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Abstract: The feedback stabilization problem for nonlinear discrete-time systems with a reduced-
order observer is investigated, in which the nonlinear terms of the systems satisfy the quasi-one-sided
Lipschitz condition. First, a discrete-time reduced-order observer for nonlinear systems is designed.
Then, a feedback controller with a reduced-order observer is designed for realizing the stabilization of
nonlinear discrete-time systems. We prove that the design of a feedback controller and reduced-order
observer of systems can be carried out independently in the case of discrete-time with nonlinear
terms, which largely reduces the computational complexity of the observer and controller. The
introduction of the quasi-one-sided Lipschitz condition simultaneously enhances the robustness and
stability of nonlinear control systems. Finally, the feasibility and effectiveness of the proposed design
approach is verified by a numerical simulation.
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1. Introduction

Feedback control, whether classical or modern, is fundamental for designing systems
that exhibit desired behavior. It allows for adjustments based on system states or outputs,
enhancing system performance and stability. However, a practical challenge arises when
the direct measurement of system states is unfeasible due to factors such as measurement
limitations, sensor costs, or technical constraints. In such cases, state estimation techniques
become indispensable [1,2]. Observers, such as full-order and reduced-order state observers,
play a crucial role in estimating system states based on available measurements [3,4]. These
estimates can then be used in feedback control strategies, effectively circumventing the need
for direct state measurements. Compared to the full-order observer, the dimensionality of
the reduced-order observer is lower, and its structure is simpler. Simplifying the observer
structure can reduce sensitivity to modeling inaccuracies or noise in measurements, leading
to more robust performance. Therefore, in some cases, a reduced-order observer may offer
improved robustness to modeling errors or disturbances compared to a full-order observer.
These advantages make reduced-order observers an attractive choice for many practical
control-system applications.

Study of nonlinear systems presents greater complexity compared to linear systems,
yet it holds immense practical significance as most real-world systems exhibit nonlin-
ear behavior. However, due to the inherent complexity of nonlinear behavior, it is often
challenging to directly model or analyze these systems without making simplifying as-
sumptions or approximations. Whether in the past or now, the Lipschitz condition has
frequently been applied to deal with the nonlinearities in the literature, for instance, the
design of observers for nonlinear systems [5,6]. However, for Lipschitz nonlinear systems,
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the existing observer design techniques typically consider the nonlinear terms of systems
as disturbances. To better evaluate the impact of systems nonlinear terms, in 2006, Hu [7]
first introduced the one-sided Lipschitz condition instead of the Lipschitz condition for
observer design of nonlinear systems, which showed that the sufficient condition for the
asymptotic stability of state observer has lower conservatism. Subsequently, many scholars
have studied different approaches of state observers design and output stabilization for
nonlinear systems with one-sided Lipschitz condition, for instance, [8–14]. Furthermore,
the research on reduced-order state observer, which is equally important in many engi-
neering fields, has been reported in [9,10,15–18]. In [15], a systematic approach to design
simple reduced-order observers for a large class of MIMO nonlinear discrete-time systems
is proposed. Unlike most of the existing results, neither the detectability of the linear
part nor the resolution of the Sylvester constraint is required. In [10], the observer design
problem for a class of one-sided Lipschitz time-delay systems subject to unknown inputs is
investigated. The H∞ observer design and asymptotic observer design with reduced order
are presented.

In addition, observer-based control, propelled by control inputs and measurement
output of control systems, has become an actual method for solving the problem in re-
cent decades [11,12,19–23]. In [11], on the basis of existing and new one-sided Lipchitz
nonlinear processing methods, two design conditions of observer-based controllers are
assessed to derive the solution. In [12], a finite time H∞ control problem about a nonlinear
continuous-time system, including uncertain parameters and disturbance inputs, is investi-
gated. It has been proven that the designed controller guarantees the system has finite time
boundedness (FTB).

Compared with continuous-time control systems, the analysis and research on discrete-
time control systems are of great significance. While both continuous-time and discrete-
time control systems aim to achieve stability and desired performance, they differ in
representation, analysis techniques, design methods, and implementation approaches
due to the discrete nature of sampled data in discrete-time systems. Understanding these
differences is crucial for effectively analyzing, designing, and implementing control systems
in various applications. In recent decades, the topic of state observer design and feedback
stabilization for nonlinear discrete-time systems have also gained much interest [13,14,24–32].
In [27], state observer design for nonlinear systems with one-sided Lipschitz condition is
studied, which first proposes several mathematical artifacts about Lyapunov functions to
obtain feasible stability conditions. In [30], a framework for the design of fault estimation
observers for discrete-time systems is provided. By introducing relaxation variables, design
results for fault estimation observers under finite frequency have been improved, allowing
for the design of separate Lyapunov matrices for each constraint. In [32], an observer-based
controller has been designed to stabilize a class of discrete-time switched nonlinear systems
with state delay and external disturbances. Based on the concept of passivity, average
residence time method, and auxiliary matrix, sufficient conditions are derived to make the
closed-loop system finite, time-bound, and passive in the presence of disturbances, which
are not very conservative.

