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Abstract: In this paper, attention is focused on the analysis and optimization of energy flows in
networked systems via a fluid-dynamic approach. Considering the real case of an energy hub,
the proposed model deals with conservation laws on arcs and linear programming problems at
nodes. Optimization of the energy flows is accomplished by considering a cost functional, which
estimates a term proportional to the kinetic energy of the overall system in consideration. As the
real optimization issue deals with an integral formulation for which precise solutions have to be
studied through variational methods, a decentralized approach is considered. First, the functional is
optimized for a simple network having a unique node, with an incoming arc and two outgoing ones.
The optimization deals with distribution coefficients, and explicit solutions are found. Then, global
optimization is obtained via the local optimal parameters at the various nodes of the real system.
The obtained results prove the correctness of the proposed approach and show the evident advantages
of optimization procedures dealing with variational approaches.

Keywords: energy flows; optimization; simulation
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1. Introduction

In the context of energy sectors, primary importance is given to the problems of energy
conversion and management ([1,2]), as well as possible interactions between renewable
sources and the environment (see [3] for power planning, [4] for control issues, and [5] for
a survey). This especially occurs in cases of multi-generation systems, which are useful for
producing electricity as well as hydrogen, heat, and cooling power, with the consequent
advantages of high efficiency and reduced CO2 emissions.

In this direction, scientific communities are focusing on possible models for energy
networked systems, with emphasis on optimization problems that arise naturally in daily
situations (see [6,7] for possible applications as well as [8] for a complete version). In partic-
ular, energy hubs are a class of multi-generation system where multiple energy carriers are
converted, stored, and dissipated [9,10].

In this paper, following the ideas proposed in [11,12], an energy hub designed in
Waterloo, Ontario, Canada is modeled, and the energy flows at its nodes are optimized.
Indeed, this problem was already considered in [11], where the authors provided a control-
oriented methodology based on a mixed-integer dynamic model and optimal scheduling
(see also [13], where the authors accepted suboptimal solutions for some studied data
and ensured that the solution remained feasible for data changes), which is robust to
uncertainties in specific scenarios. In this case, the main discussion is different, as we
want to guarantee robust optimization focusing on one fundamental issue: a description
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of the spacetime behavior of the energy flows in order to explicitly mitigate the power
fluctuations that could affect correct and reliable energy system operation.

In order to achieve this aim, we deal with the conservation of energy flows, a situation
that should be considered in most cases involving multi-generation systems. This require-
ment leads to a continuous model that foresees conservation laws (i.e., partial differential
equations (PDEs); see [14]). In particular, we use an approach taken from road traffic
and suggested by the Lighthill–Whitham–Richards (LWR) equation ([15,16]) enriched by
junction traffic assignments so as to model with real networks [17–19]. The outcome is
a model that reproduces the main features of car traffic (queue formation and backward
propagation) and that, in the case of energy systems, offers the possibility of analyzing
the energy flows in each part of the network and for any time. In spite of the apparent
simplicity of the LWR equation, this network approach for energy systems represents, to the
best knowledge of the authors, a good compromise for focusing on scenarios that are not
always in steady states. Indeed, the superiority of the LWR model is also due to the results
of existence and uniqueness of solutions for large networks, guaranteeing a solid analytical
theory for numerical approximation and optimization problems (similar drawbacks are
also described for different types of PDEs in [20–23] and for energy issues in [24]). For
instance, in [25], efficient numerical algorithms are described for treating complex networks
in acceptable computational times. On the other hand, for the particular case of supply
chains, the authors of [26] provided a systematic presentation of continuous models and
their possible numerical computation. This is the main issue for addressing optimization
problems, which otherwise would be computationally too expensive. For similar results,
we have ref. [27], where urban traffic networks were simulated by considering road sec-
tions of various capacities and lengths, and ref. [28], where the authors focused on an
optimization strategy for a continuous model of supply chains with queues of unworked
materials. Based on this last work, the authors of [29,30] both dealt with an optimal control
problem for the minimization of queues of goods and the quadratic difference between a
desired outflow and the real one. The former describes an analytical strategy where the
input flow is a piecewise constant function, which is assumed as control. The latter aims at
optimization via genetic algorithms. Finally, the authors of [31] considered optimization
and control problems through machine learning techniques within the context of chemical
processes.

Finally, the choice of the LWR approach for energy systems is motivated by three
main reasons:

• Modeling: The LWR model for networks allows the reproduction of features dealing
with the spacetime behaviors of energy flows. The same does not happen for richer
fluid dynamic models (see, for instance, [32], where the authors dealt with a system of
PDEs that described the density of the cars, generalized momentum, which is itself a
function of the density, and pressure) and static models, which consider only steady
states.

• Analysis: As for the theory of networks, the LWR model has fundamental and detailed
results. To the best knowledge of the authors, there are no similar and complete
theoretical developments for other models, especially those of the fluid dynamic type.

• Numerics and optimization: The robust theory of LWR also gives rise to fast numerical
algorithms, (an example is in [33], where the authors proposed simulations of some
classical topologies of networks using kinetic schemes) which allow considering
complicated optimization strategies.

