
Citation: Naryzhny, S. Puzzle of

Proteoform Variety—Where Is a

Key? Proteomes 2024, 12, 15. https://

doi.org/10.3390/proteomes12020015

Academic Editors: Matthew P. Padula

and Jens R. Coorssen

Received: 31 January 2024

Revised: 3 May 2024

Accepted: 6 May 2024

Published: 10 May 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proteomes

Perspective

Puzzle of Proteoform Variety—Where Is a Key?
Stanislav Naryzhny

B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”,
Leningrad Region, Gatchina 188300, Russia; snaryzhny@mail.ru

Abstract: One of the human proteome puzzles is an imbalance between the theoretically calculated
and experimentally measured amounts of proteoforms. Considering the possibility of combinations
of different post-translational modifications (PTMs), the quantity of possible proteoforms is huge. An
estimation gives more than a million different proteoforms in each cell type. But, it seems that there
is strict control over the production and maintenance of PTMs. Although the potential complexity of
proteoforms due to PTMs is tremendous, available information indicates that only a small part of it is
being implemented. As a result, a protein could have many proteoforms according to the number of
modification sites, but because of different systems of personal regulation, the profile of PTMs for a
given protein in each organism is slightly different.
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1. Introduction

One of the most significant recent breakthroughs in proteomics is the discovery of an
unexpected level of complexity in the human proteome. Interestingly, on one side, the number
of protein-coding genes turned out to be much smaller than expected. Initially, the number
of proposed human protein genes was more than 100,000 [1]. Now, it is estimated to be only
19,778 (April 2023) coded in the nuclei by 46 chromosomes and 13 coded by mitochondrial
DNA. But on the other side, different protein molecules can be produced from a single
gene [2]. The components of this variety are called proteoforms and compose the whole
human proteome. The main aim of researchers involved in the Human Proteome Project
(HPP) organized by the Human Proteome Organization (HUPO) is “to map the entire human
proteome” (https://hupo.org/mission) (accessed on 22 December 2023). And the grand
challenge of the project is to decipher “a function for every protein” (https://hupo.org/
TheGrandChallenge) (accessed on 22 December 2023). During the 20 years since the start of
the HPP, especially in the last 10 years, the more complicated vision of the human proteome
was formed. When we talk about a protein’s function, we should keep in mind the complexity
of each protein. The name “protein” is actually an umbrella covering sometimes functionally
different molecules called proteoforms [3].

2. Standardization Aspects

For some period, many words were used (and still some can be found) for the diversity
of protein molecules: “protein forms”, “protein isoforms”, “protein species”, “protein
variants”, and “mod forms”. The term “isoform” or “protein variant” is possibly the most
popular one. But sometimes it can have a slightly different meaning. The oldest dictionary
publisher in the United States, Merriam-Webster, gives a definition of isoform based on
the sequence: “any of two or more functionally similar proteins that have a similar but
not identical amino acid sequence” https://www.merriam-webster.com/ (accessed on
22 December 2023). There is another definition as follows: “an isoform is a member of a
set of highly similar proteins that originate from a single gene or gene family and are the
result of genetic differences” [4]. If we consider not only a single gene but a gene family as
a source of different isoforms, it will generate some kind of uncertainty. Such a meaning
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is used mainly in enzymology, where the term “isoform” is used in line with the term
“enzyme isoform” or “isozyme” [5]. It is a bit confusing, and a gene-centric definition is
more appropriate. The UniProt Knowledgebase defines an isoform as “a protein form that is
generated due to alternative splicing, variable promoter usage, or other post-transcriptional
variations of a single gene” [6]. Accordingly, IUPAC (International Union of Pure and
Applied Chemistry) defines isoforms only based on genetic differences [4].

The term “protein species” was initially introduced in 1996 by Peter Jungblut to explain
many spots of the same protein after separation by two-dimensional gel electrophoresis
(2DE) [7,8]. For instance, fifty-nine spots were stained with Hsp27 (HSPB1) antibodies
on a high-resolution 2DE blot [9]. This term was used in proteomics for a long time
until Neil Kelleher proposed a new one: “proteoform” [10]. It has practically the same
meaning as “protein species” and is used to designate “all the different molecular forms in
which the protein product of a single gene can be found, including changes due to genetic
variations, alternatively spliced RNA transcripts, and PTMs” [11]. The classical scheme for
the generation of proteoforms is shown in Figure 1 [12].
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Figure 1. Proteoforms are distinct protein forms arising from a single human gene. Reproduced with
permission from [12].

