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Abstract: In the domain of automated story generation, the intricacies of the Arabic language pose
distinct challenges. This study introduces a novel methodology that moves away from conventional
event-driven narrative frameworks, emphasizing the restructuring of narrative constructs through
sophisticated language models. Utilizing mBERT, our approach begins by extracting key story entities.
Subsequently, XLM-RoBERTa and a BERT-based linguistic evaluation model are employed to direct
beam search algorithms in the replacement of these entities. Further refinement is achieved through
Low-Rank Adaptation (LoRA), which fine-tunes the extensive 3 billion-parameter BLOOMZ model
specifically for generating Arabic narratives. Our methodology underwent thorough testing and
validation, involving individual assessments of each submodel. The ROCStories dataset provided
the training ground for our story entity extractor and new entity generator, and was also used in the
fine-tuning of the BLOOMZ model. Additionally, the Arabic ComVE dataset was employed to train
our commonsense evaluation model. Our extensive analyses yield crucial insights into the efficacy
of our approach. The story entity extractor demonstrated robust performance with an F-score of
96.62%. Our commonsense evaluator reported an accuracy of 84.3%, surpassing the previous best by
3.1%. The innovative beam search strategy effectively produced entities that were linguistically and
semantically superior to those generated using baseline models. Further subjective evaluations affirm
our methodology’s capability to generate high-quality Arabic stories characterized by linguistic
fluency and logical coherence.

Keywords: arabic natural language generation; generative language models; story generation; story
space remodeling

MSC: 68T05; 68T07; 68T50

1. Introduction

Computational narratives facilitate the creation of numerous stories with minimal
effort, tailoring them to meet users’ educational and entertainment needs. However,
the methodology behind storytelling is complex, deriving its diversity from choices in plot
organization, character development, and thematic framing. Traditional perspectives on
story creation typically focus on constructing story plots through the generation of event
sequences. This approach has been explored through various methodologies, including
early planning models, case-based reasoning frameworks, and machine learning techniques,
as discussed by Alhussain and Azmi [1]. Such a focus on event sequences—which include
the narrative’s inception, conclusion, and the dynamic transitions between states—is
practical. It simplifies the computational generation of story plots, making the process
more algorithmically accessible. However, while this approach has successfully produced
compelling stories, it suffers from a lack of long-range coherence [2] and may diminish
suspense due to an underdeveloped dramatic arc [1].

Contrary to traditional approaches, Singh [3] argued that innovative narratives can
arise not only from establishing a core story framework but also through the creative
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adaptation and reimagining of existing narratives. He illustrated how new stories can be
crafted using the same narrative structure by infusing fresh elements into the narrative
space, thus enhancing the storytelling process. Additionally, Kybartas and Bidarra [4]
highlighted the importance of automated space generation in computational narratives
and identified a notable gap: the lack of systems dedicated exclusively to generating
narrative spaces.

In recent years, large language models (LLMs) have achieved remarkable success
across various natural language processing (NLP) tasks. However, prominent LLMs
such as GPT-4 [5] and PaLM 2 [6] are not open-source, limiting transparency into their
mechanisms and imposing usage restrictions. These models are accessible only through
APIs and do not offer the flexibility of fine-tuning. In response, open-source LLMs have
been developed to serve the research community. Examples include English LLMs like
LLaMA [7] and BLOOM [8], as well as their multilingual counterparts, m-LLaMA [9]
and BLOOMZ [10]. Fine-tuning LLMs can be prohibitively expensive, especially when
resources are limited. To mitigate this, techniques such as Low-Rank Adapters (LoRAs) [11]
have been introduced. LoRAs enable efficient fine-tuning by making only a small portion
of the model trainable. This approach significantly reduces the number of parameters
that need to be learned and the overall model size, thus facilitating faster fine-tuning and
conserving memory resources.

This paper presents an innovative approach to story generation that moves away from
the conventional event-centric method. Instead, it emphasizes redefining the narrative
space by focusing on the generation of story elements such as places, objects, and charac-
ters. By reimagining the story space while maintaining the original sequence of events,
this method allows for the creation of new stories without compromising the narrative’s
dramatic structure. Furthermore, we utilized a LoRA to fine-tune the extensive BLOOMZ
model for story generation tasks using an English story corpus. Following this, we used
the beginning of the reimagined story as an initial seed for the story space to prompt the
fine-tuned BLOOMZ model to generate new narratives.

Although our proposed approach is applicable to any language, we specifically chose
to apply it to Arabic due to the language’s morphological complexity and the scarcity of
available resources. To the best of our knowledge, this work represents the first attempt at
generating textual Arabic stories. Generally, Arabic has received limited attention in the
field of natural language generation (NLG). This oversight has been observed across various
Arabic NLG tasks, including question generation [12,13], conversational systems [14],
and image captioning [15].

The following summarizes our key contributions:

• We introduce a new approach to textual story generation for Arabic, helping to bridge
a notable gap in Arabic NLG.

• Our methodology departs from traditional event-driven narratives and instead uses
advanced models to generate and modify key story elements.

• We employed an efficient fine-tuning approach to fine-tune an extensive 3 billion-
parameter BLOOMZ model tailored for generating narratives in Arabic.

• We showcase the adaptability of LLMs in cross-lingual transfer learning, particularly
in zero-shot contexts.

The structure of this paper is as follows. Section 2 explores the challenges associated
with the Arabic language. Section 3 reviews related works. Section 4 describes the method-
ologies proposed for Arabic story generation. Section 5 details the experiments conducted
and their results. Finally, we conclude the paper in Section 6.

2. Challenges Due to Arabic Language

Arabic, spoken by over 350 million individuals as a native language, holds significant
cultural and religious importance, serving as the liturgical language for nearly 1.8 billion
Muslims worldwide [16]. It is recognized as the official language in 26 nations and is
one of the six official languages of the United Nations. Despite its widespread use and
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significance, Arabic has received limited attention in the domain of computational language
generation, as discussed in the previous chapter. This research represents a pioneering
effort to address the challenge of story generation within the Arabic linguistic context.
The intricate morphology and syntax of Arabic present substantial obstacles for computa-
tional systems in terms of text comprehension and generation. Effective story generation in
Arabic necessitates a deep semantic understanding of the narrative and the capability to
construct coherent and contextually appropriate stories.