Following the approach just described, an energy hub is modeled with a finite set
of arcs that meet at some nodes (i.e., junctions). The spacetime evolutions of the energy
flows within the arcs are found using conservation laws. The dynamics at the junctions is
solved via linear programming problems that consider the maximization of the through-
flows under constraints that foresee the bounded incoming and outgoing flows and the
distribution coefficients that determine how the flows on the incoming arcs are distributed
to outgoing ones.
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Once assuming the model for energy flows, we consider a cost functional to estimate
a term proportional to the kinetic energy in the energy hub. In particular, we want to
maximize the functional with respect to (w.r.t.) the distribution coefficients at the nodes.
Unfortunately, as it is difficult to foresee a priori an exact evolution of energy flows in the
hub, analytical optimization of the cost functional is not possible. For this reason, we adopt
a strategy that consists of the following three steps (a similar technique was used in [34]):

1. For network topologies with a unique node and all initial data, we compute the
optimal distribution coefficients. Then, we consider the asymptotic solution, assuming
there are infinite-length arcs to avoid boundary data effects.

2. For generic networks with complex topologies, we use the (locally) optimal distri-
bution coefficients at each node, updating the values of the parameters at each time
instant through the actual flows on the arcs near the junction.

3. Using simulations, we verify the performances obtained by the (locally) optimal
distribution coefficients through comparisons with randomly chosen parameters.

Notice that the first step is non-trivial even for simple nodes. In fact, we deal with
a hybrid problem, as continuous flows are influenced by discrete variables such as the
distribution coefficients at the junctions. For this reason, and also considering the topology
of the energy hub under discussion, we focus on the particular case of nodes of the
1 × 2 type (i.e., one incoming arc and two outgoing ones). The second step is carried out
for the energy hub described in [11], while step three considers two different types of
distribution parameters: (locally) optimal, according to the step one, and random (i.e.,
the coefficients are chosen randomly at the beginning of the simulation and then are kept
constant). In particular, numerical approximations for the simulations are obtained via
some of the methods for PDEs described in [35–37].

Considering that the optimization approach considers a local optimization in an
asymptotic state, the obtained results are quite good. Using the optimal parameters, the
behavior of the cost functional is better than the ones achieved using random distribution
coefficients. Indeed, the approach is also quite robust, as indicated by further analysis of
the asymptotic values of the cost functional in random cases and in the optimal situation.
This also indicates that the followed approach is suitable for energy hub control as well as
the possible scheduling of resources over a long time interval.

In short, the main content of this paper is indicated by the keywords listed as follows.

• Energy flows: These represent the main topic of this research and are modeled via a
fluid dynamic approach dealing with conservation laws, namely PDEs of the hyper-
bolic type.

• Optimization: The performances of a real energy system are optimized through a cost
functional, which estimates a term proportional to the overall kinetic energy. The cost
functional is minimized by using a decentralized approach to find the distribution
coefficients at the nodes of the network.

• Simulation: The performances of the real energy system are tested via simulations. In
particular, the cost functional is studied by considering either optimal distribution
coefficients or random ones. Suitable comparisons are made for the different behaviors.

Notice that a possible empirical validation of the proposed model for energy flows
is under investigation, with emphasis on other real case studies. Various examples of
validations for fluid dynamic models include ref. [38], where the authors discuss validation
for a traffic model by considering data gathered in a part of the urban network in Rome
(Italy), and refs. [39,40], which discuss possible validation, together with an analysis of
emissions and pollutants, for fluid dynamic models of the second order for traffic networks.

This paper has the following structure. Section 2 presents a model for energy flows on
networks. Section 3 is devoted to the optimization results for energy networks via the cost
functional described above. Section 4 provides an example of a real energy hub designed
in Waterloo, Ontario, Canada. Section 4.2 presents some simulations of energy transitions
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over the energy hub under discussion for two possible choices of distribution coefficients:
optimal and random. Our conclusions (Section 5) end the paper.

2. Theoretical Foundations

An energy network is described by a couple (I ,J ), where I ={In}n=1,...,N is the set
of arcs In, n = 1, . . . , N, with each one represented by [an, bn] ⊂ R, and J ={jk}k=1,...,J is
the collection of nodes jk, k = 1, . . . , J.

Each arc In ∈ I , n = 1, . . . , N, is described by the following:

• A density function ρn := ρn(t, x) ∈ [0, ρn
max], (t, x) ∈ [0,+∞[× [an, bn], where ρn

max is
the maximal allowed density for arc In;

• A velocity function vn := vn(ρn) ∈ [0, vn
max], where vn

max indicates the maximal
velocity for particles traveling on arc In;

• A flux function defined by fn(ρn) := ρnvn.

The three above quantities have the following interpretation: ρn is the energy density
at time t at the point x of arc Ii, vn is the average velocity of each energy particle, and fn(ρn)
is the flux associated with ρn. Notice that, as we are dealing with macroscopic quantities,
particles are assumed to be of various type. Such an assumption is essential for the case
study, where different quantities deal with gas, heat, electricity, and so on. Moreover, the
proposed model, dealing with average quantities, considers all the energy phenomena as
an average. Hence, there is not a clear distinction (which is typical of microscopic models)
between active and reactive powers, which are indeed important for modeling power
losses. Focusing only on conservative aspects, the proposed model deals mainly with
active powers. The aspects for a more suitable presentation of losses and reactive power
are under investigation.