Gradually, the term “proteoform” became more popular than “protein species” and
became a commonly accepted term to be used in publications about protein variety. Fig-
uratively speaking, according to the authors, it is “proteomics currency” now [13]. This
is just an example of how one term gains popularity and becomes standard, but another
does not. But the aspect of terminology is only one side of the situation. Another side is
the mainstream study of proteoforms. Two approaches based on mass spectrometry exist:
top-down and bottom-up. By using the top-down approach, the native molecular mass of
a proteoform is directly measured by MS, allowing it to definitely identify the PTM status
of the proteoform [14,15].

The Consortium for Top-Down Proteomics initiated the “Human Proteoform Project”
in 2021. The aim is grandiose to interpret the full range of diverse proteoforms generated
from all genes in the human genome [16]. The consortium developed rules for writing
a definite proteoform. As they say, “this nomenclature is intended to be both machine-
and human-readable and to be sufficiently flexible to meet current and foreseeable needs”.
For recording the sequence of fully characterized proteoforms, they use a standardized
notation, “ProForma”, that “provides a means to convey any proteoform by recording the
amino acid sequence using standard single-letter notations and indicating modifications
or unidentified mass shifts in parentheses after certain amino acids” [17,18]. Accordingly,
data on various proteoforms obtained by top-down proteomics are being included in the
Proteoform Atlas [19].
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The bottom-up MS data are redundant and do not suit proteoform identification. To
figure out possible proteoforms, the bottom-up MS data need to be additionally treated [20].
But still, to exclude ambiguity, the preliminary selection (separation) of specific proteoforms
is needed. Classically, it can be performed by 2DE. What is more, based on 2DE, the molec-
ular weight (Mw) and pI of the proteoforms can be measured. After specific hydrolysis,
further analyses can be performed by the bottom-up MS [21,22]. Actually, based on 2DE
separation followed by bottom-up MS, the proteoform profiles were generated for several
types of cells [23–26]. What is more, these data were used to generate a web database called
“2DE-pattern” [27]. The data representation here is based on the felicitous visual properties
of 2DE gels. An example of such a protein inventory is shown in Figure 2. Though this
approach is not as exact as the top-down MS, it gives a general visual representation of
the families of proteoforms (2DE patterns). Despite these attractive qualities, 2DE still
remains a kind of art that requires a lot of effort and time to perform [28,29]. Because of
this, there are relatively few labs in the world that are using 2DE. Accordingly, it can be
a hurdle in the usage of data presented in 2DE databases for labs not dealing with 2DE
(https://world-2dpage.expasy.org/portal/) (accessed on 22 December 2023). To overcome
this, these 2DE databases should be connected to other databases that are more popular,
such as Swiss Prot/Uniprot, Nextprot, Human Protein Atlas, etc. [30–32].
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Figure 2. Proteoforms were identified after 2DE separation and following ESI LC–MS/MS analysis.
Detection was performed in spots (left) or sections (right). Proteoform abundance (emPAI) is
expressed as a ball size or a peak height. Reproduced with permission from [21].
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Both approaches (top-down MS and bottom-up MS in combination with 2DE, or
“integrative top-down proteomics”) have advantages and disadvantages. What is more
important is that they are complimentary to each other [21]. The main problem now
is how to unify the results of these investigations. It could be an overall benefit if a
solution for data standardization and unification is found. At least some information
can be added to the Proteoform Atlas to make the data possible for comparison between
databases. For instance, an average Mw and the calculated isoelectric point (pI) of each
proteoform deposed into the Proteoform Atlas could make a better connection between
the data in the Proteoform Atlas and the database “2DE-pattern”. Another significant
aspect is the size of the polypeptides. There are very small polypeptides (some are even
below 50 AA) deposed into the Proteoform Atlas as proteoforms. Many of them are
functional products of proteolytic processing. For instance, the removal of the N-terminal
methionine and the signal peptide is essential for the correct maturation and secretion of
many proteins. Through cleavage of domains and processing, inactive proteins can be
converted into active forms, or vice versa [33]. An interesting example is represented by
pro-opiomelanocortin (POMC). Here, the removal of the 26-AA signal peptide produces
the 241-AA polypeptide, which undergoes a series of PTMs such as phosphorylation and
glycosylation, before being proteolytically cleaved by endopeptidases into 11 chains with
different physiological activities [33]. Many proteoforms deposited in the Proteoform
Atlas are small polypeptides that are not generated by processing but are likely a result
of degradation by proteasomes (for instance, fragments of actin). An example of such a
situation is presented in Figure 3 [34].
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Figure 3. High-sensitivity 2DE Western blots of proteins from the human cells MDA-MB231 (A) and
the hamster cells CHO (B) reveal a proteasomal degradation of proliferating cell nuclear antigen
(PCNA). A, M, and B are the full-size proteoforms of PCNA that are usually detected. Reproduced
with permission from [34].