In 2008, Hu [33] presented the quasi-one-sided Lipschitz condition instead of the one-
sided Lipschitz condition for observer design of nonlinear systems. The conservatism of
the asymptotic stability of the observer is further reduced. Subsequently, the research for
observer-based stabilization with quasi-one-sided Lipschitz condition is reported in [34–37].
In work by Dong et al. [35–37], the separation principle of the quasi-one-sided Lipschitz
nonlinear system is proposed in the sense of discrete-time and continuous-time, respectively.

However, until now, no results have been on the research of reduced-order observer
design for nonlinear systems with quasi-one-sided Lipschitz condition in the case of
discrete-time, let alone feedback stabilization problem for nonlinear discrete-time systems
based on the reduced-order observer. Therefore, it is necessary to study this problem. This
article is a natural continuation of [37].
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Motivated by the above discussion, this paper is devoted to the feedback stabiliza-
tion of quasi-one-sided Lipschitz nonlinear discrete-time systems with reduced order. A
reduced-order observer for nonlinear systems is designed. Then, a feedback controller
under a reduced-order observer is studied. We prove that the design of a feedback con-
troller and reduced-order observer for nonlinear discrete-time systems can be carried out
independently.

The primary contributions can be briefly stated as follows:

1. By introducing quasi-one-sided Lipschitz conditions into discrete-time systems, the
article extends the applicability of quasi-one-sided Lipschitz conditions to a broader
class of systems. The quasi-one-sided Lipschitz condition has lower conservatism
for observer design of nonlinear systems compared to the Lipschitz condition and
one-sided Lipschitz condition, which reflects the superiority of our results over some
existing results in the literature, for instance, [24–27].

2. The design of a reduced-order observer for nonlinear discrete-time systems is investi-
gated. Compared to the full-order observer, the dimensionality of the reduced-order
observer is lower, and its structure is simpler. Simplifying the observer structure can
reduce sensitivity to modeling inaccuracies or noise in measurements, leading to more
robust performance.

3. We prove that the design of feedback controller and reduced-order observer of systems
can be carried out independently in the case of discrete-time with quasi-one-sided
Lipschitz nonlinear terms, which largely enhances the flexibility of design with low
computational complexity.

4. The use of the quasi-one-sided Lipschitz condition in the development of observers
and controllers enables the handling of challenging scenarios where system parameter
(A, B) is not stabilizable, or (A, C) is not detectable. This approach enhances the
robustness and stability of control systems, making them applicable to a broader range
of real-world situations.

This paper is organized as follows. Section 2 gives the system description and pre-
liminaries. Section 3 proposes sufficient conditions for the existence of the reduced-order
observer for a nonlinear discrete-time system with quasi-one-sided Lipschitz condition. In
Section 4, a feedback controller with a reduced-order observer is designed for the stabiliza-
tion of the systems, which shows that the design of a feedback controller and reduced-order
observer can be executed independently. In Section 5, a numerical example is given to
show the effectiveness of the obtained results. Finally, this paper ends with a conclusion in
Section 6.

2. System Description and Preliminaries

In this article, we investigate the nonlinear discrete-time systems with constant coefficients{
x(k + 1) = Ax(k) + Bu(k) + g(x(k)),
y(k) = Cx(k),

(1)

where x(k) is an n-dimensional state vector, u(k) is a m-dimensional input vector, y(k) is a q-
dimensional output vector. A ∈ Rn×n, B ∈ Rn×m and C ∈ Rq×n are appropriate dimensions
matrices, g(x(k)) ∈ Rn represents a real-valued nonlinear vector field. Throughout this
paper, let g(0) = 0.

Definition 1 ([37]). The nonlinear vector function g(x) is called satisfying quasi-one-sided Lips-
chitz condition, if inequality

⟨g(x)− g(x̂), x − x̂⟩ ≤ (x − x̂)T M(x − x̂) (2)

holds for any x, x̂ ∈ Rn, where matrix M is the quasi-one-sided Lipschitz matrix for g(x). Since
g(0) = 0, when x̂ = 0, inequality (2) reduced to inequality
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⟨g(x), x⟩ ≤ xT M0x, (3)

then the nonlinear vector function g(x) is called satisfying the weak quasi-one-sided Lipschitz
condition, and matrix M0 is the weak quasi-one-sided Lipschitz matrix.

Definition 2 ([37]). The nonlinear vector function g(x) is called satisfying quadratic inner-
boundedness condition, if there exist appropriate constants α, β ∈ R, such that

(g(x)− g(x̂))T(g(x)− g(x̂)) ≤ α ∥ x − x̂ ∥2 +β⟨x − x̂, g(x)− g(x̂)⟩ (4)

holds for any x, x̂ ∈ Rn, where α, β are the quadratic inner-boundedness constants. Since g(0) = 0,
when x̂ = 0, inequality (3) reduced to inequality

gT(x)g(x) ≤ α0 ∥ x ∥2 +β0⟨x, g(x)⟩, (5)

then the nonlinear vector function g(x) is called satisfying weak quadratically inner-boundness
condition, and α0, β0 are the weak quadratically inner-boundness constants.

Definition 3 ([5]). The nonlinear function g(x) is said to be Lipschitz if there exists a positive
constant γ such that

∥ g(x)− g(x̂) ∥≤ γ ∥ x − x̂ ∥ (6)

holds for and x, x̂ ∈ Rn, inequality (6) is called the Lipschitz condition and γ is called Lipschitz constant.