For In ∈ I, n = 1, . . . , N, the evolution of ρn(t, x) follows the
Lighthill–Whitham–Richards (LWR) model ([15,16]), which is expressed by the conservation law

∂

∂t
ρn +

∂

∂x
fn(ρn) = 0. (1)

Without loss of generality, by choosing ∀ n = 1, . . . , N, ρn
max = ρmax, vn

max = vmax and
a decreasing velocity function vn(ρn) = vmax

(
1 − ρn

ρmax

)
, ρn ∈ [0 ρmax], the flux function

f (ρn) := fn(ρn) simply reads as follows:

f (ρn) = vmax ρn

(
1 − ρn

ρmax

)
, ρn ∈ [0, ρmax]. (2)

The evolution at a node jk ∈ J , k = 1, . . . , J, obeys Riemann problems (RPs) (i.e.,
Cauchy problems that have constant initial data for incoming and outgoing arcs).

We fix a node jk of the r× s type, namely r incoming arcs Ik
φ, φ = 1, . . . , r and s outgoing

ones Ik
ψ, ψ = r + 1, . . . , r + s, and indicate with ρk

0 =
(

ρk
1,0, . . . , ρk

r,0, ρk
r+1,0, . . . , ρk

r+s,0

)
∈

[0, ρmax]
r+s the initial datum at jk.

Definition 1. For the node jk, a Riemann solver (RS) is a function

RS : [0, ρmax]
r × [0, ρmax]

s → [0, ρmax]
r × [0, ρmax]

s

such that

ρk
i (t, x) :=

{
(ρk

i,0, ρ̂k
i ), Ik

i , i = 1, . . . , r,
(ρ̂k

i , ρk
i,0), Ik

i , i = r + 1, . . . , r + s,

is a weak solution [14] to Equation (1) with the initial datum ρk
i,0 and boundary condition ρ̂k

i such

that (C1) RS
(

RS
(

ρk
0

))
= RS

(
ρk

0

)
and (C2) on arc Ik

φ, φ = 1, . . . , r, the wave
(

ρk
φ,0, ρ̂k

φ

)
has

negative speed, and on arc Ik
ψ, ψ = r + 1, . . . , r + s, the wave

(
ρ̂k

ψ, ρk
ψ,0

)
has positive speed.
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Intuitively, for the assigned initial datum ρk
0 at jk, an RS associates a vector

ρ̂k =
(

ρ̂k
1, . . . , ρ̂k

n, ρ̂k
n+1, . . . , ρ̂k

n+m

)
∈ [0, ρmax]

r+s such that on Ik
i , i = 1, . . . , r + s, ρk

i is a

solution to Equation (1) with the initial datum ρk
i,0 and boundary condition ρ̂k

i . More
precisely, for φ ∈ {1, . . . , r} and ψ ∈ {r + 1, . . . , r + s}, the solution consists of the wave(

ρk
φ,0, ρ̂k

φ

)
on Ik

φ and the wave
(

ρ̂k
ψ, ρk

ψ,0

)
on Ik

ψ.
If r ≤ s, then a possible RS at the node jk is constructed using the following rules

(see [18]):

(A) The traffic of particles distributes at jk according to some coefficients, collected in a

matrix Ajk =
(

α
jk
ψ,φ

)
, φ = 1, . . . , r, ψ = r + 1, . . . , r + s, 0 < α

jk
ψ,φ < 1,

r+s
∑

ψ=r+1
α

jk
ψ,φ = 1.

The φth column of Ajk represents the percentages of particles that, from Ik
φ, distribute

to the outgoing arcs;

(B) The flux through jk is maximized w.r.t. rule (A).

If r > s, then aside from rules (A) and (B), a further criterion is needed. For instance, if
jk is of the r × 1 type, then a possible rule is the following:

(Cr×1) Not all particles enter the outgoing arc. Assume that Q is the quantity that can.
Then, pk

φQ particles come from Ik
φ to cross the arc junction, where 0 < pk

φ < 1,
r
∑

φ=1
pk

φ = 1 is the priority parameter of Ik
φ, φ = 1, . . . , r.

Remark 1. Notice that if r = 1 and s = 2 (i.e., the junction jk is of the 1 × 2 type), then the matrix
Ajk only has the parameters αk := α

jk
2,1 and 1 − αk := α

jk
3,1. If r = 2 and s = 1, (i.e., jk of the 2 × 1

type), then the priority parameters are pk := pk
1 and 1 − pk := pk

2, while Ajk = (1, 1).

From rules (A), (B) and (C) (if this last one is necessary), we find that for a junction jk
of the r × s type, with initial datum ρk

0 and the flux function in Equation (2), the solution ρ̂k

to the RP at jk is as follows. Consider the function ω : [0, ρmax] → [0, ρmax], which for each
arc Ik

i , i = 1, . . . , r + s satisfies the following properties:

• f
(

ω
(

ρk
i

))
= f

(
ρk

i

)
∀ ρk

i ∈ [0, ρmax];

• ω
(

ρk
i

)
̸= ρk

i ∀ ρk
i ∈ [0, ρmax] \

{ ρmax
2

}
.

Then, for Ik
φ, φ = 1, . . . , r, we have the following:

• ρ̂k
φ ∈

{
ρk

φ,0

}
∪
]
ω
(

ρk
φ,0

)
, ρmax

]
if 0 ≤ ρk

φ,0 ≤ ρmax
2 ;

• ρ̂k
φ ∈

[ ρmax
2 , ρmax

]
if ρmax

2 ≤ ρk
φ,0 ≤ ρmax.