Proteasomes are the barrel-like complexes that degrade proteins and deprive them of func-
tionality. These complexes possess caspase-like (β1), trypsin-like (β2), and chymotrypsin-like
(β5) proteolytic activities and degrade proteins through ubiquitin-dependent or -independent
pathways [35,36]. As a result of the protein turnover, a so-called “degradome” is gener-
ated [37–39]. Actually, this terminology can be a bit confusing, as the term “degradome”
is also used for the definition of the whole set of cellular proteases [40]. In our case, the
degradome is a part of the peptidome that is defined as a population of low-molecular-weight
biologic peptides. These peptides are critical for normal cellular and organismal functions. In
addition, the peptidome also contains fragments of larger proteins produced by normal or
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abnormal degradation (the degradome) [41]. It is important that this subset of the peptidome
is an attractive target in cancer research, for instance, as a biomarker of cancer metastasis [37].
Altogether, proteasomal degradation is an extra type of PTM regulation that controls biological
activity and the fate of cells [42,43].

If we are going to consider these degradation products as proteoforms, the number
of possible proteoforms will dramatically increase [44]. It seems this issue needs to be
discussed, as a lot of these products are listed in the Proteoform Atlas. If we accept it, the
general scheme of proteoform generation and turnover will look like Figure 4.
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3. Quantification of Proteoforms

So far, the main task of the Human Proteome Project has been a mapping of the human
proteome by finding and describing all proteins. Now, the more challenging task is to
decipher the whole proteome’s complexity, including thousands of proteoforms [21]. This
is much more complicated work, as we do not yet know the number of proteoforms in a
human proteome [2,45]. We can only make some extrapolations and calculations based
on the available data. But, exact numbers can be very different depending on the applied
approximation. The main problem is instrumentation sensitivity, which should allow
for measuring molecules at a concentration of a single copy per cell [46]. The sensitivity
of mass spectrometric analysis is a key factor here. There is significant progress in this
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area, but the requirements of reality still greatly exceed the capabilities of modern mass
spectrometers. Over the past decade, new mass spectrometers have been developed
with increased sensitivity, reliability, and specificity. New methods are needed to further
improve MS performance for accurate qualitative and quantitative analyses. At the same
time, improved pre-treatment technology and ionization technology can be combined. The
rapid development of MS will promote its application in various fields such as clinical trials,
environmental monitoring, life sciences, etc. [47–49]. A new ultra-high sensitivity LC–MS
workflow has enabled proteome analysis of single cells [48]. Studies at the proteoform level
need higher sensitivity.

This is only part of the issue. Another part is the proteoform pattern or profile complexity
itself, which can be very different for different proteins. In other words, different proteins can
exist in different numbers of proteoforms. What is interesting is that the range of proteoforms
per protein is very wide. The most reliable method for proteoform separation and detection is
2DE in combination with ESI LC–MS/MS. For instance, Thiede et al. identified and quantified
1245 proteins from 2711 spots in HeLa cells [50]. It was shown that only ~50% of the proteins
(431) were found in one 2DE spot each, and 174 proteins were found in only two spots
each. They also found 16 proteins in multiple 2DE spots (≥20) (Figure 5). Actin was at
the top—54 spots. Similar results were obtained from glioblastoma cells and HepG2 cells
using the classical spot-picking approach as well as the sectional 2DE with the following ESI
LC–MS/MS [11]. In all cases, we see a similar distribution of proteoform numbers between
different proteins. The main portion of proteins has only one–two proteoforms, but others can
have much more—up to a hundred (Figure 5).

There is another aspect that also needs to be mentioned here. Some spots contain
more than just one protein. It shows that there is a redundancy of parameters (pI/Mw).
Despite the high resolution of 2DE, some proteoforms originated from different genes can
be located in the same position because of very similar parameters (pI/Mw) [22,51,52].
Though this situation can be easily improved using very narrow pH gradients, a resolution
of up to 0.001 pH units can be achieved [51].

