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Abstract: Private set intersection (PSI) enables two parties to determine the intersection of their
respective datasets without revealing any information beyond the intersection itself. This paper
particularly focuses on the scenario of unbalanced PSI, where the sizes of datasets possessed by the
parties can significantly differ. Current protocols for unbalanced PSI under the malicious security
model exhibit low efficiency, rendering them impractical in real-world applications. By contrast,
most efficient unbalanced PSI protocols fail to guarantee the correctness of the intersection against a
malicious server and cannot even ensure the client’s privacy. The present study proposes a blockchain-
based unbalanced PSI protocol with public verification and financial security that enables the client
to detect malicious behavior from the server (if any) and then generate an irrefutable and publicly
verifiable proof without compromising its secret. The proof can be verified through smart contracts,
and some economic incentive and penalty measures are executed automatically to achieve financial
security. Furthermore, we implement the proposed protocol, and experimental results demonstrate
that our scheme exhibits low online communication complexity and computational overhead for
the client. At the same time, the size of the generated proof and its verification complexity are both
O(logn), enabling cost-effective validation on the blockchain.

Keywords: blockchain; private set intersection; smart contract; RSA blind signature; public verification
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1. Introduction

Private set intersection (PSI) can be regarded as a special case within secure multi-party
computation (SMPC) wherein two parties each hold a set of private data and desire to
compute the intersection of these sets without disclosing any information outside the inter-
section to each other. PSI has been widely adopted across various real-world applications,
including private contact discovery [1], private location-based services in the Internet of
Vehicles [2], privacy-aware social network relationship inference [3], and privacy-protected
password checks [4].

PSI protocols can be broadly classified into two distinct categories, which are differ-
entiated by the relative sizes of the datasets held by the participating parties. In scenarios
where both parties have datasets of roughly equivalent magnitude, this configuration is
termed as ‘balanced’. Conversely, when there is a pronounced discrepancy in dataset
sizes, with one party’s dataset being considerably smaller than the other’s, the scenario
is characterized as ‘unbalanced’. This paper mainly focuses on unbalanced PSI, where
the client—typically the party with the smaller dataset—often operates with constrained
device resources, including limitations in storage capacity and computational power when
juxtaposed with the server, which conventionally holds a larger dataset. Additionally, the
inter-party communication may be subject to bandwidth constraints, further complicating
the PSI process.
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While some PSI protocols in the literature [5–11] extended from an oblivious transfer
(OT) extension [12] and oblivious key-value storage (OKVS) structure [11] have achieved
high computation efficiency, these typically involve substantial data transmission between
a server and client and might necessitate multiple rounds of communication, which is
suboptimal in unbalanced settings characterized by bandwidth constraints. The protocol
of Jarecki and Liu [13] has better communication efficiency but often incurs considerable
computational workload, which is particularly challenging for clients with weak devices.
In contrast, most of the efficient unbalanced PSI protocols in the literature [1,14–18] are
fully simulatable only in the model of semi-honest (also known as passive) adversaries
or only achieve security in the presence of malicious (also known as active) adversaries
with one-sided simulatability [19]. The former, where the parties are required to follow
the protocol, is unrealistic. In the latter case, although all parties’ privacy is preserved,
the correctness of the result cannot be guaranteed, which may cause losses to the parties
receiving the intersection.

To get a trade-off between security and efficiency, several publicly verifiable covert
(PVC) protocols have been proposed [20,21]. PVC protocols not only offer a heightened
level of efficiency when compared to those designed for the malicious setting, but they
also introduce a robust layer of security. They are capable of detecting an adversary’s
malicious behavior with a certain degree of probability, which is a significant enhancement
over the semi-honest model. Furthermore, these protocols have the added advantage of
generating proofs that are publicly verifiable. This feature serves as a powerful deterrent
against rational adversaries as it introduces the risk of their malicious actions being ex-
posed, thereby potentially dissuading them from engaging in such behavior in practical
applications. However, current PVC protocols are designed mainly for SMPC tasks rather
than PSI scenarios and exhibit low efficiency when directly applied to PSI, particularly
in unbalanced settings. Additionally, a trusted third party is typically required to verify
generated proofs in PVC protocols, which can entail considerable judicial costs. Although
Zhu et al. [22] eliminated the need for a third party by leveraging smart contracts for proof
verification and to achieve financial security, the large size and high verification complexity
of proofs make validations on smart contracts costly in practice.

In this work, we propose a blockchain-based unbalanced PSI protocol that leverages
the immutable nature of blockchain technology to enable public verification of the result
and achieves financial security through smart contracts. In addition, our protocol can
maintain high efficiency even under conditions of bandwidth constraints and weaker
client-side device capabilities. Unlike conventional general-purpose PVC protocols, our
design has lower size and verification complexities of proofs, which enables proofs to be
verified on smart contracts at a low cost. To the best of our knowledge, our protocol is the
first to introduce blockchain and smart contracts into the unbalanced PSI to obtain public
verification and financial security against a malicious server. More specifically, the primary
contributions of this work are as follows:

• On-chain anchoring of key data and generation of publicly verifiable proofs—in case
of disputes over the final intersection, the client can readily generate publicly verifiable
proofs based on tamper-proof Merkle roots of key data on the blockchain to accuse
the server of dishonest behavior, thereby exerting a deterrent effect on the server.

• Smart contract-based automatic verification and financial security—proofs are val-
idated over smart contracts, and corresponding economic rewards or penalties are
automatically executed to achieve financial security based on the verification result.
Meanwhile, all the verification results about a server in history have been permanently
recorded on the blockchain and can be publicly accessed by anyone, which further
enhances the deterrent effect on the server.

• Integration of Cuckoo filters—clients’ storage overhead and final query time are
reduced, and Cuckoo filters have inherent support for deletion, facilitating dynamic
updates of data stored on the client to avoid redundant transmissions.
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• Implementation and experimentation—the proposed unbalanced PSI protocol and
associated smart contracts are realized, and experimental results demonstrate linear
dependence of online communication based on clients’ dataset size. Moreover, the
transaction cost of executing verification on smart contracts is very low.