For Ik
ψ, ψ = r + 1, . . . , r + s, we have the following:

• ρ̂k
ψ ∈

[
0, ρmax

2
]

if 0 ≤ ρk
ψ,0 ≤ ρmax

2 ;

• ρ̂k
ψ ∈

{
ρk

ψ,0

}
∪
[
0, ω

(
ρk

ψ,0

)[
if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax.

From ρ̂k
φ and ρ̂k

ψ, we find the maximal flux values on Ik
φ, φ = 1, . . . , r and Ik

ψ,
ψ = r + 1, . . . , r + s. In other words, we have

γk,max
φ =

 f
(

ρk
φ,0

)
, if 0 ≤ ρk

φ,0 ≤ ρmax
2 ,

f
( ρmax

2
)
, if ρmax

2 ≤ ρk
φ,0 ≤ ρmax,

(3)

γk,max
ψ =


f
( ρmax

2
)
, if 0 ≤ ρk

ψ,0 ≤ ρmax
2 ,

f
(

ρk
ψ,0

)
, if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax.

(4)
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Remark 2. Notice that such an approach allows defining solutions to the Cauchy problem on the
network (I ,J ) via a wave–front tracking algorithm (see [17,18]). Refer to Appendix A for details
about the construction of the solutions.

3. Energy Optimization

Consider an energy network (I ,J ) as described in Section 2. For optimization of the
network performances, we define the cost functional

E(t) :=

 N

∑
n=1

∫
In

vn(ρn(t, x))dx

2

,

which represents a term proportional to the kinetic energy on the whole network.
Considering bounded ρn(t, x), n = 1, . . . , N, the aim is to maximize E(t) w.r.t. the

distribution coefficients of the matrices Ajk ∀ jk ∈ J .
As the solution of such an optimization control problem involves spacetime variables,

and the optimization itself refers only to 1 × 2 nodes for the energy hub described in
Section 4, we consider an approach defined by the following steps:

1. Consider a node jk ∈ J of the 1 × 2 type (one incoming arc (Ik
1) and two outgoing arcs

(Ik
2 and Ik

3)) for which only one distribution coefficient αk is considered (see Remark 1).

Assuming an initial datum
(

ρk
1,0, ρk

2,0, ρk
3,0

)
at jk, fix the local cost functional to

Ejk (t) :=

 3

∑
m=1

∫
Ik
m

vm

(
ρk

m(t, x)
)

dx


2

.

2. For a time horizon [0, T], with T being quite large, assume that the traffic distribution
coefficient αk is the control, and maximize Ejk (T) w.r.t. αk.

3. Construct the optimal solution to the overall network by localization (i.e., by using
the single optimization solutions at each node jk ∈ J of the 1 × 2 type).

For step 2, assume the following conditions:

• T1 : γk,max
3 ≤ γk,max

1
2 < γk,max

1 ≤ γk,max
2 ;

• T2 : γk,max
2 <

γk,max
1

2 < γk,max
1 ≤ γk,max

3 ;
• T3 : γk,max

2 < γk,max
3 < γk,max

1 ;
• T3A : γk,max

1 − γk,max
3 ≥ γk,max

2 ;

• T3B : γk,max
1 − γk,max

3 < γk,max
2 ≤ γk,max

1
2 ;

• T4 : γk,max
3 < γk,max

2 < γk,max
1 ;

• T5 : γk,max
1

2 ≤ γk,max
1 − γk,max

3 < γk,max
2 .

In addition, define

gk,max
uv :=

γk,max
u

γk,max
v

.

We obtain the following:
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Theorem 1. Consider a node jk ∈ J of the 1 × 2 type, and assume that T is sufficiently large.
Then, Ejk (T) is maximized for the value α

opt
k (for some cases, the optimal control does not exist, and

it is approximated through a positive and small constant ε):

α
opt
k =



1 − gk,max
31 + ε, if T1 holds;

gk,max
21 , if T2 is satisfied;(
1 + gk,max

32

)−1
, if T3 and T3A both hold;

gk,max
21 − ε, if T3 and T3B are both true;(
1 + gk,max

32

)−1
+ ε, if T3A and T4 both hold;

1 − gk,max
31 − ε, if T5 is satisfied;

1
2 , otherwise.

Proof. Assume that vmax = ρmax = 1. Other cases for which vmax ̸= 1 and/or ρmax ̸= 1
lead to the same results. Fix a node jk ∈ J of the 1 × 2 type, where T is quite large.
Considering the solution to the RP at jk, Ejk (T) is written as follows:

Ejk (T) =
(

3 − sk
1

√
1 − 4γ̂k

1 − sk
2

√
1 − 4αkγ̂k

1 − sk
3

√
1 − 4(1 − αk)γ̂

k
1

)
, (5)

where coefficients sk
1 and sk

ψ, ψ = 2, 3, are

sk
1 =


+1, if ρk

1,0 ≥ 1
2 ,

or ρk
1,0 < 1

2 and γk,max
1 > min

{
γk,max

2
αk

, γk,max
3

1−αk

}
,

−1, if ρk
1,0 < 1

2 and γk,max
1 ≤ min

{
γk,max

2
αk

, γk,max
3

1−αk

}
,

sk
ψ =



+1, if ρk
ψ,0 > 1

2 and
γk,max

ψ

αψ
≤ min

{
γk,max

1 ,
γk,max

ψ′
αψ′

}
, ψ′ ̸= ψ,

−1, if ρk
ψ,0 ≤ 1

2 ,

or ρk
ψ,0 > 1

2 and
γk,max

ψ

αψ
> min

{
γk,max

1 ,
γk,max

ψ′
αψ′

}
, ψ′ ̸= ψ,

with

αψ =

{
αk, if ψ = 2,
1 − αk, if ψ = 3.

