing cross-validation,
AIC or BIC criteria to select the most suitable model, this approach becomes less reliable in the
extremal region. Eliminating this bias necessitates observation of data within the region of interest.
The latter bias stemming from estimation uncertainty can be addressed by computing confidence
intervals (in our case, via bootstrapping). It is important to note that our bootstrap confidence
intervals only account for the latter bias, and consequently, the first type of bias presents a greater
challenge during extrapolation since it is, in principle, unquantifiable without additional data.

Theorem 2 (Idea: Precise statements can be found in Appendix D). Assuming that the
conditions outlined in either Theorem A1 or Theorem A2 are met, our procedure is consistent.
Furthermore, under the assumptions detailed in Theorem A3, the bootstrap confidence intervals are
asymptotically consistent at a correct level.

In our procedure, we adopt a practice common in extreme value theory, where we
concentrate solely on the extreme observations (set S) while discarding all non-extreme
values. This approach stems from the rationale that extreme observations provide the
most valuable insights into out-of-support behavior. Utilizing data within the body of the
distribution may introduce bias, as these values may exhibit different behavioral patterns.
Mathematically, this rationale can be expressed through an examination of the precision of
the GPD approximation. This approximation shows high precision exclusively in extreme
values while displaying bias and low precision for non-extreme values.

5. Illustration and Experiments

In this section, we assess the performance of our methodology using both a simple
illustrative example and experimental data. A comprehensive simulation study is provided
in Appendix B.

The quantity of interest in the application presented in Section 6 is the difference
µ(t1)− µ(t2) for t1, t2 < τR. Hence, in the simulations, we focus on estimating

ωx := lim
t→∞

[µx(t + 1)− µx(t)] or ω := lim
t→∞

[µ(t + 1)− µ(t)],

assuming τR = ∞ and that the corresponding limits exist. Note that under the linear
model (5), the limit exists and corresponds to the parameter ωx = β[θ(x)]. Here, ωx can
be regarded as the tail counterpart of a coefficient βx in a linear model Y = αx + βxT + ε,
where αx and βx are real coefficients, possibly dependent on X.

5.1. Simple Example

The subsequent illustrative example outlines our methodology and the main ideas.
Consider a single confounder X = X1 ∼ Bernoulli (0.75) (where X1 = 1 denotes men and
X1 = 0 denotes women, for instance). Define T = X1 + εT , where εT ∼ N (0, 1) (indicating
that T generally tends to be larger for men than for women). Let

Y =


T + ε, when X1 = 1, T > 1,
2T + ε, when X1 = 0, T > 1,
2− T + ε, when T ≤ 1,

where ε ∼ N (0, 1).
Simple computation gives us µ(t) = 0.75t + (1− 0.75)2t = 1.25t for any t > 1, while

µ(t) = −t + 2 for t ≤ 1. Consequently, our primary interest lies in estimating the slope

ω = µ(t + 1)− µ(t) = 1.25 for t > 1.
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We generate data as specified with a sample size of n = 500. Setting the threshold at q = 0.9,
we employ the methodology outlined in Section 4 to estimate ω. This process is repeated
100 times, yielding a mean and 0.95 quantile of

ω̂ = 1.26± 0.39.

Additionally, we employ the bootstrap technique to calculate confidence intervals, and we
obtain a confidence interval of the form ω ∈ (0.72, 1.87) on average. We see from other
simulations that these confidence intervals are slightly conservative for n ≤ 1000 but work
well for larger sample sizes.

In Figure 2, we present one generated dataset with a sample size of n = 500, show-
casing various methodologies from the existing literature and their extrapolation efficacy.
Notably, classical techniques often exhibit a tendency to underestimate µ(t) for t large,
primarily due to the fact that only the ‘men’ category (X = 1) received T > 2.

−1 0 1 2 3 4 5 6

−
2

0
2

4
6

8
10

DRF estimate

T

Y

True line
Our estimate
CI our estimate
Kennedy et al
Bia et al.
HI using GAM
IPTW

Figure 2. Left: Dataset generated based on the simulations outlined in Section 5.1 with n = 500.
Points falling within the set S are identified by a blue square. Right: Estimation of µ(t) using
various methods: orange represents the true µ(t), blue depicts our estimate employing the method
from Section 4 with 95% confidence intervals, grey illustrates the doubly robust estimation method
introduced by [11,59], red showcases the additive spline estimator described in [60], dark green
demonstrates the approach proposed by [36] utilizing a GAM outcome model (further details in [61]),
and purple describes the inverse probability of treatment weighting estimator [62].

We conclude with an important remark regarding the sample size: a substantial
amount of valuable information is lost when we discard 90% of the data by focusing solely
on the data in the set S (data above the threshold τ(x)). This is the primary reason behind
the considerably large confidence intervals and the heightened variability in our estimates.
We encounter the inevitable bias-variance trade-off; the inclusion of more data introduces a
potential bias, given that the behavior of µ(t) differs in the body and in the tail.

5.2. Simulations

We provide a comprehensive discussion of all simulations in detail in Appendix B.
In our study, we devised several simulation setups to model diverse scenarios and explore
them thoroughly. Specifically, we focused on the following five key scenarios:

1. Investigating how our method scales with respect to the dimension of the confounders
d = dim(X).

2. Comparing our method with classical methods from the literature.
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3. Expanding upon the simple example introduced in Section 5.1, wherein we evaluated
performance across various dependence structures (employing different copulas),
sample sizes, and a spectrum of causal effects.

4. Examining the presence of a hidden confounder affecting both T and Y.
5. Focusing on variations in the function µ(t).

In this section, we present two key findings from our simulation study. Table 1
illustrates how our methodology scales with varying dimensions of the confounders
d = dim(X). Additionally, Table 2 depicts the comparison of our method with other
classical methods from the literature, where we estimated µ(t̃) for t̃ = maxi=1,...,n ti + 10.

Table 1. Estimates of ω = −1 with varying dimensions of the confounders d = dim(X) and with
different distributions of the noise of T. The sample size is n = 5000. The full simulations setup can
be found in Appendix B.1.

True ω = −1 Gaussian εT Exponential εT Pareto εT

d = 5 ω̂ = −1.0± 0.03 ω̂ = −1.0± 0.01 ω̂ = −1.0± 0.001

d = 25 ω̂ = −0.96± 0.08 ω̂ = −0.99± 0.01 ω̂ = −1.0± 0.001

d = 50 ω̂ = −0.75± 0.28 ω̂ = −0.97± 0.09 ω̂ = −0.99± 0.01

d = 200 ω̂ = −0.44± 0.37 ω̂ = −0.53± 0.42 ω̂ = −0.91± 0.68

Table 2. Comparing the extrapolation performance of various models using the average Absolute
Relative Error (ARE) across 100 simulations with varying dimension of the confounders d = dim(X).
The interpretation of the values is as follows: if the true value of µ(t̃) is 1, an ARE of 0.17 indicates an
approximate typical error of |µ̂(t̃)− µ(t̃)| ≈ 0.17. Bold values correspond to the algorithm with the
best performance.

Our Method Bia et al. [60] Kennedy et al. [11] HI with GAM [36] IPTW [62]

d = 2 0.18 0.68 0.64 0.42 3.89

d = 10 0.48 0.81 0.65 0.67 5.69

d = 30 0.79 0.92 could not handle 0.92 4.70

Table 1 suggests that the results are reasonably accurate as long as d ≤ 25. As dis-
cussed in the Appendix B, the reason for the bias observed in larger dimensions d is that
Assumption 1 and Lemma 2 are only asymptotic results, and with higher dimensions d, we
require more data for the asymptotic theory for T | X to take effect. It is well known that
the convergence rate of the maxima of the Gaussian random sample to an extreme value
distribution is very slow, whereas it is faster with Exponential or Pareto distribution [63].

Analysis of Table 2 reveals that our method achieves the smallest extrapolation error.
Hirano and Imbens [36] method utilizing a GAM outcome model showed surprisingly
reasonable performance, while the IPTW method [62] exhibits poor performance due to
the quadratic nature of the extrapolating curve. Please note that our method assumes
linearity in the tail. If this assumption is not met, our method may produce inferior results.
In such instances, alternative regression techniques can be utilized in step 2 of our algorithm
instead of linear regression. For example, neural networks, as demonstrated in [34], can be
employed to address nonlinear behavior and enhance performance.