Crafting narrative in Arabic is fraught with challenges, attributed to the language’s
unique attributes and the complexities entailed in narrative understanding and generation.
These multifaceted hurdles include the following:

Morphological Complexity: Arabic’s morphological system, characterized by its extensive
use of derivation and agglutination, significantly enriches its lexical diversity [17]. This
complexity presents formidable challenges for computational models in accurately parsing
and understanding words, thereby impacting the coherence of generated story endings.
Semantic Ambiguity: The semantic richness and syntactic flexibility of Arabic often
lead to multiple interpretations of sentences, introducing ambiguity in generated story
endings [18,19]. This ambiguity, exacerbated by the absence of diacritical marks in
Modern Standard Arabic (MSA), necessitates contextual clarity to ensure the intended
meaning is conveyed.
Dialectal Variations: The linguistic landscape of Arabic is marked by a plethora of
dialects, distinct from MSA, used in formal and written communication [20]. The chal-
lenge lies in aligning the generated story endings with the narrative’s dialect, a task
complicated by the lack of comprehensive resources for these dialects. This study,
however, focuses on MSA.
Computational Resource Limitations: The availability of computational resources for
Arabic lags behind that for languages like English, with a notable dearth of extensive
annotated datasets and sophisticated language models. This shortfall significantly
impedes the advancement of effective story generation models for Arabic. The scarcity
of Arabic language resources has negatively impacted various research areas, such as
text simplification [21], the creation of judicial support systems [22], and the answering
of why-questions [23].
Contextual and Cultural Nuances: Arabic storytelling is deeply infused with cultural
and contextual subtleties, demanding a comprehensive understanding of its cultural,
historical, and social intricacies [17]. Automated story generation systems must thus
ensure that stories are not only linguistically accurate but also culturally resonant
and contextually relevant, incorporating appropriate cultural references, proverbs,
and social norms.
Long-Range Dependencies: In Arabic storytelling, as in other languages, complex plots
often hinge on events and characters introduced at the story’s outset. This interweav-
ing of elements across the narrative necessitates that automated story generation
systems grasp and incorporate these early details to construct a cohesive and fulfilling
story arc. For example, a seemingly minor detail, like a magical seed given to a boy,
may later prove central to resolving the narrative’s climax. Effective story generation
requires the system to recognize and utilize such elements from their introduction,
ensuring a coherent and complete narrative.

3. Related Work

The field of automatic story generation has a long historical background. Nevertheless,
the advent of pretrained language models (PLMs) marked a significant leap forward,
rekindling research interest and placing renewed emphasis on the exploration of story
generation. Generative PLMs, whether auto-regressive or encoder–decoder, have the
ability to generate stories based on a given prompt without additional training. However,
the stories they produce often lack higher-level features such as text coherence and logical
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progression, particularly as the stories become longer [24]. As a result, various research
attempts have been undertaken to enhance the quality of stories generated by PLMs.

To facilitate more strategic content planning and support the long-range coherence of
stories, the concept of hierarchical story generation has been introduced. This technique
involves generating a high-level summary of the story, which then serves as a guiding
framework for generating the actual narrative. These high-level summaries can take various
forms, including short descriptions [25–27], writing prompts [28], entity mentions [29,30],
or plans [31,32].

Numerous studies have endeavored to elevate the storytelling capabilities of LLMs
by integrating external commonsense knowledge bases, such as ConceptNet [33] and
ATOMIC [34]. These efforts involve either implicitly encoding commonsense knowledge
into LLMs through fine-tuning [2,35] or actively querying these knowledge bases and
employing the acquired information to explicitly govern the stories generated by LLMs,
as showcased in the works of Xu et al. [36], Peng et al. [37], and Ammanabrolu et al. [38].

Vijjini et al. [39] conceptualized interpersonal relationships as latent variables and
subsequently employed GPT-2 to generate stories, with the generation process condi-
tioned on both the relationship set and the story context as a prompt. In a different
approach, Xie et al. [40] merged two distinct LLMs, BERT [41] and GPT-2 [42], to construct
a domain-specific variational autoencoder for story generation. This innovative strategy
aimed to strike a balance between providing stories that are not only high quality but also
diverse in their narrative content.

The task of story ending generation (SEG) is a specialized domain within the broader
field of story generation focusing on the creation of coherent conclusions to narratives by
comprehensively understanding the preceding context. While numerous studies have ad-
dressed SEG in the English language, exemplified by works such as those
by Huang et al. [43], Liu et al. [32], and Wang et al. [44], research in the Arabic language
context is scarce, with a notable contribution by Alhussain and Azmi [45]. The scarcity
of Arabic language resources, as discussed in Section 2, has necessitated innovative ap-
proaches such as the one employed in [45], which leverages cross-lingual transfer learning.
This method utilizes multilingual models, including mBART, mT5, and mT0, to facilitate
the generation of story endings in Arabic, evaluating their efficacy in both zero-shot and
few-shot learning environments.

The introduction of LLMs marked a significant leap forward in various natural
language processing (NLP) tasks, including story generation. In a study conducted
by Clark et al. [46], the proficiency of non-experts in discerning between stories authored
by humans and those generated by LLMs was examined. Their findings revealed that un-
trained evaluators struggled to differentiate between human-generated and LLM-generated
text. Even when evaluators received training specifically aimed at distinguishing between
the two, notable improvements in discernment were not observed.

In language models, a prompt is a piece of text given to the model to initiate or guide
its generation of subsequent text. It acts as the starting point or context for the model to
create coherent and relevant text [47]. Researchers have used techniques called prompt
engineering to help LLMs create stories. For example, Xie et al. [48] used a simple method
to have GPT-3 write stories. This approach proved that LLMs can write stories that are of
notably better quality compared to the best existing story generation models. Moreover,
these models can sometimes write as well as human authors, although they often end up
copying stories from their training data.