For simplicity, from now on, we will drop the dependence on jk and T from E . As the
solution to the RP at jk depends on αk, we have various cases. Here, for the sake of brevity,
we consider only two of them, as the proofs for the other cases are similar.

Assume that γk,max
1 < γk,max

3 < γk,max
2 . In this case, γ̂k

1 = γk,max
1 , sk

1 = sk
2 = sk

3 = −1,
and we have to maximize

E =

(
3 +

√
1 − 4γk,max

1 +
√

1 − 4αkγk,max
1 +

√
1 − 4(1 − αk)γ

k,max
1

)2
,

defined for αk ∈ ]0, 1[. We find that

∂E
∂αk

= 4Eγk,max
1 [Φ(1 − αk)− Φ(αk)], (6)

where Φ(αk) is

Φ(αk) :=
1√

1 − 4αkγk,max
1

.
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Since
∂E
∂αk

≥ 0 ⇔ αk ≤
1
2

,

then α
opt
k =

1
2

.

Consider now the case where γk,max
3 < γk,max

1 < γk,max
2 . We then find the following:

• If 0 < αk ≤ 1 − gk,max
31 , then γ̂k

1 =
γk,max

3
1 − αk

and sk
1 = sk

3 = +1, sk
2 = −1;

• If 1 − gk,max
31 < αk < 1, then γ̂k

1 = γk,max
1 and sk

1 = sk
2 = sk

3 = −1.

Hence, Equation (5) becomes

E =


E1, 0 < αk ≤ 1 − gk,max

31 ,

E2, 1 − gk,max
31 < αk < 1,

where

E1 =

3 −

√
1 − 4

γk,max
3

1 − αk
+

√
1 − 4αk

γk,max
3

1 − αk
−

√
1 − 4γk,max

3

2

,

E2 =

(
3 +

√
1 − 4γk,max

1 +
√

1 − 4αkγk,max
1 +

√
1 − 4(1 − αk)γ

k,max
1

)2
.

If 0 < αk ≤ 1 − gk,max
31 , then

∂E
∂αk

=
4Eγk,max

3

(1 − αk)
2

[
Ψ
(

1
1 − αk

)
− Ψ

(
αk

1 − αk

)]
,

where

Ψ(αk) :=
1√

1 − 4αkγk,max
3

.

It is possible to verify that E is an increasing function. If 1 − gk,max
31 < αk < 1, then

∂E
∂αk

is the expression in Equation (6). Hence, we conclude the following:

• If 1 − gk,max
31 <

1
2

, then E is optimized for α
opt
k =

1
2

;

• If 1 − gk,max
31 ≥ 1

2
, E does not have an optimal value, then α

opt
k is chosen for

α
opt
k = 1 − gk,max

31 + ε, where ε is a positive and small constant.

4. Application Deployment
4.1. Energy Hub Operation Scheduling

To assess the effectiveness of the proposed methodology in the task of solving real
operation problems in complex networked systems, the problem of optimal energy flow
management of a realistic energy hub is considered here. This is a relevant problem in
modern energy systems, where the increasing interdependencies between heterogeneous
energy infrastructures is introducing new and more complex vulnerabilities, requiring
effective modeling and optimization tools aimed at improving the accuracy and robustness
of coordinated control actions. In this context, large-scale deployment for the energy hub
could have a strategic role, since this allows improving the energy network’s flexibility by
providing reliable energy services, such as electricity and heating, by exploiting different
combinations of the energy carriers available at the hub inputs. To this aim, a system
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designed in Waterloo, Ontario, Canada for the supply of commercial load was analyzed.
More details on this system, which is schematically depicted in Figure 1, can be found
in [11].
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Figure 1. Simplified structure of the energy hub shown in [11].

In Figure 1, it is worth noting that the input power flows were electricity PE and
natural gas PG, while the output power flows were electricity LE and heat LH . Notice that
PE is split into β1PE and β2PE, while PG is divided into β3PG and β4PG. To be precise, β1PE
and β2PE are the inputs of the hydrogen production plant (HPP) and the transformer (T),
respectively, and β3PG is the input of the combined heat power (CHP), while β4PG is the
input of the furnace (F). The system works as follows:

• The HPP subsystem, characterized by the electric-hydrogen and heat-hydrogen effi-
ciences ηHPP

1 and ηHPP
2 , respectively, transforms a part of the electricity β1PEηHPP

1 into
hydrogen that feeds the fuel cell (FC) and another part β1PEηHPP

2 to generate heat.
• Using the hydrogen-electricity and hydrogen-heat efficiencies ηFC

1 and ηFC
2 , respec-

tively, the FC subsystem transforms a part of the hydrogen β1PEηHPP
1 ηFC

1 , into elec-
tricity and another part β1PEηHPP

1 ηFC
2 into heat.