Definition 4 ([7]). The nonlinear vector function g(x) is called the one-sided Lipschitz condition,
if inequality

⟨ϕ(x)− ϕ(x̂), x − x̂⟩ ≤ ν ∥ x − x̂ ∥2, (7)

holds for any x, x̂ ∈ Rn, where ν is called the one-sided Lipschitz constant. The constant ν can be
positive, zero, or even negative.

Remark 1. It is worth emphasizing that the quasi-one-sided Lipschitz matrix M and weak quasi-one-
sided Lipschitz matrix M0 only need to be symmetric and do not need to be positive definiteness or
negative definiteness, which is the key point of the superiority of conditions (2) and (3). As is shown
in [37], the weak quasi-one-sided Lipschitz condition (3) and weak quadratic inner-boundedness
condition (5) are weaker than quasi-one-sided Lipschitz condition (2) and weak quadratic inner-
boundedness condition (4). In general, we assume that ν = λmax(M), when M = νI, the
quasi-one-sided Lipschitz condition (2) is reduced to the one-sided Lipschitz condition (7). Therefore,
the quasi-one-sided Lipschitz condition (2) is an extension of the one-sided Lipschitz condition (7).

Remark 2. As verified in [24], if nonlinear function g(x) satisfies the Lipschitz condition (6), it
must satisfy the quadratic inner-boundedness condition (4) with α > 0, β = 0, on the contrary, it
does not hold true. The constant β, β0 ∈ R can be positive, negative, or zero, and the nonlinear
function g(x) must be Lipschitz when β or β0 is restricted to be positive.

Remark 3. The weak quasi-one-sided Lipschitz condition (3) and the weak quadratic inner-
boundedness condition (5) give the follow inequalities

ε3xT(k)M0x(k)− ε3xT(k)g(x(k)) ≥ 0 (8)

and
ε4α0xT(k)x(k) + ε4β0xT(k)g(x(k))− ε4gT(x(k))g(x(k)) ≥ 0 (9)

hold, where ε3 and ε4 are arbitrary strictly positive constants.
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Now, We review a full-order state observer for nonlinear discrete-time systems (1)
proposed in [37] with the following structure{

x̂(k + 1) = Ax̂(k) + Bu(k) + g(x̂(k)) + L(y(k)− Cx̂(k)),
ŷ(k) = Cx̂(k),

(10)

where x̂(k) represents the estimated state of vector x(k), L ∈ Rn×q is an observer gain matrix.
Let error estimation e(k) = x(k)− x̂(k), from state observer (10) and systems (1), we

can obtain error estimation equation

e(k + 1) = (A − LC)e(k) + g(x(k))− g(x̂(k)). (11)

The following Lemma proposed in [37] give the sufficient condition for observer (10)
to be an asymptotically stable observer of systems (1).

Lemma 1 ([37]). Assuming that systems (1) satisfy conditions (2) and (4). The observer (10) is an
asymptotically stable observer for system (1), if there are positive-definite matrix P, gain matrix L
and appropriate constants ε1, ε2 satisfying matrix inequality(

(A − LC)T P(A − LC)− P + ε1MI + ε2αI (A − LC)T P + 1
2 ε2βI − 1

2 ε1 I
⋆ P − ε2 I

)
< 0. (12)

Moreover, assume L = P−1RT , inequality (12) can be converted into the following condition:
there is positive-definite matrix P and real matrix R satisfying linear matrix inequality −P + ε1MI + ε2αI AT P − CT R + 1

2 ε2βI − 1
2 ε1 I AT P − CT R

⋆ P − ε2 I 0
⋆ ⋆ −P

 < 0. (13)

Remark 4. The superiority of quasi-one-sided Lipschitz condition (2) compared with one-sided
Lipschitz condition and Lipschitz condition for the design of full-order state observer design of
discrete-time nonlinear systems (1) has been shown in [37].

In this article, we will continue to investigate the design of a reduced-order observer
for nonlinear discrete-time systems and output stabilization problems with a reduced-order
observer by means of the quasi-one-sided Lipschitz condition and Lyapunov stability theory.

3. Discrete-Time: Reduced-Order Observer Design

As we know, full-order state observers aim to estimate the complete state of a system
based on the system dynamics and the available output information. However, in some
cases, the output of the system already provides information about certain state variables
directly, making it unnecessary to estimate them again in the observer. Reduced-order
state observers are designed to estimate only the parts of the state that cannot be directly
obtained from the output signal. In this section, a reduced-order observer for nonlinear
discrete-time systems (1) is designed. This approach can lead to simpler observer designs
and potentially better control performance overall.

At first, decompose systems parameters matrices A and B into block matrices:

A =

(
A11 A12
A21 A22

)
, B =

(
B1
B2

)
, (14)

where A11 ∈ Rq×q, A12 ∈ R q×(n−q), A21 ∈ R(n−q)×q, A22 ∈ R( n−q)×(n−q), B1 ∈ R q×m and
B2 ∈ R (n−q)×m. For simplicity, we only consider the case of output matrix C =

(
Iq 0

)
.