Yao et al. [49] introduced Tree-of-Thoughts (ToT) prompting as an innovative mech-
anism within prompt engineering to enhance the performance of LLMs. ToT empowers
LMs to engage in deliberate decision making by exploring diverse reasoning paths and self-
assessing choices to determine the subsequent course of action. Additionally, it facilitates
backtracking when necessary to make overarching decisions. Their findings demonstrate
that employing ToT to prompt LLMs in creative writing results in more cohesive text,
preferred by human evaluators over passages generated by simpler prompting techniques.
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Wen et al. [50] constructed a retrieval repository for target conditions to generate few-shot
examples for prompting LLMs. They begin by completing the entire task initially, and then
iteratively refining and enhancing it over subsequent iterations.

The Re3, which stands for Recursive Reprompting and Revision [51], tackled the
challenges of long-range plot coherence and relevance. This framework improves story
generation using iterative revisions, resulting in stories that are more coherent and relevant
to the initial premise than those generated directly from the same base model. Expanding
on Re3, DOC, short for Detailed Outline Control [52], further refines this approach by intro-
ducing a detailed outliner that generates a hierarchical story outline, along with a detailed
controller that adjusts the intensity of event descriptions. DOC has shown improvements
over Re3 in terms of plot coherence, outline relevance, and overall narrative appeal.

In a different approach, LLMs have been used to co-create stories with human writers.
This collaboration involves simple turn-taking between the writer and the AI during the
story development process. One such tool is TaleBrush [53], a generative story ideation tool
that employs line sketching interactions between writers and LLMs. Here, user sketches
are translated into prompts using a control module, enabling the LLM to generate stories
based on these sketches. This iterative process allows writers to explore and develop stories
according to their intentions while drawing inspiration from the stories generated by the
LLM. Another example is Wordcraft [54], a text editor that facilitates collaboration between
users and LLMs in writing stories, offering novel human-LLM co-writing experiences.
For instance, the language model can engage in open-ended conversations about the story,
respond to writers’ custom requests expressed in natural language, and provide suggestions
to assist writers in overcoming creative blocks during the writing process.

Wan et al. [55] employed LLMs in a collaborative human–AI effort during the prewrit-
ing stage, which involved the exploration and refinement of ideas prior to drafting. Unlike
story generation, prewriting demands a focus on originality and diversity over coherence
and structure. Their study revealed that humans primarily lead the process of idea explo-
ration and development. However, it also highlighted a dynamic interplay of initiative
between humans and LLMs throughout the collaborative prewriting endeavor. In facil-
itating decision-making processes, Davis et al. [56] automated the creation of ’what-if’
scenarios by directing BERT through simulated conversations to extract a model from a
corpus. Their method delivers outcomes akin to those of prior research while drastically
reducing the necessity for human intervention in the model-building phase.

4. Methodology

In this study, our objective was to create Arabic stories by reshaping the space of
existing stories. The task can be outlined as follows: starting with a story S, we define the
narrative space by identifying its constituent entities E = {e1, e2, . . . , en}. Then, a new story
space is created by substituting each ei, where i ∈ [1, n]. It is imperative that the selection
of these new entities is not only linguistically appropriate but also logical in the context
of the story. Subsequently, we utilize the newly generated narrative space as a context for
generating a new story. This section provides a detailed overview of our methodology.

While Figure 1 shows examples of generating new stories by substituting the entities
of an existing story, Figure 2 provides an overview of the entire system. The subsequent
subsections offer a thorough exposition of the proposed methodology.

4.1. Story Entity Extraction

Entities in the context of a story can refer to the various elements or objects within
the narrative that hold significance or play specific roles. These entities can include char-
acters, geographical locations, physical objects, time expressions, and other elements that
contribute to the richness of the story, providing depth, context, and a framework for the
narrative. In our research, the emphasis was on extracting characters, physical objects,
and geographical locations. However, it is important to note that these entities were treated
uniformly without differentiation based on their specific types.
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Figure 1. Examples of generating new stories by substituting entities in an existing narrative. The
’[MASK]’ marker, displayed in green, serves to conceal the entities extracted from the original story
by the entity extractor. The newly generated entities, displayed in red, are the outputs of the entity
substitution model. For ease of understanding, we include an English translation for each example.

We approached the task of extracting entities from the unstructured text of a story as a
token classification problem. Inspired by the remarkable performance of BERT [41] in token
classification tasks, such as Named Entity Recognition (NER) [41] and Part-of-Speech (POS)
tagging [57], we implemented the Story Entity Extraction (SEE) model as a BERT-based
token classifier for extracting story entities. A token classification layer was added on top
of the pretrained BERT, which consists of a linear layer for token-level classification, and a
softmax activation function, to convert the raw scores from the linear layer into a valid
probability distribution.

Given that our SEE model does not distinguish between various entity categories, we
trained it to classify words as either entities or non-entities. However, understanding that
entities could be either individual words or groups of words, we introduced three token
classes: “O” for non-entities, “B-Ent” for the first word of an entity, and “I-Ent” for the
consecutive words within an entity. Another challenge arose from BERT’s use of WordPiece
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tokenization [58], which splits a single word into multiple tokens. To address this issue, we
assigned the same word class to each token of the word.

Figure 2. Our proposed story generation system.

Since story entities may occur as named entities (characters and locations), we initially
employed two models for tagging entities in the dataset: a NER model [41] and an entity
detection model [59]. Nonetheless, preliminary results indicated an improvement in
performance when named entities were omitted. Consequently, we opted to exclusively
utilize the entity detection model for tagging stories, deferring the treatment of named
entities to a subsequent step.

Recognizing that the entity detection model is trained only in English and there is no
equivalent model for Arabic, we addressed the lack of Arabic resources by using cross-
lingual transfer learning. First, we used the English entity extraction model to identify
entities in an English dataset. Then, we initialized our BERT model with pretrained
multilingual uncased BERT parameters. After this, we fine-tuned our BERT model using
the tagged English dataset. Finally, we applied the fine-tuned model to identify entities in
Arabic stories in a zero-shot setting.

4.2. Substituting Story Entities

After extracting story entities, we replace them with new entities to reshape the story
space. This section provides a detailed explanation of the entity substitution process.

4.2.1. Generating New Entities

To generate new entities that fit seamlessly into the story context, we implemented
a two-step process: (a) First, we masked the entities previously identified in the story by
our SEE model, effectively creating blanks within the text; and (b) Next, we utilized the
capability of LLMs to fill in these blanks, generating new, contextually appropriate entities
in place of the originals. More details below.