• The T subsystem, due to its efficiency ηT , has the electricity power flow β2PEηT as
its output.

• The CHP subsystem, considering the gas-electric and gas-heat efficiencies ηCHP
1 and

ηCHP
2 , respectively, transforms a part of the natural gas β3PGηCHP

1 into electricity and
another part β3PGηCHP

2 into heat.
• Finally, the F subsystem, characterized by its efficiency ηF, has an output β4PGηF that

is heat.

As for the outputs of the energy hub, we simply find that

LE = β1PEηHPP
1 ηFC

1 + β2PEηT + β3PGηCHP
1 , (7)

LH = β1PEηHPP
1 ηFC

2 + β1PEηHPP
2 + β3PGηCHP

2 + β4PGηF. (8)

Notice that Equations (7) and (8) are obtained while considering some losses that
depend on the coefficients ηHPP

1 , ηHPP
2 , ηFC

1 , ηFC
2 , ηT , ηCHP

1 , ηCHP
2 , and ηF. Such parameters

are usually fixed, and for the topology described in Figure 1, they are the following:
ηHPP

1 = 0.7, ηHPP
2 = 0.2, ηFC

1 = 0.55, ηFC
2 = 0.4, ηT = 0.98, ηCHP

1 = 0.45, ηCHP
2 = 0.35, and

ηF = 0.48. Moreover, note that β2 = 1 − β1, β4 = 1 − β3, 0 < β1 < 1, and 0 < β2 < 1,
and hence there is the possibility of choosing how to redistribute incoming flows over the
energy hub.
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The definition of optimal energy hub operation strategies could follow different
directions. An example is described in [11]. In our case, for fixed incoming flows PE
and PG, we want to find the optimal coefficients β1 and β2 (for nodes with one incoming
arc and two outgoing ones) such that the global energy conversion losses are minimized.
Obviously, different and more general operation criteria could be defined without affecting
the effectiveness of the proposed methodology.

In order to achieve this aim, we chose to model the energy hub using an approach
dealing with conservation laws on networks (an exhaustive overview is in [18]), considering
that eventual losses over the system are considered “outputs” different from LE and LH .

4.2. Numerical Results

This section presents the simulations for the energy hub, represented in Figure 2 as a
couple (I ,J ), with I ={In}n=1,...,23 and J ={jk}k=1,...,11 (see Section 2). The features of
the network in Figure 2 are as follows: external arcs I1, I5, I7, I12, I13, I14, I17, I19, I21, and
I23, inner arcs I2, I3, I4, I6, I8, I9, I10, I11, I15, I16, I18, I20, and I22, and nodes of the 1 × 2 type
(j1, j4, j7, and j9), 2 × 1 type (j5, j6, j10, and j11), and 1 × 3 type (j2, j3, and j8).

For simplicity of discussion, from now on, we indicate a node jk and its distribution
matrix Ajk simply by k and Ak, respectively. The same applies to an arc Im, named simply m.

Notice that arcs 1 and 14 are the inputs of the systems, while the outputs are arcs 13
and 23, indicated by OUT 2 and OUT 1, respectively.

OUT

OUT

Figure 2. Topology of the energy hub.

The performances of the network were evaluated through the cost functional E(t),
whose evolution is deeply influenced by the distribution parameters. Indeed, due to the
real characteristics of the energy hub, for nodes 2, 3, 4, 8, and 9, the distribution matrices
AJ , J ∈ {2, 3, 4, 8, 9} assume the form

A2 =

 α4,2
α5,2
α6,2

 =

 0.7
0.1
0.2

,

A3 =

 α7,4
α8,4
α9,4

 =

 0.05
0.55
0.4

,

A4 =

(
α11,3
α12,3

)
=

(
0.98
0.02

)
,
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A8 =

 α17,15
α18,15
α19,15

 =

 0.2
0.45
0.35

,

A9 =

(
α20,16
α21,16

)
=

(
0.68
0.32

)
.

Moreover, while always referring to measures on the real hub, the priority parameters
were all chosen to be 0.5 for the incoming arcs of nodes 5, 6, 10, and 11. Hence, no control
was considered for junctions 2, 3, 4, 5, 6, 8, 9, 10, and 11, and the optimization of E(t) dealt
only with the distribution coefficients at nodes 1 and 7 of the 1 × 2 type.

As for the numerical construction of E(t), a suitable approximation for the densities
ρi(t, x), i = 1, . . . , 23 is necessary, and their evolution is ruled by Equation (1).

In this paper, we apply the Godunov scheme (see [35–37]), using a numerical grid with
constant space and time sizes ∆x = 0.0125 and ∆t = 0.5∆x, respectively (see Section 4.4
for details about the computational cost). The network of Figure 2 was simulated in the
following conditions: a time interval [0, T] for the simulation, with T = 150 min; empty
arcs when the simulation started (t = 0); and boundary data of the Dirichlet type equal
to 0.3 for arcs 1 and 14, while for arcs 5, 7, 12, 13, 17, 19, 21, and 23, we chose Dirichlet
boundary data equal to 0.9.