6. Application: River Discharge Dataset

Understanding the causal relationship between extreme precipitation and river dis-
charge is crucial for effective water resource management. In this study, we examine
how extreme precipitation events impact river discharge. By utilizing a comprehen-
sive dataset spanning various hydro-logical conditions, our research seeks to provide
insights into the critical nexus between extreme precipitation dynamics and extreme
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river discharge events. The data were collected by the Swiss Federal Office for the Envi-
ronment (https://www.hydrodaten.admin.ch/ (accessed on 15 October 2023)) but were
provided by the authors of [23,64], with some useful preliminary insights. We used
precipitation data and other relevant measured variables from meteorological stations
provided by Swiss Federal Office of Meteorology and Climatology, MeteoSwiss (https:
//gate.meteoswiss.ch/idaweb/login.do (accessed on 15 October 2023)).

We exclusively examine the discharge levels of the River Reuss, situated near Zurich
in Switzerland (Figure 3). We selected this river due to the availability of excellent measure-
ments of its discharge levels, complemented by well-documented weather conditions from
nearby meteorological stations and diverse landscape. Our measurements include average
daily discharges between January 1930 and December 2014 and daily precipitation in the
nearby meteo-stations. To reduce any seasonal effects due to unobserved confounders, we
only consider data during June, July and August, as the more extreme observations happen
during this period when mountain rivers are less likely to be frozen.

Figure 3. Map of meteo-stations (red) and five river stations (black). Note that the river flow is from
south to north (with springs in the mountains).

We center our attention on addressing two distinct research questions: one char-
acterized by a straightforward scenario where the ground truth is known, and another
presenting a more intriguing challenge.

6.1. Known Ground Truth

We demonstrate our methodology using a straightforward example where the ground
truth is known. Consider a pair of river stations, such as stations 2 and 1. Let T represent
the water discharge at station 2, Y represent the water discharge at station 1, and X denote
measurements taken at a nearby meteorological station (including precipitation, humidity,
etc.; the full list of confounders can be found in Appendix C). Our objective is to investigate
the impact of extreme discharge levels at station 2 on the water discharge observed at
station 1. In mathematical terms, we seek to ascertain µ(t) or µx(t) for large values of t.
In this context, the ground truth is the following:

µ(t1 + t2)− µ(t2) = µx(t1 + t2)− µx(t2) = t1 − t2, for all t1, t2 ≥ 0 and all x ∈ X .

This can also be explained in words as follows: if we pour t1 liters of water into the river at
station 2 (in causal terminology, we interpret this as an intervention do(T = T + t1)), we
expect the water discharge at station 1 (Y) to increase by exactly t1. Hence, ω = ωx = 1.
As we will see below, our methodology consistently yields this expected outcome.

We follow the methodology introduced in Section 4 with q = 0.95. Detailed steps, di-
agnostics and preliminary data analysis (just for a pair 2→ 1) can be found in Appendix C.

https://www.hydrodaten.admin.ch/
https://gate.meteoswiss.ch/idaweb/login.do
https://gate.meteoswiss.ch/idaweb/login.do


Mathematics 2024, 12, 1556 13 of 36

The resulting estimates can be found in Table 3. The results are very similar with different
choices of q (changing ω̂ by not more than by 0.1). We observe that our results align very
well with the ground truth (ω = 1). However, there is a slight bias evident in the relation-
ships between the pairs 5→ 3 and 4→ 3: this can be attributed to distinct geographical
features. Notably, Lake Vierwaldstättersee lies between the pair 5 and 3, which diminishes
the influence of 5 on 3. Additionally, a 3238 m Titlis mountain is situated between pair 4
and 3, amplifying the effect of 4 on 3 due to the melting glacier ice, acting as an unmeasured
confounding factor. Our methodology relies on Assumptions 1–4, along with some continu-
ity assumptions and the SUTVA assumption discussed in Section 2. Assumptions 1 and 3
are minor and are used frequently when dealing with these types of data. Assumption 2
is a common and challenging aspect of every causal inference methodology; while our
assumption is weaker than the classical unconfoundness assumption (requiring no hidden
confounder in the tail), complete rejection of the possibility of its violation is unattainable.
However, we believe that the meteo-station between a pair of stations can capture the most
significant confounders (with the exception of when the lake or mountains are present in
between the river stations). Finally, Assumption 4 is a strong assumption that allows us to
extrapolate observed values into the extremal region. However, this assumption (or at least
some similar model assumptions) are necessary. In this case, the linear assumption is valid,
since the underlying ground truth is known.

Table 3. Estimates ω̂ between each pairs of the stations.

Truth: ω = 1 Stations 2 → 1 Stations 3 → 2 Stations 4 → 3 Stations 5 → 3

ω̂ 1.03± 0.05 1.17± 0.24 1.21± 0.19 0.78± 0.41

6.2. Effect of Precipitation on River Discharge

We employ our methodology to address a more complex inquiry where the ground
truth is not known. Let us consider water discharge at station 3 (Y), and let T denote
the precipitation measured in meteo-station M2. Our focus lies in understanding the
impact of extreme precipitation events (T) on the water discharge (Y). As mentioned in
the introduction, on 6 June 2002, we recorded a historical maximum precipitation level of
Tmax = 111 mm

m2 , coinciding with the scenario when the river nearly breached its banks. Our
inquiry centers on the question: how would the river discharge Y alter if T were to reach
120 mm

m2 ? In mathematical terminology, we are interested in estimating µ(120)− µ(111) or
possibly µx⋆(120)− µx⋆(111), where x⋆ are other covariates corresponding to that event.
Addressing this question is challenging as we lack data within this extreme regime, necessi-
tating reliance on extrapolation. This task is especially challenging, since we anticipate that
the effect of precipitation on river discharge may vary between the body of the distribution
and its tail, since the ground absorbs a significant portion of the rainfall during a light rain.

We follow the methodology introduced in Section 4. A straightforward approach
would be to define T as precipitation and Y the water discharge on the same day, while
choosing appropriate confounders X from some measurements at M2. Then, we can use
the classical approach for estimating µ(t) in the body and our approach to estimate it in the
tail. However, some problematic issues arise in this application:

• Time issue: Tmonday → Ymonday but also Tmonday → Ytuesday since it takes time for the
rain water to reach the river and rain tends to be more frequent around midnight.
In fact, correlation (and extreme correlation coefficient as well, see Figure A11) is much
higher for a pair (Tmonday, Ytuesday) than for (Tmonday, Ymonday). The extreme storm on
6 June 2002 corresponded to extremely high river discharge on 7 June 2002 (where
Y was about five times larger than on 6 June 2002). Hence, our interest lies in the
effect Tmonday → Ytuesday (that is, we consider ti as precipitation on day i while yi is
the discharge on day i + 1). Additionally, the presence of time introduces an auto-
correlation issue. This can be handled by taking for example weekly maxima or
discarding consecutive observations within a certain time frame to reduce the auto-
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correlation effect. Alternatively, applying techniques like time series decomposition,
differencing, or using autoregressive models can also mitigate the issue of auto-
correlation in the data analysis process. We leave the data unchanged since the
temporal dependence is primarily local, spanning only a few days, and does not
introduce a substantial bias.

• Variable selection issue: choosing appropriate confounders X that act as confounders
of Y and T. It is not clear which variables can be safely considered as confounders:
if a variable X lie on a path T → X → Y, adjusting for X would lead to so-called
path-canceling causal effect [65]. Here, we are interested in the so-called total causal
effect, so we need to be cautious of which covariates to adjust for. However, not
adjusting for a common cause leads to a bias. Moreover, there is often a feedback loop:
Xi ↔ Precipitation for Xi for example humidity or temperature. However, some of the
variables can be safely considered as common causes: for example, the temperature on
Sunday (the day before measuring precipitation). There is a huge amount of literature
for such a variable selection, and we do not aim to comment on this research area—we
only provide a full list of chosen confounders in Appendix C.

We estimate two values: ω̂ which is the tail quantity defined as the difference between
µ(t + 1)− µ(t) for large t: in our case, how would Y change if it was raining by 1 mm

m2 more
on 6 June 2002? Next, we also estimate β̂ = µ(t + 1)− µ(t) corresponding to the body of
the distribution (see Appendix C.2.2 for details on its computation). The resulting estimates
can be found in Table 4 and visualization of the µ(t) can be found in Figure 4. We observe
that the effect of T on Y is larger in the extreme region than in the body of the distribution
by a factor of 3.04

2.4 ≈ 1.25.

Table 4. Estimates β̂ and ω̂ represent the estimation of the effect of T on Y in the body and in the
tail, respectively. β̂ is computed using standard regression, while ω̂ is the tail counterpart computed
using steps introduced in Section 4. * Note that Station 5 is in different altitude and relatively far from
meteo-station M2 with a lake in between; hence, there is a bias due to data collection problems.