In fact, when C ̸=
(

Iq 0
)
, as long as C is row full rank, we can transform any q × m-

dimensional row full rank matrix C into this form through appropriate transformation.
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By system state transformation z(k) = Ux(k), let U =

(
Iq 0
H In−q

)
, where H ∈

R( n−q)×q . Since C =
(

Iq 0
)
, we have

z1(k) = x1(k) = y(k),

z2(k) = Hx1(k) + x2(k) = Hy(k) + x2(k),
(15)

where z1(k) ∈ Rq and z2(k) ∈ Rn−q. From (1) and (15), by calculation, we can obtain

z2(k + 1) = Hx1(k + 1) + x2(k + 1)

= (A22 + HA12)z2(k) + (HA11 − HA12H + A21 − A22H)y(k) + (HB1

+ B2)u(k) +
(

H In−q
)

g
(

y(k)
z2(k)− Hy(k)

)
.

(16)

From (16), a discrete-time reduced-order observer for systems (1) can be constructed by

ẑ2(k + 1) = (A22 + HA12)ẑ2(k) + (HA11 − HA12H + A21 − A22H)y(k) + (HB1

+ B2)u(k) +
(

H In−q
)

g
(

y(k)
ẑ2(k)− Hy(k)

)
,

ẑ1(k) = x̂1(k) = y(k),
x̂2(k) = ẑ2(k)− Hy(k).

(17)

Let estimation error e2(k) = z2(k)− ẑ2(k), then from (16) and (17), the error estimation of
e2(k) is given by

e2(k + 1) = (A22 + HA12)e2(k) +
(

H In−q
)
∆gk, (18)

where ∆gk = g
(

y(k)
z2(k)− Hy(k)

)
− g
(

y(k)
ẑ2(k)− Hy(k)

)
.

Next, a sufficient condition for the existence of reduced-order observer for nonlinear
discrete-time systems (1) is given.

Theorem 1. Assuming that systems (1) satisfy conditions (2) and (4), then there exists a reduced-
order observer in the form of (17) for systems (1) if there exist positive-definite matrix P, gain matrix
L, and appropriate constants ε1, ε2 such that matrix inequality (12) holds, where reduced-order
observer gain matrix H = P−1

3 PT
2 ∈ R(n−q)×q.

Proof of Theorem 1. Set P =

(
P1 P2
PT

2 P3

)
is positive-definite solution of inequality (12),

matrix M =

(
M1 M2
MT

2 M3

)
, where P1, M1 ∈ Rq×q, P2, M2 ∈ Rq×(n−q), P3, M3 ∈ R(n−q)×(n−q).

Let T =
(

0 I2n−q
)
, for matrix on the left side of inequality (12), multiplying it by T

and its transpose on the left and right sides, respectively, we can obtain matrix inequality
as follows:

Ω1 =

 Ω11 AT
12P1 + AT

22PT
2 AT

12P2 + AT
22P3 +

1
2 ε2βIn−p − 1

2 ε1 In−p
∗ P1 − ε2 Ip P2
∗ ∗ P3 − ε2 In−q

 < 0, (19)

where

Ω11 = AT
12P1 A12 + AT

22PT
2 A12 + AT

12P2 A22 + AT
22P3 A22 − P3 + ε1M3 + ε2αIn−p.
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Construct the discrete-time Lyapunov functional

V(e2(k)) = eT
2 (k)P3e2(k). (20)

The difference of V(e2(k)) is

∆Vk = V(e2(k + 1))− V(e2(k))

= eT
2 (k + 1)P3e2(k + 1)− eT

2 (k)P3e2(k)

= eT
2 (k)[(A22 + HA12)

T P3(A22 + HA12)− P3]e2(k) + 2eT
2 (k)(A22 + HA12)

T P3·(
H In−p

)
∆gk + ∆gT

k
(

H In−p
)T P3

(
H In−p

)
∆gk.

(21)

For convenient, let ∆gk =

(
∆g1(k)
∆g2(k)

)
, where ∆g1(k) ∈ Rq, ∆g2(k) ∈ Rn−q. From quasi-

one-sided Lipschitz condition (2), we can attain the following inequality

ε1
(

0 eT
2 (k)

)( M1 M2
MT

2 M3

)(
0

e2(k)

)
− ε1

(
0 eT

2 (k)
)( ∆g1(k)

∆g2(k)

)
≥ 0, (22)

where ε1 is arbitrary strictly positive scalar, i.e.,

ε1eT
2 (k)M3e2(k)− ε1eT

2 (k)∆g2(k) ≥ 0. (23)

From quadratic inner-boundedness condition (4), there exists ε2 > 0, such that

ε2 α
(

0 eT
2 (k)

)( 0
e2(k)

)
+ ε2 β

(
0 eT

2 (k)
)( ∆g1(k)

∆g2(k)

)
− ε2 (∆gT

1 (k), ∆gT
2 (k))·(

∆g1(k)
∆g2(k)

)
≥ 0

(24)

holds, i.e.,

ε2 α eT
2 (k)e2(k) + ε2 β eT

2 (k)∆g2(k)− ε2 (∆gT
1 (k) · ∆g1(k) + ∆gT

2 (k) · ∆g2(k)) ≥ 0. (25)