The main input in proteoform varieties is PTM. About 5% of the proteome comprises
enzymes that perform more than 400 types of PTMs [53] (http://www.unimod.org) (ac-
cessed on 22 December 2023). What is interesting is that PTMs in different proteins are not
present uniformly. The number of PTM sites on a single protein can range from 0 to over
100. Here, 75% of proteins contain two or fewer PTMs, and only a few have more than
one hundred [2]. What is more, the graphical distribution looks very similar to the graphs
presented in Figure 5 (Figure 6). This confirms again that the main input in proteoform
variety is performed by PTMs.
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from [50]. (B) The number of proteoforms that different proteins have. The figure was generated
using data from [54].
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4. Aspects of Generation of PTMs

There is another question: even considering strict regulation of proteoform numbers, why
can some proteins, like actin or histones, be observed in hundreds of proteoforms, but others
just in one or two? Why is there such discrimination between proteins? What is the reason
for some of them to be so heavily modified? As the situation is very different for different
proteins, the answer could be in the specific functionality of the proteins. If we disclosed
the mode of functioning and origin of proteoforms, we could explain the reason for their
diversity. We can go here step by step, considering the personality of each multi-proteoformic
protein. For histones, PTMs work as a histone code that at least partially explains multiple
modifications of histones [55]. For other proteins, we need to find another explanation for
the presence of a high number of proteoforms. There is a chance to find a solution if we
perform a bioinformatic analysis of these proteins (some of these proteins are presented in
Table 1). For instance, analysis by Panther 18.0 (https://www.pantherdb.org/) (accessed
on 22 December 2023) shows that according to the protein class, at the top of the list are
proteins of the chaperone, cytoskeleton, and metabolism classes. But one reason for detecting
more proteoforms for these proteins can be a sensitivity aspect. These proteins are mostly
very abundant, for instance, such cytoskeleton proteins as actin or tubulins. Accordingly,
there is a better chance to detect more forms of them. Heat shock proteins HS90A, HS90B,
HSP7C, and ENPL belonging to the chaperone class are also among the most abundant cellular
proteins. So, it seems that at least one reason for the detection of many proteoforms for some
proteins is just their abundance. In favor of this view are the graphs of proteoform abundance
inside the cell that follow Zipf’s law [45,56]. But this rule does not work for all proteins.
For instance, tubulin alpha-8 chain (Q9NY65 · TBA8_HUMAN) or heat shock protein beta-8
(Q9UJY1 · HSPB8_HUMAN) have been detected so far only in one–two proteoforms. What
is interesting is that according to Uniprot, both of these proteins have many possible PTM
sites, 33 and 20, respectively. That means more proteoforms have not been detected so far just
because of the sensitivity issue. Altogether, it seems that there is no direct connection between
protein function and the number of proteoforms.

It should be borne in mind that PTMs can appear at different points of the protein’s
life cycle and have a range of half-lives. For example, many proteins are modified imme-
diately after translation has completed, which ensures their correct structure or stability
or directs the protein to distinct cellular compartments (e.g., nucleus, membrane). Other
modifications occur at the sites of protein localization to influence its biological activity.
The mechanism of binding to special tags ensures degradation, proteolytic processing,
and a step-by-step mechanism for protein maturation or activation. PTMs can also be re-
versible, depending on the nature of the modification. For example, protein phosphokinases

https://www.pantherdb.org/
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phosphorylate specific amino acid residues, a common method of catalytic activation or
inactivation. On the contrary, phosphatases remove the phosphate group, again changing
the biological activity of the protein.

Table 1. Top proteins having multiple proteoforms according to data from databases “2DE-pattern”
and “Proteoform atlas”.