(a) Models for blank filling. Large language models, such as BERT [41] and RoBERTa [60],
have the ability to fill in the blanks in a given context. This capability results from
training the models on large text corpora through the masked language modeling
(MLM) task. The goal of the MLM task is to train the model to predict masked
(hidden) words within a given text sequence. During training, 15% of tokens in the
input text are randomly replaced with a special token called [MASK]. The model then
learns to predict the original tokens that were replaced with [MASK] based on the
surrounding context. By training on the MLM task, the model learns to generate
meaningful representations of words and phrases based on their context within a
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text sequence. However, while the training objective of BERT includes MLM and
Next Sentence Prediction (NSP), RoBERTa is pretrained solely on MLM. Additionally,
RoBERTa uses dynamic MLM, where the positions of [MASK] tokens are dynamically
changed during training. As an English model, RoBERTa outperformed BERT in many
downstream tasks. However, this superiority may result from RoBERTa’s extensive
training, which involves training on longer sequences, increasing the batch size and
the length of training, and utilizing 10× training data.
The T5 (Text-To-Text Transfer Transformer) model adopts a text-to-text approach for
training, wherein it learns to transform input text sequences into output text sequences.
Unlike conventional models like BERT and RoBERTa, T5 is not trained using the
typical Masked Language Modeling (MLM) objective. It employs a specialized form
of encoder–decoder masked language modeling, enabling it to proficiently fill in
blanks within a given context. In T5, rather than using the [MASK] token, the model
employs sentinel tokens identified by their prefixes <extra_id> as potential masks.
Each sentinel token represents a unique mask token for a sentence, starting with
<extra_id_0>, <extra_id_1>, and so forth, up to <extra_id_99>. This approach
allows T5 to effectively address the masking task while leveraging its text-to-text
training paradigm.
To generate new entities, we experimented with available BERT, RoBERTa, and T5
models that support Arabic. Specifically, we used the following models:

1. mBERT [41] is an extension of BERT that has been pretrained on multiple lan-
guages. This multilingual approach enables the model to understand and gener-
ate text in various languages.

2. AraBERT [61] is a dedicated instantiation of BERT, fine-tuned exclusively for Arabic
language processing. Its pretraining process involves a substantial dataset of
70 million Arabic sentences, equivalent to approximately 77 GB of textual data.

3. CAMeLBERT [62] is a collection of BERT models pretrained on Arabic texts with
different sizes and variants. We selected CAMeLBERT for MSA to align with
the characteristics of our dataset. CAMeLBERT (MSA) was trained on a larger
dataset compared to AraBERT. However, it is only available in the base version,
comprising 12 layers, whereas AraBERT contains 24 layers.

4. AraT5 [63] is a variant of the text-to-text transformer (T5) model designed specifi-
cally for MSA. Our utilization involved the enhanced version, AraT5v2-base-1024.

5. XLM-R, standing for Cross-lingual Language Model–RoBERTa [64], builds upon
the RoBERTa framework, having been trained across multiple languages using
a wide array of multilingual corpora to achieve language-independent repre-
sentations. Its efficacy across a spectrum of cross-lingual NLP benchmarks and
applications has been notably impressive.

Table 1 presents a comprehensive comparison of the models. Our initial findings indicate
that AraBERT surpasses the other models in generating high-quality entities that seam-
lessly integrate into the story context. Consequently, we employed AraBERT to construct
a space of potential entities for the story, as elaborated in the following section.

Table 1. Comparison of the models used for blank filling. Abbreviations used in the table are as
follows: Enc-Dec for encoding–decoding; SMLM+NSP for Static Masked Language Modeling + Next
Sentence Prediction; DMLM for Dynamic Masked Language Modeling; BPE for Byte Pair Encoding.

Training

Model Arch. Version Layers Size Encoding Objective Language Data

AraBERT Encoder Large 24 ∼369 M WordPiece SMLM + NSP Arabic 77 GB
CAMeLBERT (MSA) Encoder Base 12 ∼109 M WordPiece SMLM + NSP Arabic 167 GB
mBERT Encoder Base 12 ∼178 M WordPiece SMLM + NSP Multilingual —
XLM-R Encoder Large 24 ∼560 M BPE DMLM Multilingual 2.5 TB
AraT5 Enc-Dec Base 12 ∼368 M SentencePiece Text-to-text Arabic 248 GB
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(b) Creating an etity search space. Our entity substitution task shares similarities with
MLM. Once we identify story entities, our objective is to replace them with new
entities that seamlessly integrate into the story context. To achieve this, we employ a
technique akin to MLM. Specifically, we mask these entities using the [MASK] token.
Subsequently, we leverage an AraBERT [61] model to predict and fill in the masked
tokens. This prediction considers the bidirectional context of the given story, relying
on the probability distribution learned during the pretraining phase.
However, it is worth noting a distinction: while the probability of predicting a masked
token in BERT-based models is typically independent of other masked tokens, we
enhance the entity substitution results by introducing a sequential substitution ap-
proach. This involves incorporating previously predicted story entities when pre-
dicting subsequent entities, thereby promoting a more coherent and contextually
appropriate substitution process. Let Π = {π1, π2, . . . , πN} denote the indexes of
the masked entities in the story S, where N is the number of masked entities. Let
E = {eπ1 , eπ2 , . . . , eπN} denote the set of masked entities in S and X = {x1, x2, . . . , xm}
denote the set of unmasked tokens representing the non-entities of the story context.
Given θ as the model parameters learned during pretraining, the objective of our
entity substitution module is to maximize the probability of predicting story entities
as follows:

Ŝ =
N

∑
n=1

log p
(
eπn | X, eπ1 , . . . , eπn−1 ; θ

)
(1)

Furthermore, we do not rely solely on the single most probable substitution. Instead,
our approach involves considering the topmost probable substitutions. The entity
generation module is utilized to create an initial search space of possible entities.
This approach enables the incorporation of additional evaluation criteria to select
the most appropriate entity for the overall story context. Moreover, it aims to foster
diverse story generation, allowing a single story to serve as a basis for generating
multiple stories.