Truth Unknown Station 1 Station 2 Station 3 Station 4 Station 5

β̂ 2.4± 0.1 2.28± 0.1 1.44± 0.02 0.89± 0.02 0.38± 0.01

ω̂ 3.04± 0.95 2.61± 0.67 1.62± 0.35 0.99± 0.32 0.36± 0.13 *
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Figure 4. The estimation of µ(t) using the doubly robust estimator introduced in [11,59] cut at the
second largest observation, its 95% confidence intervals, together with the estimation of µ(111), ω

and their 95% confidence intervals.
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As for the answer to our question ‘how would the river discharge Y alter in station 3 if
T were to reach 120 mm

m2 on 6 June 2002’, our results suggest that the water discharge would

be larger by about 9× 1.62 = 14.5 m3

s (note that median of Y is 11.2, and the 95% quantile
of Y is 51.2). Would this result in the river overflowing its banks? We cannot definitively
say, as we lack the necessary data regarding the volume and contours of the river banks.
Moreover, Y represents the daily average of the water discharge; while in order to answer
this question, the daily maximum is a better suited variable for answering the question.
Nonetheless, this advances us towards a more accurate understanding of the effects and
impacts of extreme precipitation events and potentially enhancing statistical inference for
hydroelectric power stations located along this river.

7. Conclusions and Future Work

Analyzing the impact of extreme levels of a treatment variable (exposure) is essential
for comprehending its effects on diverse systems and populations. In this paper, we
introduced a novel framework aimed at estimating the causal effect of extreme treatment
values. Leveraging insights from extreme value theory, we enhanced the estimation
of the extreme treatment effect. Our framework can handle a substantial number of
confounders. Nonetheless, our methodology relies on extrapolation, presenting inherent
challenges even in the absence of confounding variables, where the bias stemming
from a model misspecification is impossible to quantify. Our framework holds promise
for initial assessments of the impact of extreme environmental events, such as the
effects of severe storms or droughts on economic damages. Future work may explore
the application of our extreme value theory approach to address time-varying effects,
a prevalent issue in environmental research.
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Appendix A. Application 2—Concrete Compressive Strength

Appendix A.1. Main Analysis

In this section, we delve into a dataset [66] focused on concrete compressive strength.
Concrete serves as a fundamental material in civil engineering, and understanding

its compressive strength (denoted as Y and measured in MPa) is paramount for ensuring
structural integrity [67]. Concrete comprises ingredients such as cement (X1), fly ash (X2),
water (X3), superplasticizer (X4), and blast furnace slag (T) (among some other additions).
The units of T, X1, X2, X3, X4 are in kilograms in a m3 mixture. The concrete compressive
strength (Y) exhibits a highly nonlinear relationship with these ingredients and the elapsed
time. Our focus is on exploring the effect of blast furnace slag (T) on compressive strength
(Y). It is well-established that increasing the quantity of T can enhance Y, yet an excessive
amount of T may lead to a decrease in Y.

https://github.com/jurobodik/Extreme_treatment_effect.git
https://github.com/jurobodik/Extreme_treatment_effect.git
https://www.hydrodaten.admin.ch/
https://www.hydrodaten.admin.ch/
https://gate.meteoswiss.ch/idaweb/login.do
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In our dataset X1, X2, X3, X4 may affect the decision of how much T was used (engineers
often decide about the quantity of T based on the looks of the mixture of other ingredients).
Our dataset contains n = 1030 instances of observational data {xi, ti, yi}n

i=1 where xi =

(x1,i, . . . , x4,i)
⊤. The range (mini yi, maxi yi) = (2.3, 82.5) and (mini ti, maxi ti) = (0, 359).

Suppose we fit a linear model EY = β0 + βTT + β1X1 + β2X2 + β3X3 + β4X4; then,
a least square estimation of the coefficient βT leads to β̂T = 0.08± 0.006. This can be
(wrongly) interpreted as ’adding one additional kg of T in m3 mixture increases Y by
0.08MPa’. We expect different behavior for small and large values of T, and we expect
strong (nonlinear) interactions between the covariates, and more importantly, this result is
derived from the body of the distribution, while we are interested in values of T above the
observed ones.

Our objective is to quantify the effect of an extreme amount of blast furnace slag T on
Y. Specifically, we answer the following questions:

1. Given a concrete mixed with T = 359 and X = x for some specific value of x, if we
intervene and change T to T = 400, what effect on concrete compressive strength
can we expect? Using the potential outcome notation, the quantity of interest is
µx(400)− µx(359). Note that maxi=1,...,nti = 359 (we do not observe the blast furnace
slag larger than 359, and there is no observation in the interval (220, 359)), and
hence, we have zero data in such an extreme region. We aim to answer this question
for a choice x = x⋆ where x⋆1 = 239, x⋆2 = 0, x⋆3 = 185, x⋆4 = 0 (the observation
corresponding to Ti = 359).

2. How would an extreme increase in T change Y for an ’average’ concrete (on a popula-
tion level, i.e., integrating over the covariates)? Using the potential outcome notation,
the quantity of interest is µ(400)− µ(359).

We follow the methodology introduced in Section 4 with q = 0.9. Detailed steps,
diagnostics and preliminary data analysis can be found in Appendix A.2. The resulting
estimates are as follows:

µ̂x⋆(400)− µ̂x⋆(359) = −4.1± 3.0, µ̂(400)− µ̂(359) = −4.5± 2.6,

ω̂x⋆ = −0.1± 0.07, ω̂ = −0.11± 0.06.

The results are similar with a different choices of q (see Table A1). In summary,
the results suggest that for a mixture of concrete with covariates X = x⋆ and T = 359,
intervening on T and changing it to T = 400 would decrease the concrete compressive
strength by about 4.1 MPa. On the population level, increasing T from 359 to 400 would lead
to a decrease in the concrete compressive strength by about 4.5 MPa. The 95% confidence
intervals suggest that this estimate can be inaccurate by about 3 MPa; however, one must
be cautious about the interpretation of the confidence intervals, since they are in general
unreliable when extrapolating, see Remark 2.

Figure A1 graphically shows the estimation of µ̂(t) in the body using the method
introduced in [11,59], as well as our estimation of µ̂(t) for extreme values.

In the Appendix A.4, we discuss the assumptions made regarding our results. In brevity,
our methodology uses Assumptions 1–4 (among some continuity assumptions and SUTVA
assumption discussed in Section 2). While we argue that Assumptions 1 and 3 are minor,
we can not disregard the possibility of a hidden confounder (Assumption 2). The validity
of Assumption 2 has to be further argued by an expert knowledge. Finally, the strongest
assumption is Assumption 4, as its violation leads to the most significant bias. However,
this assumption (or a similar assumption using different model) is necessary when extrapo-
lating, and it is hypothetically testable by measuring values with T ≈ 400. Appendix A.3
also discusses the differences for the range of choices of q.
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Figure A1. Black: The estimation of µ(t) using the doubly robust estimator introduced in [11,59]
together with 95% confidence intervals. Green: Quantiles of T. Blue: Our estimation of µ(t) for
values t = 359, 400 for q = 0.9, together with the 95% confidence intervals for the slope. Red: 95%
confidence interval for µ(359).

Appendix A.2. Detailed Computations of the Estimates

Some data visualization can be found in Figures A2 and A4. In the following, we
provide detailed descriptions of the steps undertaken in the application for the specific
choice of q = 0.9. First, we estimate τ(x) using a classical quantile regression [68]. We
observe that all covariates are highly significant, and the diagnostic plots do not show any
significant problems (except the fact that for many observations, Ti = 0): we illustrate
the estimation on Figure A5, where points above the 90% threshold (points in the set S)
are marked.

In the next step, we routinely estimate θ(x) (using evgam function in evgam pack-
age [69] using the following code: evgam(list(Te ∼ s(X1e) + s(X2e) + s(X3e) + s(X4e),∼
1), data = data. f rame(Te, Xe), family = “gpd”) where Te are datapoints in S (above the
estimated 90% threshold)). More precisely, we assume fixed ξ(x) = ξ ∈ R and only esti-
mate σ(x) as a smooth function of the covariates; Figure A3 shows the estimated values of
σ(x) on a log scale.

Finally, following the expression E[Y | T = t, X = x] = α[θ̂(x)] + β[θ̂(x)]t, we estimate
α, β from the data points in S using gam function [51]. Under Assumptions 1–4 , we obtain
µ̂x⋆(400) = α̂[θ̂(x)] + β̂[θ̂(x)]400, and in effect, we return

ω̂x⋆ = µ̂x⋆(400)− µ̂x⋆(359) = β̂[θ̂(x⋆)](400− 359) = −4.1.

Regarding the second question (population level), we simply take the average
µ̂(t) := 1

n ∑n
i=1 α̂[θ̂(xi)] + β̂[θ̂(xi)]t and compute

ω̂ = µ̂(400)− µ̂(359) =
1
n

n

∑
i=1

β̂[θ̂(xi)](400− 359) = −4.5.