Let H = P−1
3 PT

2 and substitute inequalities (23) and (25) to equation (21), we can obtain

∆Vk ≤ eT
2 (k)[A

T
12P2P−1

3 PT
2 A12 + AT

22PT
2 A12 + AT

12P2 A22 + AT
22P3 A22 − P3 + ε1M3

+ ε2αIn−p]e2(k) + 2eT
2 (k)(AT

12P2P−1
3 PT

2 + AT
22PT

2 )∆g1(k) + 2eT
2 (k)(AT

12P2

+ AT
22P3 −

1
2

ε1 In−q +
1
2

ε2βIn−q)∆g2(k) + ∆gT
1 (k)(P2P−1

3 PT
2 − ε2 Iq)∆g1(k)

+ 2∆gT
1 (k)P2∆g2(k) + ∆gT

2 (k)(P3 − ε2 In−q)∆g2(k)

≤
(

eT
2 (k) ∆gT

1 (k) ∆gT
2 (k)

)
Π1

 e2(k)
∆g1(k)
∆g2(k)

,

(26)

where

Π1 =

 Π11 AT
12P2P−1

3 PT
2 + AT

22PT
2 AT

12P2 + AT
22P3 +

1
2 ε2βIn−q − 1

2 ε1 In−q
∗ P2P−1

3 PT
2 − ε2 Iq P2

∗ ∗ P3 − ε2 In−q

, (27)

Π11 = AT
12P2P−1

3 PT
2 A12 + AT

22PT
2 A12 + AT

12P2 A22 + AT
22P3 A22 − P3 + ε1M3 + ε2αIn−q.

By Lyapunov stability theory, equation (17) is a discrete-time reduced-order observer
of systems (1), so long as

Π1 < 0 (28)
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holds. From (19) and (27), we have

Π1 − Ω1 =

 AT
12(P2P−1

3 PT
2 − P1)A12 AT

12(P2P−1
3 PT

2 − P1) 0
∗ P2P−1

3 PT
2 − P1 0

∗ 0 0

. (29)

Since P =

(
P1 P2
PT

2 P3

)
> 0, by the Schur complement lemma [36], we have

P2P−1
3 PT

2 − P1 < 0. (30)

Therefore, (
AT

12(P2P−1
3 PT

2 − P1)A12 AT
12(P2P−1

3 PT
2 − P1)

∗ P2P−1
3 PT

2 − P1

)

=

(
AT

12 0
Iq 0

)(
P2P−1

3 PT
2 − P1 0

0 0

)(
A12 Iq
0 0

)
≤ 0. (31)

That is to say, Π1 − Ω1 ≤ 0. From (19), we know that Ω1 < 0; therefore,

Π1 < 0 (32)

holds, it follows that ∆Vk < 0 from (26). The proof is completed.

Next, by Lemma 1 and Theorem 1, the following conclusion is proposed for designing
a discrete-time reduced-order observer of nonlinear systems (1).

Theorem 2. Assuming that systems (1) satisfy conditions (2) and (4). If there exists matrices
P > 0, R and constants ε1, ε2 satisfying the linear matrix inequality −P + ε1M + ε2αI AT P − CT R + 1

2 ε2βI − 1
2 ε1 I AT P − CT R

⋆ P − ε2 I 0
⋆ ⋆ −P

 < 0, (33)

then a reduced-order observer in the form of (17) for nonlinear discrete-time system (1) can be
designed, reduced-order observer gain matrix H = P−1

3 PT
2 ∈ R(n−q)×q.

Proof of Theorem 2. Let L = P−1RT , matrix inequality (12) can be transformed into linear
matrix inequality (33). Therefore, Theorem 2 can be obtained easily.

Remark 5. If matrix inequality (33) holds, then we can obtain the feasible solutions P and R of
matrix inequality (33) through optimization algorithms, then the reduced-order observer gain matrix
H can be calculated, the reduced-order observer (17) for nonlinear discrete-time systems is designed.

4. Discrete-Time: Feedback Stabilization Based on Reduced-Order Observer

As a reduced-order observer (17) for nonlinear discrete-time systems (1) is designed,
subsequently, we design a feedback controller with the reduced-order observer for sta-
bilization of the systems (1). We will prove that the design of the feedback controller
and reduced-order observer can still be executed independently in the case of nonlinear
discrete-time systems.

First, we consider a full-state feedback controller for systems (1) described as

u(k) = −Kx(k), (34)
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where K ∈ Rm×n is called controller gain matrix to be detemined later. From (1) and (34),
the nonlinear discrete-time closed-loop systems are of the form{

x(k + 1) = (A − BK)x(k) + g(x(k)),
y(k) = Cx(k).

(35)

The following Lemma proved in [37] gives the sufficient condition for asymptotic
stability of zero solution for nonlinear discrete-time closed-loop systems (35).