In our study, we noted instances where the utilization of BERT-based models in
substituting story entities resulted in the generation of nonsensical stories. This was a
result of the high ambiguity of Arabic language. For example, AraBERT was able to
appropriately predict the mask in the sentence “.[MASK] �K. Qª

�
��
 YÒm×

	
àA¿”, which translates

to “Muhammad was feeling [MASK]”, by returning �
éÓY�Ë@ (shocked), I. ª

�
JË @ (tired),  AJ.kB



@

(frustration), hAJ

�
KPB@ (relief), and ÉÊÖÏ @ (boredom) as the most probable tokens. Nonetheless,

when the sentence was rephrased to “.[MASK]�K. YÒm× Qª
�
�”, which translates to “Muhammad

felt”, the model failed to predict the mask correctly; it returned ‘.’, ‘¨’, ‘(’, ‘)’, and ‘


@’ as the

most probable tokens, where more appropriate words such as ‘ 	àAÓ


@’ (safety) were predicted

as less probable. This may be a result of the ambiguity of the word ‘Qª ��’, which can be
translated to ‘felt’, ‘hair’, or ‘poetry’. In addition, due to the high morphology of Arabic,
there were instances where masks were filled with suffixes. For example, to fill the mask in
“.[MASK] �

I�
K. úÍ@
 YÒm
× I. ë

	
X”, the most probable tokens are ‘+ è’, ‘ éJ
K.



@’, and ‘+ A 	K’. Although this

may be linguistically accepted in an isolated sentence, it does not serve the aim of the entity
substitution model in replacing the story entity with a new entity. Therefore, to overcome
this limitation, we post-processed the tokens returned by the model to remove stop words,
pronouns, and numbers. Furthermore, we evaluated the returned tokens linguistically and
logically to select the most appropriate token that serves as a good story entity, as discussed
in subsequent sections.

4.2.2. Commonsense Evaluation

While LLMs have shown exceptional performance in various tasks, including story
generation, they often struggle with maintaining long-range coherence and commonsense
reasoning. This challenge, recognized since the early development of LLMs [24], arises from
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the limited sequence lengths that transformers can handle due to the complexity of their
self-attention operations [65]. Transformers form the core architecture of most LLMs [66].
Despite these limitations, recent studies have shown that LLMs do develop a degree of
commonsense reasoning during pretraining [67,68]. Moreover, further enhancements have
been achieved by fine-tuning these models on commonsense datasets [5,69,70].

This limitation was clearly observed in our preliminary entity substitution experiments.
As the input story context lengthened, numerous logical conflicts emerged. To address this
limitation, our approach involved training a dedicated commonsense evaluator to provide
guidance during the story generation process.

The XLM-RoBERTa model [64] showed superior performance in both Arabic [71] and
multilingual commonsense evaluations [72]. Therefore, we used XLM-RoBERTa to train
on an Arabic commonsense dataset, developing our commonsense evaluation module.
The commonsense score for each sentence is calculated using a sentence-level vector
from the fine-tuned XLM-RoBERTa model. This pooling mechanism gathers information
from the entire story context, creating a fixed-size representation that captures contextual
information and helps determine the likelihood score of a sentence.

4.2.3. Entity Selection

In the process of selecting the most fitting entity for a specific position in the story,
we evaluate the overall story context after substituting each entity. To guide the search
toward entities that are more likely to be correct or optimal, we used beam search, where
the search space is created by the entity generation module, as discussed in Section 4.2.1.
Beam search is advantageous because it explores multiple possibilities simultaneously,
preventing the algorithm from being trapped in locally optimal solutions. This is crucial to
avoiding selecting entities for the story’s beginning that may not harmonize well with sub-
sequent sentences, thus safeguarding the story’s overall quality and long-range coherence
and preventing system failures in generating subsequent entities.

The scoring function in the context of beam search serves as a pivotal mechanism for
evaluating and ranking candidate entities during the story generation process. We propose
to assess the quality of a candidate entity by evaluating the story context after substituting
the new entity based on two criteria:

1. Commonsense acceptance, which entails the assessment of the generated story context
for its plausibility and coherence. The commonsense score is computed through the
utilization of the commonsense evaluation module, as elaborated in the preceding
section (Section 4.2.2).

2. Linguistic correctness, which assesses how well the generated stories adhere to the
rules and structure of the language. It involves evaluating the grammatical accuracy
of the candidate stories. For this task, we employed the Arabic grammatical error
detection model (CAMelBERT GED) proposed by Alhafni et al. [73]. The linguistic
correctness score for a candidate story is calculated as follows:

Lscore =
1
n

n

∑
i=1

Xi (2)

where n represents the number of tokens in the story context as produced by the
CAMelBERT GED tokenizer, and Xi denotes the grammatical score of the i-th token,
as evaluated by the CAMelBERT GED model within the given context.

The beam search scoring function is expressed as a linear combination of the com-
monsense acceptance score (CSscore) and the linguistic correctness score (Lscore), given by
the formula

BeamScore = αCSscore + βLscore (3)

where α and β are weighting coefficients determining the contribution of each score to the
overall beam score.
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In addition, we incorporated an element of randomness into the entity selection process
to introduce diversity in the generated stories. This is achieved through the application of a
temperature (t) adjustment to the entity scores before the final selection of top candidates:

ScaledScorei =
exp(log(BeamScorei)/t)

∑m
j=1 exp

(
log

(
BeamScorej

)
/t
) (4)

Here, m represents the beam width, and BeamScorei is the original beam score of the
i-th candidate as expressed in Equation (3).

The temperature adjustment serves as a control mechanism, influencing the degree of
randomness introduced into the selection. A higher temperature results in a more uniform
distribution of probabilities, making a wider range of entities eligible for selection. On the
other hand, a lower temperature emphasizes the differences in scores, leading to a more
deterministic selection process.

4.3. Story Completion

After constructing a new story space through the substitution of story entities, this newly
created story space serves as a stimulus for generating a new story. To accomplish this task, we
utilized BLOOMZ [10], an advanced variant of BLOOM [8] designed for multitask prompted
fine-tuning. BLOOMZ, as an autoregressive large language model, was trained to generate text
from a given prompt. This training involved vast volumes of textual data, leveraging extensive
computational resources on an industrial scale. In addition to BLOOMZ’s ability to produce
text that closely mimics human-authored content, it exhibits transfer learning capabilities,
enabling it to apply acquired knowledge to languages not present in the fine-tuning data,
provided that they were part of the pretraining data; its pretraining data encompassed
46 languages, including Arabic, and 13 programming languages.