Regarding the confidence intervals, we resample the data using the following code:

resampled_data = sample_n(data, size = length(y), replace = TRUE).
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Then, we follow the same steps as above and estimate the coefficients (from the resampled
dataset). We repeat this procedure 500 times. Finally, we take the 95% quantile out of all
computed resampled coefficients. For example, ω̂x⋆ = −6.1± 3.2 represents the fact that the
95% quantile was −6.1+ 3.2 = −2.9, and hence, only 5% of values were larger than −2.9.

Figure A2. The figure illustrates the dependence among T and Y. Note that the correlation between
T and Y is 0.14± 0.07.

Figure A3. Estimation of scale.
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Figure A4. Diagnostics of a linear model fitted into the original data.

Figure A5. Visualization of the estimation of τ(x) estimated using classical quantile regression. Blue
points characterize the observations above this threshold (points in the set S).
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Appendix A.3. Discussion about the Results Regarding Different Threshold q

Table A1 shows the results for different choices of q. Even though they yield distinct
estimates for ω̂, the confidence intervals overlap, and the values ω̂ ∈ (−6.4,−1.9) are
encompassed by all of them. This suggests some stability in the choice of q.

Table A1. Estimates of ωx⋆ := µx⋆ (400) − µx⋆ (359) for different thresholds q, together with the
corresponding 95% confidence intervals.

q = 0.85 q = 0.9 q = 0.95
ω̂x⋆ = −6.1± 3.2 ω̂x⋆ = −4.1± 3.0 ω̂x⋆ = −2.8± 2.8
ω̂ = −5.3± 4.0 ω̂ = −4.5± 2.6 ω̂ = −3.3± 3.1

The selection of q reflects the bias–variance tradeoff; as we increase q, our inference
relies on values closer and closer to T = 400 (datapoints with small and intermediate Ti can
bias our estimation since in this region, increasing Ti can increase Y). However, increasing q
also means disregarding more and more datapoints, and our estimate will have less power
and larger variance.

The challenge of choosing q is a common problem in extreme value theory, and the
rule of thumb is to select q as large as possible while maintaining an adequate number of
datapoints above the 1− q quantile to ensure reasonably good inference.

Appendix A.4. Discussion about the Assumptions

Our methodology relies on Assumptions 1–4, along with some continuity assumptions
and the SUTVA assumption discussed in Section 2. Below, we provide a detailed discussion
of each assumption.

1. Assumptions 1 and 3 are considered minor. As mentioned in Section 2, Assumption 1
is satisfied for most common distributions, and similar model assumptions are im-
posed in almost all applications utilizing extreme value theory. Assumption 3 appears
to be satisfied, as there is no specific range of values in the support of T that has zero
probability of occurring.

2. Assumption 2 is a common and challenging aspect of every causal inference method-
ology. While our assumption is weaker than the classical unconfoundness assumption
(requiring no hidden confounder in the tail), complete rejection of the possibility of
its violation is unattainable. A potential hidden confounder could be the ‘quality of
ingredients’. If the quality is low, engineers might tend to use excessive amounts of T
in the mixture, potentially leading to spurious dependence between large T and low
Y. However, in this case, it seems plausible that this hidden dependence due to low
ingredient quality does not introduce a substantial bias. Expert knowledge is required
to ensure the validity of this assumption.

3. Assumption 4 is a strong assumption that allows us to extrapolate observed values
into the extremal region. However, this assumption (or at least some similar model
assumptions) is necessary; estimating µ(400) from observed values is not feasible
otherwise. In essence, Assumption 4 asserts that the relationship between T and Y
(given other confounders) is linear in the unobserved region below T = 400. Since
there is no other reason to believe that this relationship has any particular form,
a linear assumption seems to be the most suitable choice. Although this assumption
is strong, it is hypothetically possible to test by measuring values with T ≈ 400.

Appendix B. Simulations

In this section, we create various simulations setups to assess the performance of
our methodology.

• Appendix B.1 provides insight into how our method scales with the dimension of the
confounders dim(X).

• Appendix B.2 compares our method with classical methods from the literature.
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• Appendix B.3 extends the simple example presented in Section 5.1, evaluating perfor-
mance across different dependence structures (various copulas), sample sizes, and a
range of causal effects.

• Appendix B.4 addresses a scenario involving a hidden confounder affecting both T
and Y.

• Appendix B.5 focuses on variations in the function µ(t) and assesses the extent to
which our method can extrapolate µ(t) into the ’extreme’ region.

In some of the simulations, we use the following function:

µx(t) =

{
5− slope(x)(t− c) for t ≥ c,
5 + slope(x)(t− c) for t < c,

(A1)

where typically slope(x) = |x| and c ∈ R is a hyper-parameter. Graphical visualization of
the function µx for x = 3 can be found in Figure A6. In other words, µx grows with slope x
until c and then declines with slope x.

Figure A6. Function µx(t) with parameters c = 2 and slope(x) = 3.

Appendix B.1. Simulations with a High Dimensional X

In this simulations we consider X = (X1, . . . , Xd) where the dimension d is potentially
large. Consider the following data-generating process:

• Let a1, . . . , ad
iid∼ N (1, 1) and b1, . . . , bd

iid∼ N (−1, 1) be fixed numbers at the beginning
of the simulations.

• Consider X being centered Gaussian vector with cor(Xi, Xj) = 0.1 for all i ̸= j and
var(Xi) = 1.

• Let T = ∑d
i=1 aiXi + εT , where εT is distributed according to either N (0, 10), Exp( 1

10 ),
or Pareto(1, 1).

• Let Y = µx(T) + ∑d
i=1 biXi + εY, where µx(t) is defined in (A1) with hyper-parameters

c = slope(x) = 1 and where εY ∼ N (0, 1).

This data generating process leads to µ(t + 1)− µ(t) = −slope(x) = −1 for t ≥ c
and µ(t + 1)− µ(t) = +1 for t < c. Consequently, our primary interest lies in estimating
ω = µ(t + 1)− µ(t) = −1 for t ≥ c.

Note that a simple linear regression Y ∼ T + X1 + · · ·+ Xd leads to a biased estimation
of the effect of T, since the effect is different for large and for small values of T. However,
simply discarding values where Ti < 1 leads to a selection bias.

We generate data as specified with a sample size of n = 5000. Setting the threshold at
τ = 0.95, we employ the methodology outlined in Section 4 to estimate ω. Specifically, we
utilize linear parametrization of the parameters in the estimation procedure. This process
is repeated 100 times. The mean of the estimates ω̂ together with 95% quantile for various
values of d and distributions of the noise variables can be found in Table 1.
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Table 1 illustrates that with a sample size of n = 5000, the results are reasonably
accurate as long as d ≤ 50. The reason for the bias observed in larger dimensions d is
that Assumption 1 and (3) are only asymptotic results, and with higher dimensions d, we
require more data for the asymptotic theory for T | X to take effect. It is well known that
the convergence rate of the maxima of the Gaussian random sample to an extreme value
distribution is very slow, whereas it is faster with the Exponential or Pareto distribution [63].
With a large dimension d, we also observe a more pronounced effect of the estimation error
accumulated in the first step on the second step of the algorithm.

Appendix B.2. Comparison with Classical Methods

We evaluate our extrapolation method by comparing it with several state-of-the-art
techniques from the existing literature. Specifically, we assess the performance of four
methods: the doubly robust estimation method introduced by Kennedy et al. [11,59],
the additive spline estimator proposed by Bia et al. [60], the approach suggested by Hirano
and Imbens [36] employing a GAM outcome model (taken from [61]), and the inverse
probability of treatment weighting (IPTW) estimator by VanderWal et al. [62].

Our analysis employs the same simulation setup described in Appendix B.1, utiliz-
ing exponentially distributed noise variables (other distributions yield similar results).
After generating (xi, ti, yi)

n
i=1, we estimate µ(t̃), where t̃ = maxi=1,...,n(ti) + 10, using all

aforementioned methods. Subsequently, we compute the absolute relative error (ARE)
defined as

ARE =

∣∣∣∣ µ̂(t̃)− µ(t̃)
µ(t̃)

∣∣∣∣.
This procedure is repeated 100 times, and the average of the obtained ARE values is
presented in Table 2.

Analysis of Table 2 reveals that our method achieves the smallest extrapolation er-
ror. Conversely, the IPTW method [62] exhibits poor performance due to the quadratic
nature of the extrapolating curve. Kennedy et al.’s method [11,59] typically produces a
constant extrapolation curve, and while both Bia et al.’s [60] and the HI method [36] yield
estimates that are reasonably close to the expected values, they also exhibit a notable degree
of variability.