The paper is structured as follows: Section 2 presents an overview of the related work.
Section 3 defines the required notation and introduces the fundamental concepts. Section 4
begins with the presentation of the basic protocol and details the enhancements we have
implemented to improve both its efficiency and security. This is followed by a thorough
description of the full protocol and a theoretical analysis. In Section 5, we present and
analyze our experimental findings. Finally, Section 6 concludes, provides an insightful
analysis of the challenges, and proposes potential avenues for future research.

2. Related Work

Freedman et al. [23] first formally defined PSI and introduced a PSI protocol based
on oblivious polynomial evaluation. Since then, many efficient PSI protocols have been
proposed, among which protocols based on OT extension present the most competitive
performance [24]. Pinkas et al. [5] proposed the first OT-based PSI protocol under the semi-
honest model, followed by a series of improvements in works [6–9]. In these protocols,
parties first hash elements to a data structure and then evaluate an oblivious pseudorandom
function (OPRF) for each bin through OT extension. Pinkas et al. [25] proposed a malicious
PSI protocol by combining a data structure called PaXoS with the actively secure OOS
protocol [7]. However, one inherent property of OT-based PSI is that communication is
linear with the size of the larger set and can require multiple rounds of interactions, which
is not suitable for unbalanced PSI settings: especially scenarios with limited bandwidth.
Extended from the PaXoS structure in [25], the OKVS-based PSI protocol in [10,11] is also
inherently encumbered by a significant communication overhead. This intrinsic limitation
impedes the protocol’s scalability and efficiency in unbalanced PSI settings.

With the advent of cloud computing, PSI protocols relying on a third party have been
introduced in the literature [26,27]. In these protocols, participants encode their private data
through a random function and send the encoded values to a third party, who computes the
intersection and returns it to each party. Although these protocols are highly user-friendly
and do not require all parties to be online simultaneously, their security largely depends on
the trustworthiness of the third party.

As a specific case of SMPC, PSI can also be achieved by employing generic SMPC.
Huang et al. [28] proposed the first PSI protocol based on garbled circuits, which was
improved in work [29]. The advantage of such protocols lies in the ability to perform
privacy-preserving computations on the obtained intersection, such as calculating the
cardinality of the intersection or computing the sum of all elements in the intersection.
Nonetheless, these methods require greater communication than OT-based PSI protocols,
and clients may consume substantial memory when evaluating circuits. Therefore, PSI
based on garbled circuits does not present significant advantages in scenarios where client
devices have limited capabilities and no subsequent computations on the intersection
are required.

At present, PSI protocols with high communication efficiency are mainly based on
public key and homomorphic encryption. Meadow [30] and Huberman et al. [31] con-
structed PSI protocols using the Diffie–Hellman (DH) key exchange before PSI was formally
defined in work [23]. Resende et al. [14] then reduced communication and improved com-
putation efficiency by applying Cuckoo filters and using elliptic curve groups instead of
prime-order groups. Nevertheless, the number of public key operations required by clients
during the online phase is still linear with its set size. More importantly, zero-knowledge
proof is usually required when extending these protocols to malicious security [13], which
further increases clients’ workload. Cristofaro et al. [15] proposed a PSI protocol based on
RSA blind signatures, where complex public key operations on clients can be completed
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offline independently of servers. However, this protocol similarly remains vulnerable to
malicious servers.

Chen et al. [1] introduced a leveled fully homomorphic encryption (FHE) scheme into
PSI by employing a series of optimization techniques, including batching, partitioning,
and hashing. In this protocol, the communication is solely dependent on the set size of
clients. Therefore, only a minimal amount of data need to be transmitted. Chen et al. [16]
later extended this protocol to be secure against a malicious client by incorporating an
OPRF preprocessing phase before FHE. However, their method cannot guarantee that the
final intersection is correct. To address verification issues, Jiang et al. [32] introduced a
homomorphic hash function to ensure output correctness. Due to the extensive use of
pairing operations during the verification process, the client is burdened with a significant
computation workload.

To the best of our knowledge, the protocol based on a hash proof system presented
in [17] is currently the most communication-efficient unbalanced PSI protocol. However,
the security of this protocol is only guaranteed under the semi-honest model. Similarly,
the unbalanced PSI protocol proposed within [18], despite its commendable reduction in
communication cost, presents a vulnerability in scenarios wherein the client operates with
malicious intent.

On another front, Aumann et al. [33] introduced the notion of covert adversaries,
who are allowed to behave maliciously but face a certain probability (deterrence factor) of
being caught by the other party. They show that SMPC protocols designed against covert
adversaries can achieve better efficiency than those designed against malicious adversaries.
At the same time, this security model is meaningful in many real-world scenarios, such as
business, finance, and politics, where entities might have an incentive to cheat yet cannot
afford the loss of reputation or negative publicity from being caught cheating.

While the protocol of Aumann et al. [33] can ensure catching cheaters with a certain
probability, it encounters significant challenges in persuading a third party (e.g., a court)
to lend credence to such allegations. To address this issue, Asharov et al. [20] proposed
publicly verifiable covert (PVC) security to enable the honest party to generate publicly
verifiable proofs upon catching cheating, which can be verified by any third party without
revealing the honest party’s private information. Nonetheless, there exists the potential
for collusion between one party and the designated third party responsible for verifying
the proof. Zhu et al. [22] combined PVC with smart contracts, proposing a new notion
called financial security. Although they optimized the size of proofs and verification
algorithms, gas costs remain too high to be practical. Furthermore, the majority of existing
PVC protocols are implemented based on garbled circuits. Although they can indeed be
adapted for PSI, they suffer from the same drawbacks as PSI protocols based on garbled
circuits [28,29] when it comes to unbalanced PSI scenarios, as discussed earlier.

3. Preliminaries

In this section, we formalize some notations and basic definitions to be used in this paper.

3.1. Summary of Notations

• X, Y ⊆ {0, 1}σ are the server’s and client’s input sets, with sizes v = |X| and w = |Y|,
respectively.