The remarkable capabilities of BLOOMZ stem from its extensive number of parameters,
a characteristic that renders full fine-tuning for downstream tasks resource intensive and
time consuming. To address this challenge, various parameter-efficient fine-tuning (PEFT)
approaches have been introduced, aiming to enhance the efficiency of fine-tuning large mod-
els in terms of parameters and computations. These approaches include adapters [74,75],
prefix tuning [76], and Low-Rank Adaptation (LoRA) [11]. These strategies make the pro-
cess more feasible for the research community and are particularly helpful when working
with limited data for a specific task.

In this work, we fine-tuned the largest BLOOMZ model with 3 billion parameters
on an English story dataset and used it for Arabic story generation in zero-shot settings.
To make fine-tuning efficient and feasible, we utilized Huggingface libraries to employ the
following strategies:

1. We quantized the BLOOMZ model to reduce the memory usage.
2. We froze all of the model’s parameters while enabling the gradients for the input

embeddings. This helped in fine-tuning adapter weights while keeping the model
weights fixed.

3. We applied the LoRA approach to BLOOMZ’s attention weight modules, as recom-
mended by the original paper [11], with a rank of 4.

Due to BLOOMZ’s training methodology involving prompted fine-tuning, we devel-
oped a prompt template by incorporating concise and clear natural language instructions
into the input story context. Our standardized prompt format is structured as follows:

Complete the following Story: ## Context: {story_context} ## Output:
{story_completion},

where ‘{story_context}’ represents the input story context provided to the model, and
‘{story_completion}’ represents the generated story output. During the training phase,
the first sentence of each story in the training dataset served as the story context, while the
remaining sentences were utilized as completions. During inference, the same template



Mathematics 2024, 12, 1548 12 of 22

is applied, with ‘{story_context}’ filled with the story space created by substituting story
entities, as detailed in Section 4.2, while ‘{story_completion}’ is left blank.

5. Experiments and Results

In this section, we detail the datasets used (Section 5.1) and describe the experi-
ments conducted and the results obtained from all sub-models: the story entity extrac-
tor (Section 5.2), the commonsense evaluator (Section 5.3), the entity substitution model
(Section 5.4), and the story generator (Section 5.5). The entity substitution model employs
beam search, while the other sub-models were developed through fine-tuning existing
LLMs. We summarized the fine-tuning experimental setup in Table 2 for ease of reference,
with detailed explanations provided in each corresponding subsection. For the evaluations
of entity extraction, commonsense evaluation, and entity substitution, we utilized auto-
matic metrics. In contrast, the assessment of the generated stories involved both subjective
and objective methods.

Table 2. Experimental setup for fine-tuned models.

Model Base Model Version Learning Rate Batch Size Epochs LoRA Rank

Story Entity Extractor mBERT Base 5 × 10−5 16 3 N/A
Commonsense Evaluator XLM-R Large 3 × 10−6 8 4 N/A
Story Generator BLOOMZ 3B 1 × 10−3 3 1 4

5.1. Datasets

Due to the absence of Arabic story datasets, we trained and evaluated our models using
ROCStories [77], an English dataset commonly utilized in NLP research for tasks related to
story generation and comprehension. This corpus comprises five-sentence stories with a
title, each logically following everyday topics created by crowd workers. These narratives
contain a variety of commonsense causal and temporal relations between everyday events.
This dataset is commonly employed in story ending generation (SEG) tasks, as seen in
references such as [32,43–45], where a model is presented with four sentences and tasked
with generating a fitting fifth sentence. Here is an example story from ROCStories titled
“The Test”: “Jennifer has a big exam tomorrow. She got so stressed, she pulled an all-
nighter. She went into class the next day, weary as can be. Her teacher stated that the test is
postponed for next week. Jennifer felt bittersweet about it.”

5.1.1. Story Entity Extractor Dataset

For the training of the story entity extractor, we randomly sampled a total of 50,000 sto-
ries from the ROCStories dataset, allocating 30,000, 10,000, and 10,000 for the training,
validation, and test sets, respectively. However, recognizing that the entity extractor ex-
hibited improved performance with shorter texts, we opted to treat each sentence within
a story as an individual input. This restructuring resulted in a dataset with a total size of
243,000. Detailed statistics of the training data are presented in Table 3.

Table 3. Details of the training data for the Story Entity Extraction model.

Data Split Sentences Tokens

Training 145,166 1,297,943
Validation 48,706 436,221
Test 49,170 402,624

5.1.2. BLOOMZ Fine-Tuning Dataset

To fine-tune the BLOOMZ model for story generation, we combined the ROCStories
2016 and ROCStories 2017 sets, resulting in a total of 98,161 stories. We excluded the story
titles and treated each narrative as consisting of exactly five sentences. On average, each
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story contained 43.58 words. We used the first sentence of each story as the story context
to prompt the model, with the subsequent sentences serving as story completions. This
methodology is detailed in Section 4.3, where we describe the process of constructing the
BLOOMZ training template.

5.1.3. Entity Substitution Dataset

To evaluate our proposed entity substitution model, we utilized a set of 1000 stories
randomly selected from the ROCStories dataset. These stories were translated into Arabic
using Google translate (https://translate.google.com/, accessed on 12 September 2023).
Subsequently, we masked the identified entities in these stories using our entity extraction
model. The Arabic stories with masked entities were then used as a test set to assess the
effectiveness of our entity substitution model in filling in these masked entities, compared
to baseline models.

5.1.4. Commonsense Evaluation Dataset

To train our commonsense evaluator, we used the Arabic Dataset for Commonsense
Validation (Arabic ComVE) [78], which was professionally translated from the original
English Commonsense Validation dataset (comVE) [79]. This dataset is the only Arabic
benchmark for commonsense validation and was designed to test the ability of models
to assess commonsense reasoning. Each entry in the dataset includes two syntactically
similar sentences: one that is logically coherent and one that is not. The model was trained
to identify the more logical sentence. The dataset consists of 10,000 training examples,
1000 validation examples, and 1000 test examples.