Please note that our method assumes linearity in the tail. If this assumption is not met,
our method may produce inferior results. In such instances, alternative regression tech-
niques can be utilized instead of linear regression. For example, neural networks, as demon-
strated in [34], can be employed to address nonlinear behavior and enhance performance.

Appendix B.3. Dependence, Sample Size and the Causal Effect

In the following, we conduct simulations based on a model with covariates
X = (X1, X2, X3) that function as a common cause of both T and Y. The details of the
simulation are as follows:

• X is generated with standard Gaussian margins and a Gumbel copula with a parameter
α (where α represents the degree of dependence [70]; α = 1 corresponds to indepen-
dence; and α→ ∞ corresponds to full dependence; see Figure A7 for an illustration
with α = 2).

• T is generated in such a way that the marginal distribution of T follows an exponential
distribution with a scale parameter of 1, and the dependence structure between X and
T follows a Gumbel copula with parameter α.

• The response variable Y is generated as follows:

Y =


1
2 ωT + f (X) + ε, when X1 > 0, T > 1,
3
2 ωT + f (X) + ε, when X1 ≤ 0, T > 1
−10T + 15 + f (X) + ε, when T ≤ 1,

(A2)
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where f is a randomly generated smooth function (to randomly generate a d-dimensional
function, we use the concept of the Perlin noise generator [71]; for more details, refer to
the supplementary package, and readers can conceptualize this as a function ranging
from quadratic to linear), ε ∼ N(0, 1), and ω is a hyper-parameter that we vary in our
simulations. Figure A7 shows one realization of such a dataset.

Please note that µ(t) = ωt + E f (X) for any t > 1. As such, our primary focus lies
in estimating the slope µ(t + 1)− µ(t) = ω. We generate data with varying parameters,
including ω, α, and the sample size n. Employing the method outlined in Section 4, we
estimate ω across a spectrum of data-generating processes. For n = 1000, we set the
threshold at τ = 0.9, and for n > 1000, we use τ = 0.95. This process is repeated 100 times,
and the mean and 0.95% quantile are presented in Table A2. The numbers in the brackets
represent the mean of the estimated bootstrap confidence intervals. Ideally, these intervals
should align with the 0.95% quantile.

The findings indicate that the methodology performs as anticipated in this simulation
study: augmenting the sample size enhances the estimation, whereas elevating α (heighten-
ing the influence of the covariates) degrades the accuracy of the estimation. We observe
that the bootstrap confidence intervals align relatively well with the actual 95% quantiles.

Figure A7. The figures illustrate the dependence among X1, T, and Y, generated based on the
simulations outlined in Appendix B.3 with a dependence parameter of α = 2 and ω = 5. Points
falling within the set S are identified by a blue square.

Table A2. Resulting estimates of parameter ω = µ(t + 1)− µ(t), t > 1 from Appendix B.3. Parameter
α represents the dependence between X, T. The notation ω̂ = a± b (±c) represent the following:
given 100 estimations of ω̂, a is the mean, b is the 95% quantile, and c is the (average) 95% quantile
computed using the bootstrap technique.

ω = 0 ω = 1 ω = 10

α = 1
n = 1000 ω̂ = −0.05± 0.33 (±0.45) ω̂ = 0.94± 0.60 (±0.55) ω̂ = 9.86± 2.99 (±3.01)
n = 5000 ω̂ = −0.01± 0.28 (±0.25) ω̂ = 0.98± 0.29 (±0.39) ω̂ = 10.09± 1.91 (±2.04)
n = 10, 000 ω̂ = 0.00± 0.18 (±0.16) ω̂ = 0.99± 0.21 (±0.21) ω̂ = 9.95± 1.62 (±1.59)

α = 1.5
n = 1000 ω̂ = 0.33± 0.92 (±0.96) ω̂ = 1.37± 0.98 (±1.13) ω̂ = 10.95± 3.77 (±3.38)
n = 5000 ω̂ = 0.24± 0.52 (±0.68) ω̂ = 0.97± 0.29 (±0.25) ω̂ = 10.90± 2.22 (±2.43)
n = 10, 000 ω̂ = 0.13± 0.28 (±0.49) ω̂ = 1.20± 0.46 (±0.55) ω̂ = 10.72± 1.42 (±1.76)

α = 2
n = 1000 ω̂ = −0.17± 1.19 (±1.34) ω̂ = 0.99± 1.01 (±1.31) ω̂ = 11.14± 3.32 (±3.59)
n = 5000 ω̂ = 0.03± 0.66 (±0.85) ω̂ = 1.05± 1.01 (±0.99) ω̂ = 11.15± 2.91 (±2.58)
n = 10, 000 ω̂ = −0.09± 0.50 (±0.61) ω̂ = 0.96± 0.59 (±0.66) ω̂ = 10.70± 2.02 (±1.83)

Appendix B.4. Simulations with a Hidden Confounder

Consider a similar simulations setup as in Section 5.1 but with a hidden confounder.
Consider an observed confounder X = X1 ∼ Bernoulli (0.75) and a hidden confounder
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H ∼ N(1, 1). Let δ ∈ R and define T = δH + X1 + εT , where εT ∼ N (0, 1). Note that δ
represents the effect of a hidden confounder. Let

Y =


δH + 2

3 ωT + ε, when X1 = 1, T > 1,
δH + 6

3 ωT + ε, when X1 = 0, T > 1,
δH + 3− 2T + ε, when T ≤ 1,

(A3)

where ε ∼ N (0, 1). A simple computation leads to

µ(t) = 0.75
2
3

ωt + (1− 0.75)
6
3

ωt = ωt

for any t > 1, while µ(t) = −2t + 3 for t ≤ 1. Consequently, our primary interest lies in
estimating ω for t > 1.

We generate data as specified with a sample size of n. Setting the threshold at τ = 0.9,
we employ the methodology outlined in Section 4 to estimate ω. This process is repeated
100 times. The estimates ω̂ for a range of values of δ and ω and n can be found in Table A3.

The results in Table A3 suggest that a hidden confounder does not bias our estimate
unless its strength is very large. Indeed, Remark 1 suggests that Assumption 2 is still valid
since the hidden confounder enters the equality in an additive way.

Table A3. Resulting estimates of ω = µ(t + 1)− µ(t), t > 1 from Section B.4, together with 95%
quantile. Parameter δ represent the strength of a hidden confounder.

ω = 0 ω = 5 ω = 10

δ = 0
n = 1000 ω̂ = 0.05± 0.22 ω̂ = 5.03± 0.31 ω̂ = 10.02± 0.4
n = 5000 ω̂ = −0.01± 0.17 ω̂ = 4.97± 0.18 ω̂ = 9.97± 0.20
n = 10, 000 ω̂ = 0.01± 0.12 ω̂ = 4.99± 0.12 ω̂ = 9.97± 0.14

δ = 1
n = 1000 ω̂ = 0.55± 0.27 ω̂ = 5.60± 0.32 ω̂ = 10.48± 0.33
n = 5000 ω̂ = 0.53± 0.12 ω̂ = 5.50± 0.18 ω̂ = 10.51± 0.18
n = 10, 000 ω̂ = 0.50± 0.08 ω̂ = 5.48± 0.09 ω̂ = 10.46± 0.16

δ = 5
n = 1000 ω̂ = 0.96± 0.04 ω̂ = 5.98± 0.22 ω̂ = 10.91± 0.21
n = 5000 ω̂ = 0.96± 0.03 ω̂ = 5.95± 0.07 ω̂ = 10.94± 0.16
n = 10, 000 ω̂ = 0.96± 0.025 ω̂ = 5.94± 0.04 ω̂ = 10.92± 0.08

δ = 10
n = 1000 ω̂ = 0.98± 0.06 ω̂ = 5.96± 0.15 ω̂ = 10.94± 0.30
n = 5000 ω̂ = 0.99± 0.025 ω̂ = 5.98± 0.07 ω̂ = 10.97± 0.14
n = 10, 000 ω̂ = 0.99± 0.02 ω̂ = 5.97± 0.04 ω̂ = 10.95± 0.09

δ = 50
n = 1000 ω̂ = 0.99± 0.01 ω̂ = 5.99± 0.14 ω̂ = 10.97± 0.28
n = 5000 ω̂ = 0.99± 0.01 ω̂ = 5.99± 0.07 ω̂ = 10.98± 0.15
n = 10, 000 ω̂ = 1.0000± 0.004 ω̂ = 5.97± 0.04 ω̂ = 10.95± 0.08

Appendix B.5. Simulations with Varying Extremal Region

In the following simulations, we explore variations in the function µ(t) and analyze
the corresponding estimations µ̂(t) for large values of t.