Notice that the typical maximal values for the inputs of our hub were 15 MWh and
20 MWh for arcs 1 and 14, respectively. In our case, by associating ρmax = 1 with the
quantity 15 MWh, we simply found that the boundary data 0.3 and 0.9 corresponded to
4.5 MWh and 13.5 MWh, respectively.

Two different choices for the distribution parameters were assumed for nodes 1 and 7:

• Optimal case: The parameters that optimize the asymptotic behavior of E(t) locally
(i.e., distribution coefficients that refer to Theorem 1 for junctions 1 and 7). Such a
type of simulation is useful for testing the global performance, starting from analytical
results that consider only part of the nodes of the network.

• Random case: The parameters at nodes 1 and 7 are chosen in a random way at t = 0
and then are kept constant in [0, T]. A random simulation allows comparisons with
network performances obtained via the local optimal distribution coefficients.

4.3. Results Discussion

In Figures 3 and 4, we show some simulation results for the energy hub. More precisely,
the values of E(t), computed on the whole network, are represented as a function of time.

In particular, the behavior of E(t) in the optimal case was compared with the ones
obtained via 10 different random simulation studies. As for these last cases, Figure 3 shows
the first five, while Figure 4 shows the remaining ones.
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Ε�
�
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L

Figure 3. (left) Evolution in [0, T] of E(t) for optimal distribution coefficients (dashed line) and the
first five different random choices (continuous lines). (right) Zoomed-in section near the asymp-
totic values.
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Figure 4. (left): Behavior in [0, T] of E(t) in the case of optimal distribution coefficients (dashed line)
and the remaining different random choices (continuous lines). (right) Zoomed-in section near the
asymptotic values.

The optimization algorithm for the 1 × 2 nodes, which are of the local type, can be
applied to the complex topology of the energy hub without compromising the possibility
of global optimization. Such a situation is evident in the optimal case for E(t), which was
compared to the behaviors in 10 different random cases. In Figures 3 and 4, it is shown that
the optimal case was always higher than the random ones when t tended toward infinity.
This is exactly what Theorem 1 establishes; for long times, the choice of optimal coefficients
provides better performances for the energy hub. For short times, it might happen that a
random simulation has values for the cost functional higher w.r.t. the optimal case.

Indeed, in order to test the validity of the proposed approach, 100 random cases were
simulated and compared to the optimal behavior for E(t). Table 1 reports the value of E(t)
in the optimal configuration at T = 150 (i.e., OPTconf T), with the average value (RAND T)
of random simulations set to T = 150.

Table 1. Compared values of E(t).

E(t)

OPTconf T 258.773

RAND T 212.845

Notice that OPTconf T was, as expected, higher than RAND T, and the global optimiza-
tion of the local type had strong robustness. Such a result is also represented in Figure 5,
where a histogram reports the values of E(t) at the final instant T for the random simulation.

180 200 220 240

5

10

15

20

25

30

Figure 5. Histogram of random values of simulations at T = 150 for [0, T] of E(t). The black point
represents OPTconf T = 150, and the dashed line represents RAND T = 150.

Finally, notice that the simulated system always had bounded outputs as a conse-
quence of the model itself, which deals with limited densities on arcs (see Section 2). In
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particular, in our case study, the upper limits for arcs 13 and 23 (OUT 2 and OUT 1) were
0.1218 (36.54 kWh) and 0.180075 (54.0225 kWh), respectively.

4.4. Computational Cost

This subsection presents some details about the computational cost for the simulation
of the presented energy system. We focused on a network represented by the couple (I ,J ),
with I ={In}n=1,...,N and J ={jk}k=1,...,J .

In order to find a suitable numerical approximation in [0, T] for the density functions
ρn(t, x), n = 1, . . . , N, on the arcs and updates of the boundary data at the nodes, assume
that each arc In, n = 1, . . . , N has a length Ln, and the space and time grid sizes are ∆xn and

∆tn, respectively. Using the Godunov method, the computational cost depends on
N
∑

n=1

Ln

∆xn

and
J

∑
k=1

T
∆tk

for the densities and boundary data, respectively.

For simplicity, for the simulation of the described energy hub, we considered a constant
space grid size ∆x, assuming that (∆xn, ∆tn) = (∆x, 0.5∆x) ∀ n = 1, . . . , N, and computed
the CPU times (measured in seconds and calculated by an Intel(R) Core (TM) i7-3630 QM
CPU @2.40 GHz, 8 GB RAM) and convergence errors. The obtained results are in Table 2.

Table 2. CPU times (seconds) and convergence order (γ).

Space Grid Size ∆x = 0.00625 ∆x = 0.0125 ∆x = 0.025

CPU and
convergence order

CPU = 0.97
γ = 0.96653

CPU = 0.62
γ = 0.92572

CPU = 0.33
γ = 0.90572

From the previous table, we simply find that the CPU time increased by about 0.30 s
when ∆x decreased. As for the convergence error, it almost remained the same for different
values of ∆x.

Notice that the computational effort increased linearly with T and was linearly depen-
dent on the number N of total arcs and the number J of junctions. Hence, the computational
time was not influenced by the geometries and topologies of possibly more complex energy
networks in a meaningful way. Finally, another interesting topic deals with the scalability of
the used approach. Indeed, grid computing and parallelization are a possible alternative for
the simulation algorithm. At each iteration of the algorithm, the various solutions at nodes
were computed by solving independently linear programming problems at the nodes that
implied a separate resolution for the RPs on the arcs. Hence, in order to redistribute the
computational load, further instruments dealing with multiprocessing programming are a
possibility for simulations.