• n1 is the number of elements sampled and validated by the client.
• r ← $ S indicates r was sampled from S with uniform distribution.
• κ, λ are the computational and statistical security parameters, respectively.
• e, d, n denote an RSA key pair, where (e, n) constitutes the public key, and (d, n)

constitutes the private key. It is required that e > 1, gcd(e, φ(n)) = 1, and ed ≡ 1
mod n, where φ(n) represents Euler’s totient function of n.

• H1 : {0, 1}σ → Z∗n, H2 : Z∗n → {0, 1}l are hash functions modeled as random oracles,
where l is the length of H2’s output.
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• M1, M2 correspond to Merkle roots that are separately uploaded to the blockchain by
the client and the server, respectively.

• t1, t2 denote, respectively, deadlines for the server to upload M2 and the client to
submit the proof, subject to the condition that t1 < t2.

3.2. Blockchain and Smart Contract

The core concept of a blockchain was initially introduced by Satoshi Nakamoto [34]; it
represents a technology solution that enables data storage, validation, and transmission
without relying on a third party. It functions as a decentralized distributed ledger, em-
bodying the principles of data integrity and trust. In a blockchain network, each node
possesses equal status and rights, contributing to data consistency through a distributed
network architecture and achieving consensus among nodes. This inherent decentralization
is achieved by linking each block in the blockchain with the hash value of the previous block
(except for the initial genesis block) [35]. Any malicious attempt to modify a transaction
would require altering all subsequent blocks to gain acceptance from other nodes. The
consensus mechanisms employed in blockchain systems, such as proof of work or proof
of stake, impose significant costs on such manipulation attempts, thereby ensuring the
immutability of the recorded data on the blockchain.

Currently, blockchains have evolved from basic distributed ledger databases into
robust and reliable platforms. Ethereum, building upon the foundation laid by Bitcoin,
introduced the concept of smart contracts. These smart contracts are executable through the
Ethereum Virtual Machine (EVM), which supports Turing-complete computations. Unlike
conventional programs, the execution outcome of a smart contract undergoes validation
and requires consensus among all nodes before it is stored on the blockchain. By leveraging
smart contracts, the traditional process of transaction endorsements can be transformed
from manual legal agreements to automated code. Once the contract conditions are met,
the contract’s terms are automatically enforced, reducing administrative costs within
conventional contract execution.

Although the Ethereum Virtual Machine (EVM) theoretically supports the execution
of highly complex smart contracts, its stack-based RISC architecture inherently limits
execution efficiency. Additionally, as mentioned earlier, each node must redundantly
store the source code of smart contracts and execute computations to achieve consensus.
Consequently, overly intricate smart contracts can impose a substantial burden on the
Ethereum network. To address this issue, Ethereum implements strict pricing mechanisms
for instructions and storage. For example, a single multiplication instruction consumes
5 gas, while executing an exponentiation instruction requires 10 + 50 ∗ lenexp (where lenexp
represents the number of bytes occupied by the exponent on the stack). The transaction fee
is determined by the cumulative operations involved, meaning that the more data need to
be stored or updated on the blockchain and the higher the computation complexity, the
more expensive the transaction fee becomes. Therefore, in practical applications, it is crucial
to minimize the complexity of smart contracts to avoid incurring substantial transaction
costs for users and potential failed invocations of smart contracts due to Ethereum’s block
gas limit (currently set at 30 million gas per block).

3.3. RSA Blind Signature

In the standard signing process, signers are privy to the original message being
signed. To safeguard user privacy, David Chaum first introduced the concept of blind
signatures [36]. Blind signatures can be viewed as a distinctive variant of digital signatures
for which the signer can endorse the original message without actually knowing its specific
content. Presently, blind signatures are commonly employed in domains such as electronic
cash and electronic voting to guarantee anonymity.

Definition 1 (Blind Signature Scheme). A blind signature scheme consists of the following
probabilistic polynomial-time (PPT) algorithms:
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• The key-generation algorithm KeyGen(1κ) takes as input a security parameter 1κ and
outputs a pair of keys (sk, pk).

• The blind signing algorithm < User(pk, m), Signer(sk) > is an interactive protocol
between User and Signer. User is given a message m and a public key pk, and Signer
is given a secret key sk. At the end of this protocol, User outputs either σ, a signature
on m, or ⊥ if the interaction is not successful.

• The verification algorithm Veri f y(pk, m, σ) is deterministic and takes as input a public
key pk, a message m, and a signature σ. It outputs 1 if σ is valid on m under pk and
0 otherwise.

We require that for every κ, every (sk, pk) output by KeyGen(1κ), and every message
m in the appropriate underlying plaintext space, it holds that

Veri f y(pk, m,< User(pk, m), Signer(sk) >) = 1

Regarding security, a blind signature scheme must satisfy blindness and unforgeability.
Let BS = (KeyGen(1κ),< User(pk, m), Signer(sk) >, Veri f y(pk, m, σ) be a blind signature
scheme and A be an adversary. We consider the following two experiments:

The experiment BlindA,BS(κ):

1. b← $ {0, 1}, (pk, m0, m1, st)← A(1k).
2. st← A(User(pk,mb),·),(User(pk,m1−b),·)(st), σb ← User(pk, mb), σ1−b ← User(pk, m1−b). If

σ0 = ⊥ or σ1 = ⊥, then let (σ0, σ1) = (⊥,⊥).
3. b∗ ← A(st, σ0, σ1).

Definition 2 (Blindness). A blind signature scheme BS is blind if for all PPT adversaries A with
one-time access to two User oracles, there exists a negligible function negl such that

Pr(b∗ = b)− 1
2
< negl(κ)

The experiment ForgeA,BS(κ):

1. (pk, sk)← KeyGen(1κ).
2. (mi, σi)

k+1
i=1 ← A

(S(sk),·)(pk).
3. Let event Success be: mi ̸= mj ∧Veri f y(mi, σi, pk) = 1, ∀i, j ∈ [k + 1], i ̸= j.

Definition 3 (Unforgeability). A blind signature scheme BS is unforgeable if for all PPT adver-
saries A with access to a Signer oracle, there exists a negligible function negl such that

Pr(Success) < negl(κ)

4. Protocol

We start with a succinct presentation of the basic protocol upon which our work
relies, followed by the optimizations implemented. Subsequently, we outline the complete
procedure of our protocol and proceed to conduct a theoretical analysis of its security
and efficiency.