Lemma 2 ([37]). Assuming that systems (1) satisfy conditions (3) and (5). The sufficient condition
for the asymptotic stability of the zero solution for a nonlinear discrete-time closed-loop system
(35) is

Π3 =

(
(A − BK)T P0(A − BK)− P0 + ε3M0 + ε4α0 I (A − BK)T P0 +

1
2 ε4β0 I − 1

2 ε3 I
⋆ P0 − ε4 I

)
< 0, (36)

where P0 > 0, K are appropriate dimensions matrices, ε3, ε4 are appropriate constants.
Furthermore, Let Q = P−1

0 and K = WQ−1, matrix inequality (36) can be transformed into
matrix inequality −Q + ε3QM0Q + ε4α0QQ QAT − WT BT + 1

2 ε4β0QQ − 1
2 ε3QQ QAT − WT BT

⋆ Q − ε4QQ 0
⋆ ⋆ −Q

 < 0. (37)

Now, a feedback controller based on the reduced-order observer (17) for nonlinear
systems (1) is designed. Combining the observer-based controller

u = −Kx̂(k) (38)

with reduced-order observer

ẑ2(k + 1) =(A22 + HA12)ẑ2(k) + (HA11 − HA12H + A21 − A22H)y(k) + (HB1

+ B2)u(k) +
(

H In−q
)

g
(

y(k)
ẑ2(k)− Hy(k)

)
,

(39)

from z(k) = Ux(k) =
(

Iq 0
H In−q

)
x(k), we have

x(k) = U−1z(k) =
(

Iq 0
−H In−q

)
z(k). (40)

For convenient, set F1 =

(
Iq
−H

)
, F2 =

(
0

In−q

)
, we can obtain

x(k) = F1z1(k) + F2z2(k) = F1y(k) + F2z2(k). (41)

Subsequently, the estimated state is acquired as

x̂(k) = F1y(k) + F2ẑ2(k). (42)

Take the observer-based controller (38) to systems (1), then nonlinear discrete-time systems
with reduced-order observer (39) is given as

x(k + 1) = Ax(k)− BKx̂(k) + g(x(k))

= Ax(k)− BK(F1y(k) + F2ẑ2(k)) + g(x(k))

= (A − BKF1C)x(k)− BKF2ẑ2(k) + g(x(k)).

(43)
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The reduced-order observer (39) with the feedback control law (38) is obtained as

ẑ2(k + 1) =(A22 + HA12)ẑ2(k) + (HA11 − HA12H + A21 − A22H)Cx(k)− (HB1 + B2)K·

(F1Cx(k) + F2 ẑ2(k)) +
(

H In−p

)
g

(
y(k)

ẑ2(k)− Hy(k)

)

=H1 ẑ2(k) + H2x(k) +
(

H In−q

)
g

(
y(k)

ẑ2(k)− Hy(k)

)
,

(44)

where

H1 =A22 + HA12 − (HB1 + B2)KF2,

H2 =(HA11 − HA12H + A21 − A22H)C − (HB1 + B2)KF1C.

Let J =
(

H In−q
)
, from z(k) =

(
Iq 0
H In−q

)
x(k), we have z2(k) = Jx(k). Since

e2(k) = z2(k)− ẑ2(k), closed-loop systems (43) can be transformed into

x(k + 1) = (A − BKF1C)x(k)− BKF2(z2(k)− e2(k)) + g(x(k))

= (A − BKF1C − BKF2 J)x(k) + BKF2e2(k) + g(x(k))

= (A − BK)x(k) + BKF2e2(k) + g(x(k))

(45)

and the error equation of the reduced-order observer is

e2(k + 1) = (A22 + HA12)e2(k) +
(

H In−p
)
∆gk. (46)

Since the state transformation(
x(k)
ẑ2(k)

)
=

(
Ip 0
J −In−p

)(
x(k)
e2(k)

)
(47)

is nonsingular, therefore, closed-loop systems (43) with reduced-order observer (44) can be
converted into closed-loop systems (45) with estimation equation (46).

Subsequently, we will prove that when nonlinear discrete-time systems (1) execute
the feedback stabilization with a reduced-order observer, the design of the feedback con-
troller (34) and reduced-order observer (17) can be still carried out independently.

Theorem 3. Assuming that nonlinear discrete-time closed-loop systems (45) satisfy conditions (2)–(5).
If both matrix inequalities (28) and (36) hold, then the zero solution of closed-loop systems (45) is
asymptotically stable with feedback controller (38) based on the reduced-order observer (39). The
controller gain matrix is attained as K = WQ−1 and reduced-order observer gain matrix is obtained
by H = P−1

3 PT
2 .

Proof of Theorem 3. Construct the discrete-time series Lyapunov functional

V(x(k), e2(k)) = c xT(k)P0x(k) + eT
2 (k)P3e2(k), (48)

where c > 0. The difference of V(x(k), e2(k)) is obtained as

∆Vk =V(x(k + 1), e2(k + 1))− V(x(k), e2(k))

=c xT(k + 1)P0x(k + 1) + eT
2 (k + 1)P3e2(k + 1)− c xT(k)P0x(k)− eT

2 (k)P3e2(k)

=c [(A − BK)x(k) + BKF2e2(k) + g(x(k))]T P0[(A − BK)x(k) + BKF2e2(k)

+ g(x(k))] + [(A22 + HA12)e2(k) +
(

H In−p
)
∆gk]

T P3[(A22 + HA12)e2(k)

+
(

H In−p
)
∆gk]− c xT(k)P0x(k)− eT

2 (k)P3e2(k).