Consider the following data-generating process:

X = εX , εX ∼ N(0, 1)

T = X + εT , εT ∼ tν,

Y = µX(T) + εY, εY ∼ N(0, 1),

Student’s t distribution with ν degrees of freedom. Note that if ν → ∞, we obtain a
Gaussian distribution, where µx(t) is defined in (A1). If c is too large, we only observe the
region where µx grows, and hence, our estimation tends to be larger than the true value.
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With varying c and ν, we estimate the parameter

ω = µ(t + 1)− µ(t) = −E|X| = −0.798 for t ≥ c.

If we fit a linear model EY = β0 + βTT + βXX, the estimate β̂T tends to be positive
(depending on c and ν, for example, if c = ν = 5, then β̂T = 0.58± 0.02). Using our
methodology, we estimate ω̂ as in the previous simulations. The resulting numbers are
presented in Table A4. We observe that if c grows, our estimate becomes more biased as
the data above the threshold still fall below T < c. Specifically, if ν = ∞, only 0.2% of data
points have T > 5, making the behavior of µ(t) above t > c challenging to estimate. Note
that the degrees of freedom ν correspond to the heavy-tailness of T; smaller ν values lead to
more extreme values of T. Conversely, if ν = ∞, T follows a Gaussian distribution. Heavier
tails of T lead to better estimates.

Table A4. Estimates of ω̂ with varying c and ν. Note that true ω = −E|X| ≈ −0.79 .

True ω ≈ −0.79. c = 1 c = 2 c = 5 c = 10
ν = ∞ ω̂ = −0.75± 0.15 ω̂ = −0.33± 0.13 ω̂ = 0.63± 0.13 ω̂ = 0.71± 0.38
ν = 5 ω̂ = −0.78± 0.18 ω̂ = −0.72± 0.15 ω̂ = −0.13± 0.15 ω̂ = 0.6± 0.33
ν = 2 ω̂ = −0.77± 0.23 ω̂ = −0.76± 0.22 ω̂ = −0.7± 0.22 ω̂ = −0.51± 0.19

Appendix C. River Data Application

Appendix C.1. Simple Illustration with Known Ground Truth

We used the following set of confounders:

• X1 =Total precipitation (daily);
• X2 =Total precipitation during the previous 7 days;
• X3 =Daily maximum of air temperature 2 m above ground;
• X4 =Daily maximum of relative air humidity 2 m above ground;
• X5 =Daily mean of vapor pressure 2 m above ground;
• X6 =Daily maximum of pressure reduced to sea level;
• X7 =Daily total of reference evaporation from FAO.

For the pair 2 → 1, we considered measurements from meteo-station M1 (station
code MURI, AG), and for the remaining pairs, we used measurements from M2 (a station
with a code LUZ). However, variables X5, X6, X7 were also measured in station M2 also
for the pair 2 → 1, since some values were missing, and M2 has a much longer time
period of measurements. All of these covariates can be safely considered as common
causes of T and Y, and no feedback loop is present. For modeling of θ(X), we used linear
parametrization, that is, τ(X) = const + ∑7

i=1 βi,τXi and σ(X) = const + ∑7
i=1 βi,σXi, where

the parameters βi,τ were estimated using quantile regression (in R using quantreg package)
and the parameters βi,σ were estimated using evgam package. We fixed ξ(X) to be constant.

In the following, we focus on the pair 2 → 1; for other pairs of stations, the results
were similar. In the modeling of θ(X), X3 and X5 were not significant at the 0.05 level
(note that for an estimation of ω, we do not care which covariates were significant since
the function θ(X) is more or less unchanged and adding non-significant covariates only
slightly increases variance in the estimation). Using non-parameteric GAM estimation of
the parameters did not change the final estimation much (from ω̂ = 1.03 to ω̂ = 0.99).
Estimation of τ(X) is also plotted in Figure A8. Using the linear model in this case does not
seem to be very wrong, see plot Figure A9, where except for the normality violation, the
model seems to fit quite well (in the body of the distribution).
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Figure A8. Visualization of the estimation of τ(x), estimated using classical quantile regression. Blue
points characterize the observations above this threshold (points in the set S).
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Figure A9. Diagnostics of a model Y ∼ X1 + · · ·+ X7.
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Appendix C.2. Effect of Precipitation on River Discharge

Figure A10 visualizes the dataset.
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Figure A10. Visualization of the estimation of τ(x) for Part2 in the application, estimated using
classical quantile regression. Blue points characterize the observations above this threshold (points in
the set S).

Appendix C.2.1. Choice of Variables

We used the following set of variables:

• Y = River discharge on day i + 2;
• T = Precipitation in the corresponding meteo-station on day i + 1;
• X1 =Total (sum) precipitation during the previous 7 days (days i, i− 1, . . . , i− 6);
• X2 =Daily maximum of Air temperature 2 m above ground on day i;
• X3 =Daily maximum of Relative air humidity 2 m above ground on day i;
• X4 =Daily maximum of Pressure reduced to sea level on day i;
• X5 =Daily total of Reference evaporation from FAO on day i.

Here, i spans from 1.6.1930 up to 29.8.2014 (recall that we only considered the summer
months). The choice of Y and T was addressed in the main text: since typically the auto-
correlation peaking when T represents the day prior to Y (as illustrated in Figure A11,
as well as its extreme counterpart extremogram [72]). The rationale behind choosing
X1 is straightforward—precipitation over the preceding days emerges as a significant
confounding factor affecting both Y and T. Regarding additional variables, we opted for
those deemed relevant and with reliable measurements across meteorological stations, all
of which were recorded on the preceding day.

Is there a common cause between Y and T that remains unaccounted for? Variables
X2 through X5, measured on day i + 1, could serve as potential common causes for both Y
and T. For instance, a sudden temperature change might elevate the likelihood of intense
rainfall, while alterations in river discharge could stem from specific soil characteristics
affected by the temperature change. Nevertheless, we contend that the majority of these
variables require more than a day to manifest their effects, which we believe are largely
encapsulated by our chosen variables.
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Figure A11. Cross-correlation and cross-extremogram of precipitation recorded at meteo-station M2
and water discharge at Station 3, both measured on the same day.

Appendix C.2.2. Computation of β̂

In Table 4, we introduced a variable β̂ that represents the effect of precipitation on the
river discharge level in the body of T. This can be defined in several ways:

1. Using the method introduced in [11,59], we estimate µ̂(t + 1)− µ̂(t) for t = E(T).
2. Using a very straightforward approach where we model the data generating process

of Y using a linear structural equation model Y = c + βTT + βXX + ε and return the
least square estimate of β̂T .

Coincidentally, both approaches return a very similar value of β̂, and hence, it does
not matter which approach we use (values in Table 4 are from using the second approach).

Appendix D. Consistency, Bootstrap and Its Asymptotics

In this section, we give a more detailed description of the bootstrap algorithm and
a more precise statement of Theorem 2 together with its proof. Theorem A1 presents the
consistency of µ̂(t) for large t, while Theorem A2 shows the consistency of ω̂x⋆ under
different assumptions. Note that using the notation from Sections 4 and 5,

ω̂x⋆ = lim
t→∞

µ̂x⋆(t + 1)− µ̂x⋆(t) = lim
t→∞

α̂[θ̂(x⋆)] + β̂[θ̂(x⋆)](t + 1)− α̂[θ̂(x⋆)]− β̂[θ̂(x⋆)]t

= β̂[θ̂(x⋆)].
(A4)

Appendix D.1. Bootstrap

In what follows, we explain in detail the procedure for an estimator ζ̂α satisfying

P(ωx⋆ ≤ ζ̂α) ≥ 1− α, α ∈ (0, 1).

We only focus on the upper confidence interval, the lower and both-sided intervals can be
carried out analogously. Our approach is standard and [58] provides a good overview.

Let Pn be the empirical distribution of the observations Zi := (Xi, Ti, Yi), i = 1, . . . , n.

We draw a random sample (Z⋆
1 , . . . Z⋆

n)
iid∼ Pn, and we compute the parameter ω̂⋆ from

(Z⋆
1 , . . . Z⋆

n) the same way as we compute ω̂ from (Z1, . . . , Zn). We define ζ̂α as the upper
α-quantile of ω̂⋆, that is, the smallest value x = ζ̂α that satisfies

P
(

ω̂⋆ − ω̂ ≤ x | Pn

)
≥ 1− α.

The notation P(·|Pn) indicates that the distribution of ω̂⋆ must be evaluated assuming that
the observations are sampled according to Pn given the original observations. In particular,
in the preceding display ω̂ is to be considered nonrandom.
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It is almost never possible to calculate the bootstrap quantiles exactly [58]. In practice,
these estimators are approximated by a simulation procedure. A large number of indepen-
dent bootstrap samples Z⋆

1 , . . . , Z⋆
n are generated according to the estimated distribution

Pn. Each sample gives rise to a bootstrap value ω̂⋆. Finally, the bootstrap quantiles are
estimated by the empirical quantiles of these bootstrap values. This simulation scheme
always produces an additional (random) error in the coverage probability of the result-
ing confidence interval. In principle, this error can be made arbitrarily small by using a
sufficiently large number of bootstrap samples. Therefore, the additional error is usually
ignored in the theory of the bootstrap procedure. This section follows this custom and
concerns the “exact” quantiles, without taking the simulation error into account.