4.1. The Basic Protocol

Cristofaro et al. [37] proposed a secure PSI protocol under the one-more-RSA assump-
tion [37]. This protocol is depicted in Figure 1 and works as follows: for each element
xi ∈ X, the server utilizes its private key (d, n) to sign the hash value of every element to
obtain the signed value sxi = H1(xi)

d mod n. To prevent the client from reconstructing
H1(xi) from the signature, the server further applies a secondary hash function H2 to the
signed values to get hxi = H2(sxi). The client initiates by generating a random number
rj for each element yj ∈ Y, which is employed to blind the original hash value H1(yj)
to get bj = H1(yj) · rj

e mod n. The blinded value bj is then transmitted to the server.
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Subsequently, the server signs each blinded value to derive sbj = bd
j mod n and sends

both sbj and hxi back to the client. Upon receiving the server’s signatures on the blinded
values, the client first deblinds the signatures to recover the signature on the original
element’s hash value as syj = sbj/rj mod n. Finally, the intersection between both sets can
be determined by comparing all hxi against hashed versions of the recovered signatures,
i.e., hyj = H2(syj).

Server Client

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Offline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [1, v] do for j ∈ [1, w] do

sxi = H1(xi)
d mod n rj ←$ Z∗

n

hxi = H2(sxi) bj = H1(yj) ∗ rje mod n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B = {b1, b2, . . . , bw}

for j ∈ [1, w] do

sbj = bj
d mod n

SB = {sb1, sb2, . . . , sbw}

HX = {hx1, hx2, . . . , hxv}

I = ∅
for j ∈ [1, w] do

syj = sbj/rj mod n

hyj = H2(syj)

if hyj ∈ HX then

add yj to I

output I

Figure 1. Basic protocol proposed in [37].

The correctness of the protocol is obvious. The signature associated with the client’s
element yj can be derived by removing the corresponding random value rj, as demonstrated
by Equation (1).

syj =
sbj

rj
mod n =

(H1(yj) ∗ rj
e)d

rj
mod n = H1(yj)

d mod n (1)

Suppose there exist two elements x∗i ∈ X and y∗i ∈ Y such that x∗i = y∗i ; the following
Equation (2) holds true. Therefore, the elements in the intersection of sets {hx1, hx2, ..., hxv}
and {hy1, hy2, ..., hyw} can be mapped back to the common elements in the intersection of
sets X and Y.

hx∗i = H2(sx∗i ) = H2

(
H1(x∗i )

d mod n
)
= H2

(
H1(y∗j )

d mod n
)
= H2(sy∗j ) = hy∗j (2)
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In terms of security, this protocol is only secure against a malicious client. Informally,
since the client only has access to some hash values of the server’s signatures, the only
way for the client to obtain the server’s input is by first brute-forcing the value of sxi
from hxi and then utilizing the public key (e, n) to compute H1(xi) = (sxi)

e mod n. At
last, the client can retrieve the server’s private input xi by enumerating possible input
domains of H1(xi). However, given that sxi ranges over Z∗n, the probability of the client
brute-forcing sxi from hxi can be considered computationally negligible as long as the hash
function H2 is cryptographically secure. Regarding the client’s privacy, since the data it
transmits to the server consists solely of bj, which contains a random number, the client’s
privacy is guaranteed statistically. A formal proof of the security properties can be found in
reference [15].

4.2. Optimizations

In this section, we present optimizations for the basic protocol in Section 4.1 by
incorporating Cuckoo filters to reduce the storage at the client side and leveraging the
immutability of the blockchain to enhance the security against a malicious server.

4.2.1. Reduce Storage

In the basic protocol, the client is required to store the entire set HX for comparison.
As a result, the storage space required increases with the size of the server’s set. In the case
of unbalanced PSI, the server’s set is typically larger, which imposes significant storage
overhead on the client. According to the birthday paradox, the approximate probability
of experiencing a collision when mapping (v + w) elements to a domain of size 2l is
(v + w)2/2l . Therefore, if the probability of a hash collision occurring is required to be
no more than 2−λ, the output length of H2 should be at least l = 2 log2(v + w) + λ− 1.
Assuming λ = 40, v = 230, and w = 28, approximately 11.25 GB of space is required to
store set HX, which is highly prohibitive for clients with limited storage resources.

We introduce Cuckoo filters [38] to reduce the client’s storage. A Cuckoo filter can
be seen as a compact variant of Cuckoo hashing [39], but rather than storing a complete
element, each entry holds the fingerprint of the element. The fingerprint generally refers
to a segment of the bit string derived from hashing the original element. When inserting
a new element x, two candidate bucket locations i1 = hash(x) and i2 = i1 ⊕ hash( f ) are
computed, where f represents the fingerprint of f . If one of these buckets has an empty
entry, the fingerprint f is inserted into that vacant slot. Otherwise, one of the existing
fingerprints f ′ in the ith bucket is replaced by the birthday paradox, where i ← $ {i1, i2}.
The displaced fingerprint f ′ is moved to a bucket indexed by i′ = i⊕ hash( f ′). If no empty
entry is found within a threshold number of attempts, insertion fails. Experiments by
Fan et al. [38] show that with bucket sizes of four and fingerprints that are six bits or longer,
Cuckoo filters can achieve a load factor of 95% and accommodate up to 4 billion elements.
In summary, Cuckoo filters manage to maintain high occupancy rates while storing smaller
fingerprints, thereby resulting in low storage per element on average.

Following the fundamental configuration of Fan et al. [38], where each element has
two candidate buckets and the bucket size is four, the average space occupied per element
at maximum load is:

C ≤ 1.05× (3− log2 ϵ) (3)

where ϵ is the target false positive rate. Cuckoo filters can reduce the size of set HX from
11.25 GB to approximately 1.75 GB when ϵ is set to 0.001, thus substantially decreasing the
storage demanded by the client.

Another significant advantage of the Cuckoo filter is its convenient lookup capability.
When a client wishes to test whether a signature value hyj is present in the set HX, it needs
only check for the fingerprint of hyj in the two candidate buckets. Therefore, the Cuckoo
filter results in constant-time lookup complexity, which improves the client’s computation
efficiency at the same time.