Some further studies, as well as different numerical approaches for conservation laws
on networks, were carefully analyzed in [18,25,33].

5. Conclusions

In this paper, the theoretical foundations of a novel computing paradigm based on the
fluid dynamic theory for modeling, analysis, and optimization of complex and networked
energy systems were presented. The proposed paradigm is based on the challenging idea of
integrating in a unique framework both network modeling and the optimization features,
which are traditionally treated as two separate problems and solved by using distinct
solution techniques. In order to address this issue, the application of conservation laws
and the definition of a cost functional, which represents a term proportional to the kinetic
energy of the system, were proposed for network modeling and optimization, respectively.
Thanks to these features, the functional maximization is directly obtained as a result of
the network model process, which optimally tunes the network parameters ruling the
distribution of the energy flows among the network arcs.
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The benefits due to the application of the proposed approach were assessed in a
realistic case study dealing with the solution of the optimal energy flow management
problem for a complex energy hub designed in Waterloo, Ontario, Canada. The obtained
results demonstrate the effectiveness of the fluid dynamic-based approach in the task of
optimizing the energy flows of the hub components in order to drastically reduce the
conversion losses.

Finally, on the basis of repetitive simulations, it could be argued that the obtained
solution is globally optimal and robust against distributed parameter variations, and this
can be considered relevant in terms of benefits. A rigorous theoretical justification of these
intuitions is currently under investigation by the authors, as well as further empirical
validation for other real-world scenarios.
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Appendix A

By following rules (A) and (B) and adopting the flux function in Equation (2) (see
Section 2), we provide precise details for the construction of ρk

i (t, x) for a node jk ∈ J of
the r × s type with a distribution matrix Ajk . The basic step is to find the solution to the RP

at jk, namely the vector γ̂k = f
(

ρ̂k
)
∈
[
0, ρmax

2
]r+s, where

γ̂k :=
(

γ̂k
1, γ̂k

2, . . . , γ̂k
r , γ̂k

r+1, γ̂k
r+2, . . . , γ̂k

r+s

)
.

The solution to the RP at jk on the incoming arcs is indicated by the first r components
of γ̂k (i.e., γ̂k

in :=
(

γ̂k
1, γ̂k

2, . . . , γ̂k
r

)
∈

[
0, ρmax

2
]r). The last s components of γ̂k, represented

by γ̂k
out :=

(
γ̂k

r+1, γ̂k
r+2, . . . , γ̂k

r+s

)
∈

[
0, ρmax

2
]s, refer to the solution to the RP at jk for the

outgoing arcs.
From rule (A), we simply find(

γ̂k
out

)T
= Ajk ·

(
γ̂k

in

)T
. (A1)

Rule (B) defines γ̂k
in, which in the case of γ := (γ1, γ2, . . . , γr) ∈ Rr is the solution to

the linear programming problem Pjk :

(Pjk ) max
γ

r

∑
φ=1

γφ, (A2)

with constraints

γ ∈
r

∏
φ=1

[
0, γk,max

φ

]
, Ajk · γT ∈

r+s

∏
ψ=r+1

[
0, γk,max

ψ

]
.

Finally, the solution ρk(t, x) =
(

ρk
1(t, x), . . . , ρk

r(t, x), ρk
r+1(t, x), . . . , ρk

r+s(t, x)
)
∈ [0, ρmax]

r+s

at jk is obtained as follows:

1. (S1) From (A1) and (A2), find γ̂k.
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2. (S2) Use the definitions for ρ̂k
φ and ρ̂k

ψ (see Section 2) to find ρ̂k. To be precise, for the
incoming arc Ik

φ, φ = 1, . . . , r, the following applies:

ρ̂k
φ =


ρk

φ,0, if 0 ≤ ρk
φ,0 ≤ ρmax

2 and γ̂k
φ = γk,max

φ ,
vmaxρmax+

√
vmaxρmax(vmaxρmax−4γ̂k

φ)
2vmax

,
if 0 ≤ ρk

φ,0 ≤ ρmax
2 and γ̂k

φ < γk,max
φ ,

or ρmax
2 ≤ ρk

φ,0 ≤ ρmax.

For the outgoing arc Ik
ψ, ψ = r + 1, . . . , r + s, the following applies:

ρ̂k
ψ =


vmaxρmax−

√
vmaxρmax(vmaxρmax−4γ̂k

ψ)
2vmax

,
if 0 ≤ ρk

ψ,0 ≤ ρmax
2 ,

or if ρmax
2 ≤ ρk

ψ,0 ≤ ρmax and γ̂k
ψ < γk,max

ψ ,

ρk
ψ,0, if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax and γ̂k

ψ = γk,max
ψ ;

3. (S3) For each arc Ik
i , i = 1, . . . , r + s, solve the initial boundary value problem:

(
ρk

i

)
t
+ f

(
ρk

i

)
x
= 0, x ∈ Ik

i , t > 0,

ρk
i (0, x) = ρk

i,0,
ρk

i (t, 0) = ρ̂k
i .
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