Appendix D.2. Simplifying Assumptions

We simplify some steps in the inference process in order to simplify the proof of the
consistency. In particular, we assume the following:

(A) (Causality justification) Consider Assumptions 1, 2 and 4 to be valid.
(B) (Step 2 convergence) EY2 < ∞, E||X||2 < ∞ and (X, T) satisfy Grenander conditions

(this is a minor assumption assuring that the matrix of observations have a full rank
with probability tending to one. See Table 4.2 in [73]).

(C) (Step 1 convergence) We assume that conditions R1, R2, and R3 from [74] are satisfied.
That is, E(XX⊤) is positive semi-definite, X has a compact support with existing and

finite quantile densities ∂F−1
U (τ|x)

∂τ , ∂F−1
U (τ)
∂τ where U = T − τ⊤linX, τlin ∈ Rd.

(D) (Linearity) Assume that functions θ, α, β are linear, functions σ, ξ are constant and
that we employ linear regression for the estimation of the parameters.

In particular, following the notation in Section 4 and using the notation τ(x) = τ⊤linx,
our algorithm is as follows:

• Choose q ∈ (0, 1),
• (Step 1) Estimate τlin ∈ Rd by minimizing τ̂lin ∈ argminb ∑n

i=1 hq(Ti − X⊤i b) where
hq(x) = x(q1x≥0 − (1− q)1q<0).

• (Step 2) We estimate α, β ∈ R using least squares in a model

E[Y | T = t, τ(X) = τ̂⊤linx] = ατ̂⊤linx + βτ̂⊤linxt, (A5)

from the data-points in S (that is, we only consider t > τ̂⊤linx). Using R language
we run the following code: fit = lm(Y ∼ s +s:TS, data = data.frame(s, TS)),
where s = τ̂⊤linXS, TS = {Ti : i ∈ S} and XS = {Xi : i ∈ S}.

• We output ω̂x⋆ = β̂τ̂⊤linx⋆ (see (A4)).

Remark A1. Assumption C implies consistency of τ̂lin (under the assumption that q is cho-
sen as a function of the sample size n, denoted as q = qn satisfying limn→∞ qn = 1 and
limn→∞ n(1− qn) = ∞), see Theorem 5.1 in [74]. This assumption can be simplified by directly
assuming consistency of τ̂lin.

Appendix D.3. Consistency

We present two consistency results. One concerns the consistency of µ̂(t) under
general non-linear assumptions but under a neglecting the GPD approximation error.
The second result describes the consistency of ω̂x⋆ under linear assumptions presented in
Appendix D.2.

Theorem A1 (Consistency). Consider Assumptions 1, 2, and 4 to be valid.

• Assume that θ, α, and β are continuous functions, and suppose we employ consistent estimators
for θ, α, and β. For instance, the Generalized Additive Model (GAM) estimator [51] has been
shown to be consistent under specific smoothness conditions.
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• Let q ∈ (0, 1) be chosen such that the distribution of T | T > τq(x), X = x follows
GPD(θ(x)) for all x ∈ X , where X = supp(X) is assumed to be compact.

Under these conditions, our estimator is consistent in the sense that for all t ∈ T

µ̂(t) P→ µ̃(t) as n→ ∞,

where µ̃ is a function that satisfies µ̃(t) ∼ µ(t) as t→ τR.

The second assumption outlined in Theorem A1 is introduced to address certain
technical hurdles that arise when dealing with a quantile q which varies with the sample size
n. Broadly speaking, when q is not fixed, the statistical framework becomes considerably
more intricate, making the task of demonstrating the consistency of a quantile regression
notably challenging. Please note that while the distribution of T | T > τq(x), X = x
converges to a Generalized Pareto Distribution (GPD(θ(x))) in the limit for large q, the
exact validity is limited to special cases, such as when T | X follows a Pareto distribution.
However, by selecting q to be sufficiently large, one can mitigate this issue, effectively
reducing the disparity between the distributions of T | T > τq(x), X = x and GPD(θ(x))
to insignificance. This theorem, therefore, provides valuable insight into the general
consistency of the model, despite the idealized nature of the assumption.

Note that Theorem A1 can be reformulated for µX analogously.
The subsequent theorem does not necessitate a fixed q; however, it presupposes the

linearity in the models for T and Y.

Theorem A2 (Consistency). Under Assumptions A, B, C, and D, where q is chosen as a function
of the sample size n, denoted as q = qn satisfying limn→∞ qn = 1 and limn→∞ n(1− qn) = ∞,
our estimator ω̂x⋆ is consistent. That is,

ω̂x⋆ −ωx⋆
P→ 0, as n→ ∞.

Proof of Theorem A1. The proof is very straightforward. Lemma 2 shows that

µ(t) ∼
∫
X
E[Y | T = t, θ(x)]pθ(X)(x)dx for t→ τR.

Assumption 4 allows us to rewrite (correctness of this step follows directly from Lemma A1
by considering f (t, x) = E[Y | T = t, θ(x)] and g(t, x) = α(θ(x)) + β(θ(x))t)∫

X
E[Y | T = t, θ(x)]pθ(X)(x)dx ∼

∫
X
[α(θ(x)) + β(θ(x))t] pθ(X)(x)dx := µ̃(t) for t→ τR.

Since θ, α, and β are continuous and their estimators are consistent, we obtain that for all
t ∈ T , it holds that∫

X
[α̂(θ̂(x)) + β̂(θ̂(x))t] pθ(X)(x)dx P→ µ̃(t) as n→ ∞.

Moreover, from the law of large numbers, it holds that

µ̂(t)−
∫
X
[α̂(θ̂(x)) + β̂(θ̂(x))t] pθ(X)(x)dx P→ 0, as n→ ∞.

Together, we obtain

µ̂(t) P→ µ̃(t), as n→ ∞,

where the function on the right side is tail-equivalent with µ(t), which is what we wanted
to show.
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Lemma A1. Let X be compact set and τR be the right endpoint of T ⊆ R. Let f , g : T × X → R
be continuous functions such that for all x ∈ X holds f (t, x) ∼ g(t, x) as t → τR. Let F be a
continuous distribution function. Then,∫

X
f (t, x)dF(x) ∼

∫
X

g(t, x)dF(x), as t→ τR.

Proof. Let ε > 0. Find t0 such that for all t > t0 and for all x ∈ X holds 1− ε < f (t,x)
g(t,x) < 1+ ε.

Then, for any t > t0, it holds that∫
X f (t, x)dF(x)∫
X g(t, x)dF(x)

<

∫
X f (t, x)dF(x)∫
X

1
1+ε f (t, x)dF(x)

= 1 + ε

and analogously
∫
X f (t,x)dF(x)∫
X g(t,x)dF(x) > 1− ε. The proof is finished by sending ε→ 0.

Proof of Theorem A2. Idea: We assume that the GPD approximation and linear model approx-
imations are correct up to a factor of ε: we argue that for a large n this is correct. Next, we use
Theorem 5.1 in [74] to show consistency of τ̂. We use Theorem 4.4 in [73] to show consistency of β̂
together with linearity of the least square estimate (to show that it does not depend on the inaccuracy
of the estimate of τ̂). Finally, we use Lemma 2 and send ε→ 0.

Proof: Let ε > 0. We claim that it is possible to find t < τR and n0 ∈ N such that for all
x ∈ X and all n ≥ n0, the following five statements hold with arbitrarily large probability:

• t < F−1
T|X=x(qn) (In other words, qn0 is large enough such that the qn-quantile of T | X

is larger than t. );
• It holds that

1− ε <
µx⋆(t)

E[Y | T = t, τ(X) = τ(x⋆)]
< 1 + ε,

where τ(x) = τ⊤linx is the qn0 -quantile of T | X = x;
• It holds that

1− ε <
E[Y | T = t, τ(X) = τ(x⋆)]

ατ(x⋆) + βτ(x⋆)t
< 1 + ε;

• ||τ̂lin − τlin|| < ε;
• |β̂− β| < ε;

where τ̂lin = argminb ∑n0
i=1 hqn0

(Ti − X⊤i b) is the maximum likelihood estimator, and β is
the real coefficient in the model

E[Y | T = t, T > τ⊤linx, X = x] = ατ⊤linx + βτ⊤linxt, (A6)

and β̂ is the corresponding least square estimate.
We prove the following bullet-points here:

• The first bullet-point is a trivial consequence of the assumption qn → 1.
• The second bullet-point is a trivial consequence of Lemma 2 together with Assump-

tion D.
• The third bullet-point is a trivial consequence of Assumptions 4 and D;
• The fourth bullet-point follows from a well-known consistency of τ̂lin. It is well known that

for a fixed quantile q, the maximum likelihood estimator τ̂lin = argminb ∑n
i=1 hq(Ti−X⊤i b)

is consistent and even asymptotically normal (see, e.g., Theorem 4.1 in [68], noting
that we assume continuous T and finite second moments of X). However, quantile q is
not fixed and is increasing with the sample size with the speed limn→∞ qn = 1 and
limn→∞ n(1− qn) = ∞. This is a well-known generalization of quantile regression
known as ’intermediate order regression quantiles’ or ’moderately extreme quan-
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tiles’ [75] and is as consistent and asymptotically normal under Assumption C (see
Theorem 5.1 in [74]).