Mathematics 2024, 12, 1544 9 of 20

Apart from supporting general insertion and lookup operations, Cuckoo filters allow
for dynamic deletion. The deletion process is straightforward: locate the bucket contain-
ing the element required to be deleted through the lookup algorithm and remove the
corresponding fingerprint from the bucket. Hence, the deletion complexity is also O(1).
Leveraging this property, when the server’s data undergo only minor changes, the client
does not need to re-download the entire dataset. Instead, the server can send the updated
data along with the corresponding instructions (whether to add or remove) to the client.
The client can then execute the appropriate operation based on the instruction to obtain an
updated filter reflecting the server’s new set.

4.2.2. Improve Security

Although the server cannot obtain the client’s private input in the basic protocol, it can
cause the client’s output to deviate from the correct result. For instance, during the signing
on the client’s blinded value bi, the server might sign an arbitrary random value rather
than the actual bi sent by the client. The server could even economize its computational
resources by simply responding with a random value instead of utilizing its private key
for signing.

We organize critical data in the intersection process into a Merkle tree structure and
upload the corresponding Merkle root to the blockchain for anchoring. This enables the
client to produce a publicly verifiable and non-repudiable proof.

Specifically, after obtaining set B = {b1, b2, . . . , bw}, the client first computes the
Merkle root M1 of B. Next, the client sends each item in B according to its position in the
Merkle tree to the server orderly and uploads M1 to the blockchain. Upon receiving B and
confirming that M1 has been recorded on the blockchain, the server computes the Merkle
root of B and verifies whether it is equal to M1. If there is a match, the server proceeds with
the subsequent signing; otherwise, it aborts the protocol. Given the inherent properties of
the Merkle tree structure, any difference between the data received by the server and set B
will result in different Merkle roots in the end.

In the same way, the server computes the Merkle root M2 of set SB = {sb1, sb2, . . . , sbw}
in the same order as B. It then sends the ordered set SB to the client and uploads M2 to the
blockchain. Upon receipt of SB, the client initially verifies whether the Merkle root of the set
received equals M2. If not, the client terminates the protocol; otherwise, the client samples
a proportion of data from SB based on its expected deterrence effect. Let sbt ∈ SB denote
one of the sampled elements: the client needs to verify whether Equation (4) holds true.

bt = (sbt)
e mod n (4)

If all sampled elements satisfy Equation (4), the result is considered correct. However,
if there exists any element sbt ∈ SB such that bt ̸= (sbt)e mod n, it can be inferred that the
server did not faithfully execute the protocol. In this case, the client can generate a publicly
verifiable proof to accuse the server of malicious behavior during the intersection process.
The proof consists of the following components:

• The elements bt ∈ B and sbt ∈ SB that do not satisfy Equation (4);
• The index t ∈ [1, w] of bt in set B (or sbt in set SB);
• The paths roadbt and roadsbt for bt in the Merkle trees with roots M1 and M2, respec-

tively.

The verification algorithm for Proo f = {t, bt, sbt, roadbt , roadsbt} consists of the follow-
ing three steps.

1. Verify whether the element bt is located at index t in the Merkle tree with root M1
according to roadbt . If the verification succeeds, proceed to the next step; otherwise,
return False.

2. Verify whether the element sbt is located at index t in the Merkle tree with root M2
according to roadsbt . If the verification succeeds, proceed to the next step; otherwise,
return False.
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3. Verify whether the equality bt = (sbt)e mod n holds using the server’s public key
(e, n). If it does, return False; otherwise, return True.

A validation result of True indicates that the server did not adhere to the protocol’s
execution, whereas a result of False implies that the proof is invalid.

4.3. Full Protocol

In this section, we present our full protocol, which is based on the basic protocol with
the optimizations proposed in Section 4.2. The overview of the system architecture and
interaction logic is depicted in Figure 2.

The blockchain-based PSI system consists of four types of entities: server, client,
blockchain, and IPFS (optional). The server and client are parties holding data. The
blockchain is used to record the Merkle root, verify proofs submitted by the client, and
execute corresponding economic measures according to verification results. IPFS is optional
and is where the server uploads its encrypted data. In addition to IPFS, any cloud can be
used to store the server’s encrypted set. The client can also download data directly from
the server when bandwidth permits. For the sake of simplicity, we assume that the server
directly transmits its encrypted data to the client in the following protocol description.

IPFS

Blockchain

Sever Client

Figure 2. Overall system architecture diagram.

The description of our full protocol is illustrated in Figure 3 and consists of four main
processes as follows:

1. Setup is used to perform some pre-processes and prepare for subsequent calculations.

(a) The server publishes the public key (e, n) on the blockchain and stakes the
required deposit.

(b) For each xi ∈ X, the server computes sxi = H1(xi)
d mod n and hxi = H2(sxi).

It then generates a Cuckoo filter GFX that inserts set HX = {hx1, hx2, . . . , hxv}.
(c) The client generates w or more random numbers and encrypts them using the

server’s public key to obtain Ri = re
j mod n.

(d) The client pledges a certain amount of deposit to the smart contract under
the contract requirements. Once the deposit meets the requirements, the
blockchain emits a request event to the server.

(e) Upon listening to the request event, the server can authorize the client to
communicate with it.
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2. Computing is the main process, whereby the client obtains blind signatures on its set
through a single interaction with the server.

(a) The client blinds set Y to obtain set B = {b1, b2, . . . , bw}, where bj = H1(yj) · Rj
mod n.

(b) The client uploads the Merkle root M1 of B to the blockchain and sends B to
the server.

(c) The server verifies whether the Merkle root of received data is consistent M1
on the blockchain, and it exits the protocol if they do not match.

(d) The server signs every element bj in B to generate set SB = {sb1, sb2, . . . , sbw}
using the private key (d, n), where sbj = (bj)

d mod n. It then uploads the
Merkle root M2 of SB to the blockchain and sends set SB and the Cuckoo filter
GFX to the client.

(e) The client verifies whether the Merkle root of received data is consistent M2
on the blockchain, and it exits the protocol if they do not match.