5.2. Entity Extraction Evaluation

To extract story entities, we fine-tuned the pretrained multilingual uncased BERT on
our entity extraction dataset, as discussed in previous sections. During training, both the
classifier and the BERT model underwent joint training without the constraint of freezing
the pretrained parameters. The model was trained for three epochs, with a learning rate of
5 × 10−5, and a batch size of 16.

The SEE model achieved an overall F-score of 96.62%. A detailed breakdown of the
evaluation scores for each category is provided in Table 4. Notably, the high scores for the
“O” tag highlight the model’s robust ability to distinguish between entities and non-entities.
Only 5.58% of the “B-Ent” tokens were not detected as entities. The primary limitation lies
in the model’s accuracy in classifying “I-Ent” tokens. Our analysis revealed that 93.42%
of misclassified ‘I-Ent’ tokens were classified as “B-Ent”. However, this discrepancy is
inconsequential for our system, as both token classes are treated equivalently.

Table 4. Results of the Story Entity Extraction (SEE) model.

Tag Precision Recall F-Score

O 98.09 98.21 98.15
B-Ent 93.32 93.08 93.20
I-Ent 86.95 86.02 86.48

5.3. Commonsense Evaluation

Drawing inspiration from the work of Al-Bashabsheh et al. [71], we fine-tuned the
XLM-RoBERTa model [64] on the Arabic ComVE dataset [78] for eight epochs, using a
learning rate of 3 × 10−6 and a batch size of 8. Our model achieved an accuracy of 84.3%
on the test set, which is 3.1% higher than the result reported in [71]. It is worth noting,
however, that the best model performance was achieved after just four epochs of training.

The commonsense score, derived from the sentence-level vector produced by the
fine-tuned XLM-RoBERTa model, effectively indicates the logical coherence of input sen-
tences. Table 5 provides an example of these commonsense scores. As the example shows,

https://translate.google.com/
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although the MLM model rated “the kitchen” lower than “a shop” and “school,” the com-
monsense evaluator accurately determined that “the kitchen” is the more logical setting in
the given story context.

Table 5. An example of the commonsense scores produced by our evaluation model for various
entity substitutions in the story context “[MASK]úÍ@



I. ë

	
X @

	
YË ¨ñm.

Ì'AK. Qª
�
��
 YÒm×

	
àA¿”, which translates to

“Muhammad was hungry so he went to [MASK]”. Entries are ordered by their probability score.

MLM Top 5 Tokens MLM Probability Score Commonsense Score

Ñª¢Ó (a restaurant) 19.38 4.45
Ñª¢ÖÏ @ (the restaurant) 10.41 4.36
Ém× (a shop) 7.15 0.87
�
é�PYÖÏ @ (school) 3.83 −3.96
qJ.¢ÖÏ @ (the kitchen) 2.82 3.83

5.4. Entity Substitution Evaluation

For substituting story entities, we implemented our proposed beam search algorithm
with a beam width of 5 and temperature t set to 0.2. Additionally, both α and β in the
scoring equation were configured to be equal to 1. The evaluation involved comparing the
stories generated by our entity substitution model with those produced by the original
LLMs listed in Table 1.

To assess the models’ proficiency in generating high-quality new entities, we evaluated
stories after the substitution of these entities using three criteria:

1. Linguistic analysis: this is one of the earliest automated metrics used to assess the
quality of generated stories. In recognizing that high-quality writing inherently min-
imizes grammatical mistakes, several researchers [80,81] have employed grammar,
among other metrics, for evaluating story quality. Following this methodology, we em-
ployed linguistic analysis, leveraging the CAMeLBERT Grammatical Error Detection
model [73], to assess generated stories.

2. Semantic relatedness: each sentence within a story should maintain coherence with the
overall story context [80]. To assess this criterion, we computed the mean cosine similarities
between the embeddings of each sentence in the story and the remaining story context.
Sentence-BERT [82] was employed to generate the embeddings for the sentences.

3. Originality: ELECTRA models [83] undergo training to differentiate between “real”
input tokens and “fake” input tokens generated by another neural network. In our
context, we employed the AraElectra [84] discriminator model to identify whether
a filled entity is authentic or not. The reported originality score represents the per-
centage of tokens detected as fake. Consequently, a lower originality score indicates a
more favorable result.

Table 6 provides a comprehensive evaluation of our model and baselines in the entity
substitution task. Upon comparing the baselines, it becomes evident that AraBERT excelled
in semantics and originality, slightly underperforming XLM-R in linguistic metrics. This
compelling performance led us to choose AraBERT as the initial model for creating the
entities search space, as elaborated in Section 4.2. CAMeLBERT secured the second position
with only a marginal difference from AraBERT. On the other hand, our observations
revealed that AraT5 tends to generate highly repetitive text, adversely impacting its overall
results. While XLM-R exhibited high scores in both linguistic and semantic metrics, its new
entities were significant detected by the AraElectra discriminator, potentially influenced by
its multilingual nature.

By integrating linguistic correctness and commonsense acceptance into the beam
search scoring function, we effectively improved the performance of the entity substitution
model. The linguistic score for the stories generated by our model approached near-optimal
levels at 99.23%. Furthermore, the semantic relatedness score experienced a significant
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boost, reaching 76.1%, which is approximately twice the score achieved by our base model,
AraBERT. This enhancement in both linguistic and semantic aspects contributed to an
overall improvement in the quality of the newly substituted entities, making them more
challenging for the AraElectra discriminator to identify as machine-generated, where only
9.88% of the newly generated entities were detected as fake tokens compared to 15.16% of
the entities generated by the base model.

Table 6. Evaluation of entity substitution models focused on linguistics and semantics, where higher
scores indicate better performance and originality, where lower scores are preferable. The top-
performing values in each category are highlighted in bold for clarity.