(49)
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Let H = P−1
3 PT

2 , from equations (8), (9), (23) and (25), we can obtain

∆Vk ≤ ωT(k)Σ ω(k), (50)

where
ω(k) =

(
xT(k) gT(x(k)) eT

2 (k) ∆gT
1 (k) ∆gT

2 (k))
)T ,

Σ =


Σ11 Σ12 Σ13 0 0
∗ Σ22 Σ23 0 0
∗ ∗ Σ33 Σ34 Σ35
∗ ∗ ∗ Σ44 Σ45
∗ ∗ ∗ ∗ Σ55

,

Σ11 = c [(A − BK)T P0(A − BK)− P0 + ε3M0 + ε4α0 In],

Σ12 = c [(A − BK)T P0 −
1
2

ε3 In +
1
2

ε4β0 In],

Σ13 = c (A − BK)T P0BKF2,

Σ22 = c (P0 − ε4 In),

Σ23 = c P0BKF2,

Σ33 = AT
12P2P−1

3 PT
2 A12 + AT

22PT
2 A12 + AT

12P2 A22 + AT
22P3 A22 − P3 + ε1M3 + ε2αIn−p

+ c (BKF2)
T P0BKF2,

Σ34 = AT
12P2P−1

3 PT
2 + AT

22PT
2 ,

Σ35 = AT
12P2 + AT

22P3 −
1
2

ε1 In−p +
1
2

ε2βIn−p,

Σ44 = P2P−1
3 PT

2 − ε2 Ip,

Σ45 = P2,

Σ55 = P3 − ε2 In−p.

By Lyapunov stability theory, the zero solution of closed-loop systems with a reduced-
order observer is asymptotically stable as long as matrix inequality Σ < 0 holds.

Assume that ρ(k) = (xT(k), gT(x(k))T and δ(k) = (eT
2 (k), ∆gT

1 (k), ∆gT
2 (k))

T , then we
can obtain

∆Vk =c ρT(k)Π3ρ(k) + c xT(k)(A − BK)T P0BKF2e2(k) + c gT(x(k))P0BKF2e2(k)

+ δT(k)Π1δ(k) + c eT
2 (k)(BKF2)

T P0BKF2e2(k)

≤c λmax(Π3) ∥ ρ(k) ∥2 +c ∥ ρ(k) ∥∥ (A − BK)T P0BKF2 ∥∥ δ(k) ∥ +c ∥ ρ(k) ∥
∥ P0BKF2 ∥∥ δ(k) ∥ +λmax(Π1) ∥ δ(k) ∥2 +c ∥ δ(k) ∥∥ (BKF2)

T P0BKF2 ∥∥ δ(k) ∥,

(51)

where matrices Π1 and Π3 are given by (27) and (36), respectively. By Lemma 2, we have

Π3 =

(
(A − BK)T P0(A − BK)− P0 + ε3M0 + ε4α0 I (A − BK)T P0 +

1
2 ε4β0 I − 1

2 ε3 I
⋆ P0 − ε4 I

)
< 0. (52)

It means that λmax(Π3) < 0. When LMI (36) holds, the feedback controller is given as
K = WP0.

From Theorem 1, we can obtain

Π1 =

 Π11 AT
12P2P−1

3 PT
2 + AT

22PT
2 AT

12P2 + AT
22P3 +

1
2 ε2βIn−p − 1

2 ε1 In−p
∗ P2P−1

3 PT
2 − ε2 Ip P2

∗ ∗ P3 − ε2 In−p

 < 0. (53)

It means that λmax(Π1) < 0. When matrix inequality (28) holds, gain matrix H of reduced-
order observer is attained as H = P−1

3 PT
2 .
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Let R1 = (A−BK)TP0BKF2, R2 = P0BKF2 and R3 = (BKF2)
TP0BKF2. From (51), we have

∆Vk ≤ −µT(k)
(

−cλmax(Π3) −c (∥ R1 ∥ + ∥ R2 ∥)
∗ −λmax(Π1)− c ∥ R3 ∥

)
µ(k), (54)

where µ(k) =
(
∥ ρ(k) ∥ ∥ δ(k) ∥

)T . Let the matrix

Π4 =

(
−c λmax(Π3) −c (∥ R1 ∥ + ∥ R2 ∥)

∗ −λmax(Π1)− c ∥ R3 ∥

)
. (55)

Afterwards, the necessary and sufficient condition for Π4 > 0 is

−c λmax(Π3) > 0 (56)

and
c λmax(Π1)λmax(Π3) + c2λmax(Π3) ∥ R3 ∥ −c2(∥ R1 ∥ + ∥ R2 ∥)2 > 0. (57)

Due to c > 0, λmax(Π1) < 0 and λmax(Π3) < 0, it is not difficult to find that

0 < c <
λmax(Π1)λmax(Π3)

−λmax(Π3) ∥ R3 ∥ +(∥ R1 ∥ + ∥ R2 ∥)2 . (58)

If inequality (58) holds, ∆Vk < 0 for any (x(k), e2(k)) ̸= 0, the conclusion holds. In
other words, the design of the feedback controller (34) and reduced-order observer (39) can
be carried out independently for systems (1). The proof is completed.