(f) If the client fails to upload M1 or the server fails to upload M2 to the blockchain
before time t1, both parties’ deposits will be unlocked and the protocol will
be terminated.

3. Verifying aims to verify whether the blind signatures received from the server are
valid.

(a) The client randomly samples n1 elements from SB, where the number of
samples depends on the expected deterrence factor. It then checks whether
the sample point bt satisfies bt = (sbt)e mod n. If all samples satisfy this
equation, it proceeds to the output phase; otherwise, it generates a proof
Proo f = (t, bt, sbt, roadbt , roadsbt).

(b) The client submits Proo f to the blockchain and invokes the verification function
within the smart contract to verify whether Proo f is valid. If the proof is valid,
the smart contract automatically deducts the server’s deposit as a penalty and
refunds the client’s deposit. Then, the protocol ends.

(c) If the smart contract does not receive any valid proofs prior to time t2, the
server’s deposit will be refunded. A portion of the client’s deposit may be
transferred to the server’s account as a reward (subject to the specific business
rules), while the remaining portion (if any) will be refunded to the client’s
account. Then, the protocol terminates.

4. Output is the last process and is responsible for calculating the final intersection.

(a) The client recovers each element in SB using the random values used during
blinding to obtain signatures syj = sbj/rj mod n of the original elements and
hash values hyj = H2(syj).

(b) The client initializes the final intersection I as empty. It then looks up hyj in
the Cuckoo filter GFX , and the corresponding original element yj is added to I
if hyj exists in GFX .

(c) At last, the client outputs the final intersection I.

Compared to the basic protocol, our protocol introduces an additional step of cal-
culating the Merkle roots M1 and M2. However, the elements contained in B and SB
remain unchanged, ensuring that this process does not impact the correctness of the results.
Furthermore, in our protocol, the server transmits the Cuckoo filter GFX, which inserts
set HX instead of the original set HX. Nonetheless, due to the Cuckoo filter’s low false
positive rate when appropriately configured, the probability of the client making a false
judgment on whether hyj is in set HX does not exceed the false positive rate of the utilized
filter. Therefore, given adherence to the protocol by both parties, the correctness of the basic
protocol combined with the sufficiently low false positive rate of the Cuckoo filter ensures
that our protocol yields the correct intersection result (with an error rate not exceeding the
false positive rate of the Cuckoo filter).
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Server Blockchain Client

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deposit

(e, d)

for i ∈ [1, v] do for j ∈ [1, w] do

sxi = H1(xi)
d mod n rj ←$ Z∗

n

hxi = H2(sxi) Rj = rj
e mod n

CFX .Insert(hxi)

deposit

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for j ∈ [1, w] do

bj = H1(yj) ∗Rj mod n

M1 = Root(B)

M1

B = {b1, b2, . . . , bw}←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

if M1 6= Root(B) then

exit

for j ∈ [1, w]

sbj = bj
d mod n

M2 = Root(SB)

M2

CFX , SB = {sb1, sb2, . . . , sbw}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

if M2 6= Root(SB) then

exit

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

repeat n1 times

sbt ←$ SB

if bt 6= (sbt)
e mod n then

Proof = (t, bt, sbt, roadbt , roadsbt)

Proof

if Verify(Proof) then

deduct deposit of Server

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I = ∅
for j ∈ [1, w] do

syj = sbj/rj mod n

hyj = H2(syj)

if CFX .Lookup(hyj) then

add yj to I

output I

Figure 3. Our full protocol.
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4.4. Theoretical Analysis

We conduct a theoretical analysis of our protocol from security and efficiency view-
points in this section.

4.4.1. Security Analysis

In terms of security, our protocol does not compromise the security guarantees pro-
vided by the basic protocol. Informally, on the one hand, the uploaded Merkle roots M1
and M2 reveal no additional information about sets B and SB. On the other hand, encoding
set HX with a Cuckoo filter does not provide the client with more information compared
to directly transmitting set HX. Formally, if there exists a PPT algorithm A that can break
our proposed protocol with a non-negligible advantage γ, we can treat this algorithm
as a subroutine to construct an algorithm A′ that breaks the basic protocol as follows:
firstly, obtain sets HX and SB (or B); then, insert HX into a Cuckoo filter and compute the
Merkle root of SB (or B) before invoking algorithm A. The view of algorithm A running
as a subroutine of algorithm A′ is identical to its execution within our proposed protocol.
Therefore, the advantage of algorithm A for breaking the basic protocol is also at least γ.

Additionally, our protocol can capture malicious behavior of the server with a certain
probability. Specifically, let us assume that the proportion of the client’s data correctly
signed by the server is denoted as p(0 ≤ p ≤ 1), meaning that only wp elements in set B
are correctly signed. If the client randomly selects n1(1 ≤ n1 ≤ w) data points from set SB
for verification, the probability Pcap of capturing the server’s malicious behavior is given
by Equation (5).

Pcap = 1−
(w(1−p)

n1
) · (wp

0 )

(w
n1
)

= 1−
An1

w(1−p)

An1
w

(5)

It can be observed that Pcap = 1 when n1 > w(1− p); otherwise, Pcap is shown in
Equation (6).

Pcap ≥ 1− (1− p)n1 (6)

where n1 ≤ w(1− p).
By Equations (5) and (6), we observe that when the server’s malicious behavior remains

constant, the higher the number of elements verified by the client during the validation
phase, the greater the probability of detecting the server’s malicious behavior. In an extreme
case, if the client does not tolerate any error in the results, it can verify every element in
set SB. However, this approach comes at the cost of increased workload. Therefore, our
protocol allows the client to adaptively verify the results to achieve the desired level of
deterrence even with limited computational resources.

Moreover, upon failure to validate any sampled element, the client can generate
a publicly verifiable and irrefutable proof to accuse the server. Our protocol ensures
accountability, defamation-free elements, and privacy of the proof as follows:

• Accountability: If Equation (4) does not hold, an honest client will always be able
to produce a valid proof causing the output of the verification algorithm to be True.
Given that both element bt ∈ B and its corresponding sbt ∈ SB reside in Merkle trees
with roots M1 and M2, the client can provide effective paths roadbt and roadsbt to pass
the first two steps of the verification algorithm. Therefore, as long as there exists an
element bt ∈ B satisfying bt ̸= (sbt)e mod n, the output of the verification algorithm
will be True.