Model Linguistics Semantics Originality

mBERT 93.70 38.84 35.21
AraBERT 97.83 39.14 15.16

CAMeLBERT 96.90 38.47 17.95
AraT5 95.20 45.36 24.52
XLM-R 98.17 38.31 20.14

Our Model 99.23 76.1 9.88

5.5. Evaluating Generated Stories

Having replaced the story entities, we selected the initial two sentences from each story
to encapsulate the newly crafted story space. Subsequently, we used these representations
as prompts in the BLOOMZ model [10] to generate complete stories. A total of 250 stories
were generated, averaging 6.1 sentences and 41.88 words each. This relatively short story
length is attributed to the nature of the stories in ROCStories, the dataset utilized for
fine-tuning BLOOMZ, which typically contains an average of 43.58 words per story, as
discussed in Section 5.1.2. To evaluate the quality of the generated stories, we employed a
combination of subjective and objective metrics, detailed in the following subsections.

5.5.1. Objective Evaluation

By assessing the language quality of the generated stories, we observed a notable
absence of mixed-language outputs from BLOOMZ, an occurrence often encountered in
zero-shot transfer learning across various generative multilingual models. Additionally,
we gauged the linguistic correctness of the generated narratives using the CAMelBERT
GED model [73], revealing an impressive average score of 98.78%.

In accordance with the methodology proposed by Yao et al. [31], our analysis included
the examination of repetition within the generated stories. We assessed both inter-story
and intra-story repetition. For each sentence position i, the inter-story (ri

e) and intra-story
(ri

a) repetition scores are computed as follows:

ri
e = 1 −

T
(

∑N
j=1 sji

)
Tall

(
∑N

j=1 sji
) (5)

ri
a =

1
N

N

∑
j=1

∑i−1
k=1 T

(
si ∩ sk

)
(i − 1) · T

(
si
)

j

(6)

where the functions T(·) and Tall(·) denote the number of distinct and total trigrams,
respectively. The sji stands for the i-th sentence in the j-th story; and si ∩ sk is the distinct
trigram intersection set between sentence si and sk.

Inter-story repetition demonstrates the rate of repetition between stories at a given
sentence position, evaluating the model’s creativity in avoiding the generation of identical
sentences in different stories. Intra-story repetition, on the other hand, represents the
average repetition of a sentence compared to previous sentences within the same story.



Mathematics 2024, 12, 1548 16 of 22

Figure 3a illustrates the inter-story repetition score. The initial two sentences exhibit
very low repetition, as expected, given that these sentences correspond to the input story
prompt. In the third sentence, which is the first sentence generated by BLOOMZ, the repe-
tition surges to approximately 16%. Upon scrutinizing repeated triples, we identified the
dominant recurring triple as “ 	áÓ Q�


�
JºË@ ¼A

	
Jë”, which translates to “there was a lot of”. After

the third sentence, the repetition rate consistently diminishes until it reaches negligible
repetition scores.

The intra-story repetition score, depicted in Figure 3b, shows that BLOOMZ tends to
repeat words within a story as the story lengthens. Furthermore, in numerous instances,
BLOOMZ exhibits a tendency to persistently reiterate identical phrases, indicating a more
pronounced and problematic form of repetition. Nevertheless, even powerful language
models such as GPT-3 [85] can encounter challenges related to repetition. It is commonly
noted that these models may unintentionally adhere to patterns, leading to the repetition
of specific phrases or structures, particularly when tasked with generating lengthy text.
Ongoing efforts are being made to address this issue.

(a) (b)
Figure 3. The inter- and intra-story repetition scores: (a) inter-sentence score; (b) intra-sentence score.

5.5.2. Subjective Evaluation

For the subjective evaluation, we engaged the expertise of three evaluators proficient
in Arabic language. Their task was to assess the generated stories based on a set of three
distinct criteria:

1. Language: covers all language characteristics, including spelling, grammar, and the
correct usage of pronouns.

2. Quality: evaluates the story’s quality from a human perspective, considering the
presence of repetition.

3. Coherence: evaluates the logical and clear connection of ideas within the generated story.

These criteria were assessed using a Likert scale with five levels, and the average of the
individual evaluators’ results was calculated. Figure 4 displays the results of the subjective
evaluation, indicating that the generated stories exhibit high linguistic quality and good
coherence. However, their quality as literary pieces was considered to be moderate, with
slightly more than half rated as excellent or very good. Only Upon discussing this weakness
with the evaluators, it was noted that repetition and lack of engagement were the two
factors that most negatively impacted the quality of the stories. Figure 5 illustrates several
samples of the generated stories, with the final story serving as an example of a high
repetition rate.
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Figure 4. Results of subjective evaluation using a Likert scale with five levels ranging from “Excellent”
to “Poor”. Each criterion, like language, is normalized to total 100%.

Figure 5. Samples of generated stories, where the underlined text represents the prompt fed into the
fine-tuned BLOOMZ model, with substituted entities written in red. English translation is provided
for convenience.

6. Conclusions

In conclusion, this work addresses a significant gap in Arabic Natural Language
Generation (NLG) by successfully generating stories in Arabic, filling a critical void in the
literature and opening new avenues for research and application in this field. This study
also highlights the relatively weak predictive capabilities of Arabic large language models
(LLMs) due to Arabic’s complex morphology and high ambiguity, which we mitigated
by post-processing the results from LLMs. Additionally, we demonstrated the capacity of
LLMs for cross-lingual transfer learning in zero-shot scenarios, showcasing their versatility
and potential for multilingual NLG applications, especially in low-resource settings. We
introduced a novel story generation approach that creatively alters the narrative space of
existing stories to produce diverse and engaging narratives suited to specific contexts and
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requirements. This method involves two strategies: generating new stories by infusing
new entities without altering the story structure and using remodeled story spaces as
prompts for LLMs to generate complete stories. The first strategy preserved the story’s
suspense and structure, though it restricted creativity in the narratives, while the second,
despite generating a larger number of stories and exhibiting more creativity, sometimes
compromised the structural integrity of the stories as noted by human evaluators.

Future research directions could delve into developing adaptive algorithms that en-
hance the integration of cultural contexts and idiomatic expressions specific to various
Arabic dialects into the generated stories, thereby improving their authenticity and engage-
ment. Research could also explore the development of more dynamic narrative generation
methods that can respond to real-time user feedback, creating interactive and personal-
ized storytelling experiences. Additionally, as AI-generated content continues to grow,
investigating methods to mitigate biases and uphold ethical standards in automated story
generation becomes paramount. Lastly, enhancing narrative coherence in longer sequences
and more complex story arcs would significantly improve the quality of AI-generated texts
and their acceptance by broader audiences.
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