Remark 6. We emphasize that the advantage of the quasi-one-sided Lipschitz condition still holds
when nonlinear discrete-time systems implement the control with a reduced-order observer. System
parameter (A, C) can be not detectable, and system parameter (A, B) can be not stabilizable, which
means that there is no need for a gain matrix L or gain matrix K to ensure that the modulus of all
eigenvalues of matrix A − LC and matrix A − BK is strictly less than unity.

5. Numerical Example

Consider nonlinear discrete-time systems with the following parameter matrices:

A =

 0.5 0 0.07
0 1.004 0

0.06 0 0.92

, B =

 0.1
0
0

, C =
(

1 0 0
)
,

the nonlinear term g(x(k)) is given by

g(x(k)) =
(

0.025 sin(x1(k))
−0.02x2(k)

1−0.6e−x2
2(k)

−0.02x3(k)

1−0.6e−x2
3(k)

)T
.

First, a reduced-order observer for estimating the partial states of systems is proposed.
By calculation, we know that matrix parameter (A, C) is not detectable. Therefore, the
design of a reduced-order observer for systems requires useful information from the
nonlinear terms of the systems. Obviously, it is impossible to use the classical Lipschitz
condition (6).

From conditions (2) and (4), using the mean-value theorem, matrix M and parameters
α, β can be chosen as

M =

 0.025 0 0
0 −0.01109 0
0 0 −0.01109

, α = 0.0025 and β = −0.075.



Mathematics 2024, 12, 1553 13 of 16

From Theorems 1 and 2, we can obtain the solution of the linear matrix inequality (33) is

ε1 = 3.0605, ε2 = 4.3566, R =
(

0.2811 0 0.2429
)
,

and

P =

 2.5533 0 −0.1871
0 1.6552 0

−0.1871 0 1.9868

,

where

P1 = 2.5533, P2 =
(

0 −0.1871
)

andP3 =

(
1.6552 0

0 1.9868

)
.

Subsequently, the gain matrix of a reduced-order observer is

H = P−1
3 PT

2 =

(
0

−0.0942

)
.

Then, we can obtain the following reduced-order observer of systems:

ẑ2(k + 1) =
(

1.004 0
0 0.9134

)
ẑ2(k) +

(
0

0.0989

)
y(k) +

(
0

−0.0094

)
u(k)

+

(
0 1 0

−0.0942 0 1

)
g

(
y(k)

ẑ2(k)−
(

0 −0.0942
)Ty(k)

)
.

ẑ1(k) = x̂1(k) = y(k),

x̂2(k) = ẑ2(k)−
(

0
−0.0942

)
y(k).

It is worth emphasizing that when using the one-sided Lipschitz condition (7), the
one-sided Lipschitz constant ν = λmax(M) = 0.025 > 0. Obviously, we cannot design
an asymptotically stable reduced-order observer for the system (1). It fully reflects the
superiority of quasi-one-sided conditions over one-sided conditions in observer design of
nonlinear discrete-time systems.

Next, a feedback controller is designed for the stabilization of the systems. Since
system parameter (A, B) is not stabilizable, when designing controllers for systems, useful
information on the nonlinear terms of the systems is also required. By Conditions (3) and (5),
matrix M0 and parameters α0, β0 can be chosen as

M0 =

 0.025 0 0
0 −0.02 0
0 0 −0.02

, α0 = 0.0025 and β0 = −0.075.

According to Lemma 2, solving inequality (37), the feedback controller gain matrix can be
obtained as

K =
(

0.8569 0 0.6951
)
.

Let initial condition x(0) = (−2,−6.53, 4.38)T and ẑ2(0) = (2.67,−4.71)T , then the
simulation results are shown in Figures 1–4. The response curve of state x1(k) of nonlinear
systems is shown in Figure 1, the response curve of states x2(k) and x3(k) and their
estimated states x̂2(k) and x̂3(k) of systems with reduced-order observer are shown in
Figures 2 and 3, separately. The response curve of estimation errors e2(k) and e3(k) for
states x2(k) and x3(k) are shown in Figure 4. As can be seen from Figures 1–4, under the
observer-based control, all the states and estimation errors of the systems asymptotically
tend to 0. Therefore, the partial states of nonlinear systems can be well evaluated by the
reduced-order observer, and nonlinear closed-loop systems can achieve asymptotic stability
under the control based on the reduced-order observer.
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Figure 1. State x1(k).
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6. Conclusions

This work considers feedback stabilization for quasi-one-sided Lipschitz nonlinear
systems with a reduced-order observer in the case of discrete time. Sufficient conditions
are proposed for the existence of a reduced-order observer of a nonlinear discrete-time
system. Furthermore, a controller design method with reduced-order observer for systems
is proposed. We prove that the feedback controller and reduced-order observer can still
be carried out independently when systems execute the feedback stabilization with the
reduced-order observer in the case of discrete-time systems with nonlinear terms.

Our next research goal is to extend the quasi-one-sided Lipschitz condition to the
research of stability and output feedback stabilization problems for nonlinear discrete-time
systems with periodic coefficients and different types of time-delay systems.
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