• Defamation-Free: If the server is honest, the probability that a client generates a
proof such that the output of the verification algorithm is True is negligible. Since the
server is honest, every sbt ∈ SB satisfies bt = (sbt)e mod n except for a negligible
probability. Additionally, the Merkle roots of B and SB have been recorded on the
blockchain. Due to the tamper-evident nature of the blockchain, the client cannot
modify M1 and M2. Consequently, if the client attempts to tamper with either bt or sbt
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such that they do not satisfy Equation (4), the integrity of the Merkle tree renders it
impossible for the client to provide valid Merkle paths for the altered elements.

• Privacy: Apart from a negligible probability, the proof generated by the client does
not disclose its private information. In the proof Proo f = (t, bt, sbt, roadbt , roadsbt), t,
bt, and sbt are known to the server during the intersection process. The Merkle paths
roadbt and roadsbt can also be independently calculated by the server. Therefore, the
proof Proo f does not reveal any additional information to the server, which preserves
the client’s privacy against the server and others.

Our protocol further enhances security by automatically executing economic incentives
on smart contracts. For the client, once the server’s malicious behavior is captured, it can
be inferred from the above accountability that the client can generate a valid proof to pass
the verification of the smart contract. Since both parties have already pledged a certain
amount of deposit before the computation, the smart contract automatically deducts the
server’s deposit without the need for any third party for enforcement when the verification
result is True. For the honest server, as implied by the defamation-free property, the client
cannot generate a valid proof that passes the smart contract verification. Therefore, even if
the client does not actively pay the server a reward, a portion of the client’s deposit will
automatically transfer to the server’s account after time t2. Furthermore, in our design, once
a proof accusing the server is successfully validated by the smart contract, it is recorded
on the blockchain through the contract’s event mechanism. Similarly, the event of the
smart contract not receiving a valid proof before time t2 is also recorded on the blockchain.
All these events contribute to the archive of the server providing the PSI service, which
is publicly accessible and permanently stored on the blockchain. This, to some extent,
enhances the deterrence against a malicious server.

Note that our protocol does not offer forward secrecy for the server. In practice, the
server’s data typically change minimally. If a leakage occurs at any given point, it would
lead to the compromise of almost all the data. Therefore, forward security is meaningful
for the server. On the other hand, the client can achieve forward security by employing
different random numbers according to its specific requirements.

4.4.2. Efficiency Analysis

In this section, we conduct a theoretical analysis of the efficiency of the proposed
protocol and compare it with the protocols of Chen et al. [16], Jiang et al. [32], and Pinkas
et al. [25], as summarized in Table 1. Chen [16] introduced an OPRF phase to ensure security
against a malicious client, resulting in two rounds of interaction built upon [1]. To address
the issue of not being able to verify the intersection in [16], Jiang [32] incorporated publicly
verifiable inner product computations, which increases the communication complexity
to O(v) and requires a large number of bilinear pairing operations. The protocol of
Pinkas [25] is computationally efficient, yet its communication is O(v + w). Furthermore,
Paxos structures are employed to encode client’s data, and extra checking operations are
introduced during active OT extension, which further increases communication overhead.

As demonstrated in Section 4.4.1, our protocol ensures that clients can verify the cor-
rectness of the results with a certain success rate, which depends on the level of deterrence
the client aims to achieve.

Our protocol is designed to be completed in a single round of communication, wherein
the client sends B to the server and subsequently receives SB and GFX in return from
the server. Although it appears that the total communication overhead encompasses B,
SB, and GFX, the transmission of the Cuckoo filter GFX can be accomplished without
the requirement for both parties to be concurrently online. The server can store GFX
in IPFS or any third-party cloud storage, which allows the client to download GFX at
any moment before the output phase, mitigating potential bandwidth limitations during
online intersection computation. Therefore, the actual online communication volume solely
comprises B and SB, which results in the final communication complexity being O(w).
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There may be slight changes on the server’s local dataset after the first upload of GFX ,
such as the addition of new data or the removal of existing data (the update operation can
be split into removal and addition). Instead of generating a new Cuckoo filter and repeat-
edly uploading it, the server can directly upload changed elements and corresponding
instructions (including “ADD” and “REMOVE”). Each update will result in a new version
of GFX . When the client later performs another PSI with the same server whose dataset has
undergone minor changes, it can obtain the Cuckoo filter for a specified version by tracing
each update between the version it currently has and the expected version. For example,
the client follows the insertion algorithm to add new elements to GFX when the instruction
is “Add”. For “REMOVE” instructions, the client uses the deletion algorithm to remove
specified data from GFX . However, the filter cannot exceed its maximum load (usually 95%
when the bucket size is four and fingerprints are large enough). If the maximum load is
exceeded, the server needs to extend the filter’s size and updates a new Cuckoo filter.

Table 1. Comparison of related PSI protocols.

Protocol Correctness Number of
Rounds

Communication
Complexity

Computation of
Server

Computation of
Client

Chen [16] ✘ 2 O(w · logv) O(v2) O(w · logv)
Jiang [32] ✔ 2 O(v) O(v2) O(v + w)

Pinkas [25] ✔ 3 O(v + w) O(1) O(1)
Ours ✔ 1 O(w) O(w) O(1)

In terms of computational efficiency, the server is required to sign each element in
its own set and the client’s blind set. Since the server’s set size is usually large, this
process involves a significant number of exponential operations. However, this only needs
to be performed once. The cost of this process can be amortized over the subsequent
PSI with other clients. Consequently, during the online computation phase, the server
is only required to sign each element within the set B received from the client, yielding
a computational complexity of O(w). Additionally, since the server is cognizant of the
factorization of n, it can leverage the Chinese remainder theorem to dramatically improve
the efficiency of the signing process.