• The fifth bullet-point: For a moment, fix τlin ̸= 0. It is an elementary knowledge that
the estimation of β using least squares in a model (A6), where τlin is fixed, consistent,
and even asymptotically normal under conditions var(Y) < ∞, E||X||2 < ∞, (X, T)
satisfying Grenander conditions and the sample-size |S| =: kn = n(1− qn)→ ∞ (see,
e.g., Lemma A2). Observe that least squares estimate β̂ is linear in τlin, that is, if we
express β̂ explicitly, we obtain β̂ = τ⊤lin

̂̃β, where β̃ is a coefficient in a linear model
corresponding to (A9) (where T is assumed to be larger than τ⊤X implicitly). Finally,
using this observation, we can replace the fixed value of τlin by a random τ̂lin, and we
still obtain β̂ = τ̂⊤lin

̂̃β. Since by increasing n we can make ̂̃β arbitrarily accurate with
arbitrarily large probability, the same holds for β̂. In the following paragraph, we
present an an illustration of the linearity of β̂ in τlin for d = 1. An explicit expression
of β̂ as a function of τlin and our data is the following:

[
α̂

β̂

]
= (M⊤M)−1M⊤YS, where M =

τlinx1 τlinx1t1
. . . . . .

τlinxk τlinxktk

 (A7)

where YS = (Y1, . . . , Yk)
⊤, WLOG let S = {1, . . . , kn} ⊂ {1, . . . , n}. Note that

M = τlindiag(x1, . . . , xk)

 1 t1
. . . . . .
1 tk

 = τlin M̃, (A8)

where M̃ is the data matrix corresponding to a model (A9).

Combining all the bullet-points, we obtain that with arbitrarily large probability that

µx⋆(t) ≈ E[Y | T = t, τ(X) = τ(x)]

≈ ατ(x) + βτ(x)t

≈ α̂τ̂⊤linx⋆ + β̂τ̂⊤linx⋆t,

where each sign ‘≈’ represent equality up to a factor of ε (in either multiplicative or additive
form) which is negligible as ε→ 0. This implies consistency, Quod erat demonstrandum.

Lemma A2. Consider an estimate (α̂, ˆ̃β) of α ∈ R, β̃ ∈ Rd using least squares in a model

E[Y | T = t, X = x] = αx + β̃⊤xt, (A9)

based on a random sample (Y1, T1, X1), . . . (Yk, Tk, Xk). Then, ˆ̃β is consistent and asymptotically
normal if var(Y) < ∞ and E||X||2 < ∞ and (X, T) satisfy Grenander conditions.

Proof can be found in Theorem 4.4 in [73].

Appendix D.4. Bootstraps Correctness

We use results from Chapter 23.2 in [58]. The main step is to use the delta method for
bootstrap (Theorem 23.5 in [58]) and the fact that regression models in step 1 and step 2 of
our algorithm are ’bootstrappable’ (Theorem 3 in [76,77]).

To simplify some steps of the proof, we assume the following:

E. Assume that ω̂x⋆ is consistent (which holds for example under assumptions A,B,C,D).
F. We compute τ̂lin from the first ⌊ n

2 ⌋ data points, and we compute β̂ from the remaining
⌈ n

2 ⌉ data points.
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G. In the computation of the set S, we assume that τ is known and non-random; that is,
S = {i ≤ n : Ti > τ(Xi)} instead of S = {i ≤ n : Ti > τ̂(Xi)}.

H. Assumption of Theorem 3 in [76] are satisfied; that is, E[XX⊤] is non-singular matrix,
the conditional density of Y − τ⊤X given X, denoted as f , satisfies f (ϵ | X) > r1
whenever |ϵ| ≤ r2 for some positive numbers r1, r2. Finally, there exists some
function G such that f (ϵ | X) ≤ G(X) for all ϵ and E

[
(1 + G(X))||X||2

]
< ∞.

Theorem A3. Assume validity of assumptions D,E,F,G and H. Let q ∈ (0, 1) be chosen such
that the distribution of T | T > τq(x), X = x follows GPD(θ(x)) for all x ∈ X . Then, ζ̂α is
asymptotically consistent; that is,

limin fn→∞P(ωx⋆ ≤ ζ̂α) ≥ 1− α.

Proof. We will show that both 1√
n (ω̂x⋆ −ωx⋆) and 1√

n (ω̂
⋆
x⋆ − ω̂x⋆) given Pn both converge

to the same distribution, say G. That is, 1√
n (ω̂x⋆ −ωx⋆)

D→ G D← 1√
n (ω̂

⋆
x⋆ − ω̂x⋆) as n→ ∞.

This directly implies (see, e.g., Lemma 23.3 in [58]) that ζ̂α is asymptotically consistent.
(Observation 1) τ̂lin satisfies that 1√

n (τ̂lin − τlin) and 1√
n (τ̂

⋆
lin − τ̂lin) given Pn both

converge to the same Gaussian distribution (see Theorem 3 in [76]).
(Observation 2) β̂ = τ̂⊤lin

̂̃β, where β̃ is a coefficient in a linear model corresponding
to (A9) (where T is assumed to be larger than τ(X) implicitly since we assumed that τ is
known and non-random in S). Note that ̂̃β ⊥⊥ τ̂lin since ̂̃β is computed from the second half
of the dataset and its computation does not contain τ̂lin. However, we know that ̂̃β satisfies

that 1√
n (
̂̃β− β̃) and 1√

n (
̂̃β⋆
− ̂̃β) given Pn both converge to the same Gaussian distribution

(Theorem 2 in [78] or [77]).
Together: Since τ̂lin is ’bootstrappable’ and ̂̃β is ’bootstrappable’ and they are in-

dependent, the delta method give us that ω̂x⋆ is ’bootstrappable’. More formally, we
use Theorem 23.5 in [58] (Delta method for bootstrap). Define ϕ : R2d → R : ϕ(a, b) =

(a⊤b)(a⊤x⋆). Note that ω̂x⋆ = ϕ(τ̂lin, ̂̃β). Since τ̂lin and ̂̃β satisfy the conditions of the
theorem, we obtain that 1√

n (ω̂x⋆ −ωx⋆) and 1√
n (ω̂

⋆
x⋆ − ω̂x⋆) given Pn both converge to the

same distribution. That is what we wanted to show.

Appendix E. Proofs of Lemmas 1 and 2

Proof of Lemma 1. A simple computation gives us

E[Y(t)] = E(E[Y(t) | X]) ∼ E(E[Y | X, T = t])

=
∫
X

∫
Y

pY|X,T(y, x, t)pX(x)y dydx

=
∫
X

∫
Y

pT(t)
pT|X(t | x)

pY,X|T(y, x | t)y dydx

= E{π0(T, X)Y | T = t}.

Proof of Lemma 2. From Assumption 2, we have that

E[Y(t) | X] ∼ E[Y | T = t, X] as t→ τR. (A10)

On both sides of (A10), we condition on θ(X) and integrate over the remaining X (denoted
as θC(X), formally it is an orthogonal complement). Note that the distribution of T | θ(X)
approaches the distribution of T | X, given T > τ(X) for sufficiently large τ(X), since it
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approaches GPD(θ(X)). Hence, PθC(X)|T=t,θ(X) approaches the distribution PθC(X)|θ(X) as
t→ τR.

We obtain the following:

E[Y(t) | θ(X)] =
∫

E[Y(t) | θ(X), θC(X) = w]dPθC(X)|θ(X)(w)

∼
∫

E[Y(t) | θ(X), θC(X) = w]dPθC(X)|T=t,θ(X)(w)

=
∫

E[Y | T = t, θ(X), θC(X) = w]dPθC(X)|T=t,θ(X)(w)

= E[Y | T = t, θ(X)].

The second statement in the Lemma trivially follows from the first by integrating
over θ(X).
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