The client’s workload is predominantly composed of three main components: (1) rais-
ing random values rj-s to the e-th power ( mod n), (2) sampling to check the result’s
correctness, and (3) generating a proof when the check fails. The subsequent discussion
demonstrates that, given a certain probability that the server is engaging in malicious
behavior, the online computational complexity of the aforementioned three processes is
independent of the sizes of the sets held by both parties and is computationally efficient.

Although the computational complexity of the first process appears to be O(w), this
process can be completed offline as it does not depend on the server’s and client’s sets. On
the other hand, as mentioned in the literature [15], unlike the typical requirement in RSA
encryption, where the public exponent e should not be too small, we can use e = 3 due
to the introduction of random values rj, which can significantly reduce the complexity of
exponential operations. In practical applications, the values Rj and (rj)

−1 can be reused
multiple times when the client’s forward security is not required, further amortizing the
client’s computational overhead.

According to Equation (6), the number of samples required for spot checks is solely
contingent upon the anticipated deterrence factor Pcap and the probability p of the server
committing malicious acts, and sampling a subset of elements can achieve a high level
of deterrence. For example, assuming a server’s probability of incorrect computation is
0.001, the probability of detecting the server’s malicious behavior can reach 72% when
27 elements are sampled for verification. Taking into account that the protocol of Pinkas
et al. [25] also requires a certain amount of public key operations in the basic OT phase, we
believe that, for the client, the computation complexity of our protocol is comparable to it.
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Moreover, as mentioned above, the exponential operation during the checks is very simple
(with an exponent of three).

The generation of the proof is trivial for the client. During the computing phase, the
client has already computed the Merkle trees of sets B and SB separately, which allows it to
easily retrieve paths roadbt and roadsbt from bt and sbt to the M1 and M2, respectively.

Furthermore, since the depth of a Merkle tree grows logarithmically with the size of
the set, the proof’s size is only O(logw). On the other hand, the verification algorithm
only contains two Merkle paths’ validation and a single exponentiation operation with
an exponent of three, which can be accomplished at a very low cost on smart contracts by
utilizing the built-in precompiled contracts on Ethereum.

5. Experiments

To evaluate the performance of the scheme proposed in this paper, two experiments are
designed involving on-chain contract execution and off-chain computation. The off-chain
computation is implemented using the C++ language with the cryptographic library GMP
for large-integer arithmetic and OpenSSL for random number generation and hash function
implementation. Both the server and client run on a Linux-based desktop equipped with a
single-core Intel Xeon Gold 6278C CPU at a base frequency of 2.6 GHz and are executed in
a single thread. The parameters are set as follows: κ = 80, λ = 40, n1 = 128.

Table 2 lists the storage required by the client for different sizes of the server’s set when
the size of the client’s set is fixed at 212. It can be seen that the Cuckoo filter significantly
reduces the storage on the client, especially when the size of the server’s set is large.

Table 2. The client’s space cost of storing the server’s hashed set in MB in the basic protocol and
our protocol.

v Basic Protocol Our Protocol

216 0.56 0.19
220 9.88 3
224 174 48
228 3040 768

Special note: w = 212; the configuration of the Cuckoo filter used is as follows: bucket size b = 4, fingerprint
length f = 12, and false positive rate ϵ is up to 0.0496% .

Figure 4 shows that online communication grows linearly with the size of the client’s
set. When w = 212, online communication is only 1 MB. From Figure 5, it is evident that the
computation time for both parties is roughly linearly related to the size of the client’s set.
More specifically, the client’s computation time is much shorter than the server’s, and the
online phase comprises only a small fraction of the total computation time. Therefore, in
our protocol, the main computational workload is in the server’s online computing phase,
while the online computational workload for the client is minimal.

The on-chain contract is responsible for verifying proofs and automatically executing
economic measures and is written in Solidity and tested on the Ethereum testnet Sepolia.
To ensure compatibility with Ethereum’s hash function, we utilize the keccak-256 hash func-
tion to compute Merkle roots during the off-chain computation. Keccak-256 is Ethereum’s
prevalent cryptographic hash function and is different from the standard sha3-256 only
in padding mode, and it offers a high level of security. To reduce the transaction cost
of verifying proofs on smart contracts, we employed Ethereum’s precompiled contracts
RIPEMD160 for Merkle paths’ verification and ModExp for modular exponentiation arith-
metic. Figure 6 presents the sizes of the generated publicly verifiable proofs along with the
gas consumption required for their validation on smart contracts for various sizes of the
client’s set.
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Figure 4. Online communication costs for different sizes of the client’s set.

Figure 5. Computation time for different sizes of the client’s set.

From Figure 6, it is apparent that both the size of the generated proofs and the gas
required for their verification exhibit logarithmic growth with the increase in the client’s
set size. Currently, the contract call data in a single transaction is limited to 2048 bytes
on Ethereum. Hence, our proofs are capable of supporting w up to 228, which sufficiently
meets the demands for practical unbalanced PSI. It should be noted that even if this limit is
exceeded, proofs can be split into two or more transactions for contract calls. Transaction
costs for verifying proofs on our smart contract are much lower than the current block gas
limit (30 million gas). Based on the current Ethereum mainnet gas price (20 Gwei) and
ETH price (USD 3035.93) [40], when the size of the client’s set is 212, the verification cost
amounts to just USD 5.74.
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Figure 6. Size of proofs and gas cost for verification for different sizes of the client’s set.

6. Conclusions

In this paper, we propose and implement a blockchain-based unbalanced PSI protocol
with public verification and financial security. Our protocol allows the client to compute and
verify the final intersection with efficient communication and client-side computation. The
client can also generate publicly verifiable proofs to accuse the server of malicious behavior,
which can be automatically validated by smart contracts at a low cost. By designing an
appropriate economic incentive and penalty mechanism, our protocol provides financial
security assurances on the foundation of public verification. We believe that our protocol
enables clients to better protect their interests in unbalanced PSI scenarios without incurring
significant costs.

Nevertheless, the server’s online computational demands, in terms of public key
operations, escalate linearly with the magnitude of the client’s dataset. Consequently, the
challenge of diminishing the computational burden on the server, without compromising
the public verification of the result and the operational efficiency of the client, presents a
significant avenue for subsequent scholarly inquiry.
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