Protein Gene Isoform
Uniprot # PTM Sites * “2DE-

Pattern” **
“Proteoform
Atlas” *** Protein Class

H32 HIST2H3A Q71DI3-1 23 21 2979 Chromatin

H4 HIST1H4A P62805-1 38 80 1113 Chromatin

HS90B HSP90AB1 P08238-1 161 82 43 Chaperone

CH60 HSPD1 P10809-1 157 48 91 Chaperone

ENOA ENO1 P06733-1 111 78 302 Metabolic

KPYM PKM P14618-1 132 77 124 Metabolic

G3P GAPDH P04406-1 120 68 832 Metabolic

PGK1 PGK1 P00558-1 97 53 104 Metabolic

LDHA LDHA P00338-1 72 72 121 Metabolic

EF1A1 EEF1A1 P68104-1 105 20 114 Metabolic

HNRPK HNRNPK P61978-1 132 51 33 RNA
metabolism

TBB5 TUBB P07437-1 76 66 63 Cytoskeleton

MYH9 MYH9 P35579-1 243 47 115 Cytoskeleton

ACTB ACTB P60709-1 68 73 1014 Cytoskeleton

VIME VIM P08670-1 139 65 261 Cytoskeleton

FLNA FLNA P21333-1 323 57 139 Cytoskeleton

RS27A RPS27A P62979-1 45 73 65 Ribosomal

1433Z YWHAZ P63104-1 64 34 125 Scaffold/adaptor
* The data about PTM sites were taken from the database PhosphoSitePlus (https://www.phosphosite.org/)
(accessed on 22 December 2023). ** Number of proteoforms according to the database “2DE-pattern” (http://2de-
pattern.pnpi.nrcki.ru/) (accessed on 22 December 2023). *** Number of proteoforms deposited in the database
“Proteoform Atlas” (http://human-proteoform-atlas.org/proteoforms) (accessed on 22 December 2023).

Also, the personal landscape of PTMs can be dependent on health, age, environment,
and other factors. For example, epigenetic regulation at the level of histone PTMs plays a
major role in the aging process and affects lifespan. Pharmaceutical approaches to treat
diseases associated with aging appear to be possible here [57]. The specific information
on these PTMs can be found in the Uniprot database but are addressed in more detail in
specialized databases such as the Aging Atlas, the Proteoform Atlas, or the Comparative
Toxicogenomics Database [58–60].

5. Aspects of Proteoform Variety

The main proteomics puzzle is a discrepancy between the calculated and experimen-
tally measured numbers of proteoforms. Considering the possibility of different PTMs
at the same site, the number of theoretical proteoforms is huge. The possible number of
different proteoforms in a cell of the same type is estimated at least 1,000,000 [2]. But, it
seems that the theoretical combinatorial number for all possible variants is much bigger.
For instance, the polypeptide that can be modified at 10 sites, according to Formula (1),
could be present in more than 1000 different proteoforms.

Ck
n =

n!
k! × (n − k)!

(1)

n is the number of all PTMs (10), and k is the number of combinations of PTMs (from 0 to 10).

https://www.phosphosite.org/
http://2de-pattern.pnpi.nrcki.ru/
http://2de-pattern.pnpi.nrcki.ru/
http://human-proteoform-atlas.org/proteoforms
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Many proteins can have much more PTMs than 10 (Table 1). For instance, actin
beta (P60709 · ACTB_HUMAN) can be phosphorylated, acetylated, ubiquitylated, etc.,
at more than 60 sites. Histone H3.2 (Q71DI3 · H32_HUMAN) can be phosphorylated,
acetylated, ubiquitylated, etc., at more than 20 sites. Cellular tumor antigen p53 (P04637 ·
P53_HUMAN) can be modified at over 70 sites (https://www.phosphosite.org/) (accessed
on 22 December 2023). The combinatorial calculation generates dozens of thousands of
proteoforms for these proteins. Actually, by 2DE and mass spectrometry, p53 was detected
in no more than 20 forms [61–63]. Using top-down mass spectrometry, it was shown that
there were ~1000 differentially modified forms of actin beta and ~3000 histone H3.2 [64,65].

Even considering a sensitivity issue in detecting proteoforms, there is a big gap
between the amounts of experimentally detected and theoretically possible proteoforms. It
seems that there is a high degree of control over the enzymatic production and maintenance
of PTMs [2]. Although the potential complexity of proteins due to PTMs is enormous, the
available data suggest that only a small part of it is realized in each sample. But how this
part is realized is another question. The main contradiction that is revealed when calculating
the number of possible and actual detectable human proteoforms is most likely associated
with individual variability. Of the total possible number of options, only a very limited
part of them is implemented in each individual case. If we accept that all possible PTMs
are realized in different people in a slightly different way, we can easily find all theoretical
proteoforms. Here, there is a situation where each protein can have many proteoforms
according to sites of modification, but because of different personal regulations, the patterns
of PTMs that are realized in each person are different. Moreover, the implementation occurs
in such a way that the main (major) proteoforms are produced in all individuals, but sets
of many minor forms arise differently in everyone. Our recent study about the variety
of proteoforms of the haptoglobin beta-chain is in favor of this hypothesis [66]. In this
study, 2DE of proteins from the plasma of 20 donors, followed by immunological detection,
revealed, in summary, 50 different proteoforms of the haptoglobin beta-chain. But in each
sample, it was detected in no more than twenty forms, and only eight of the same forms
(major) were present in each sample. So, we can assume that only the major forms are
functional. Other (minor) forms and PTMs can be a product of stochastic noise and do not
have a special effect on the functionality of the protein molecule. On the other hand, such a
wide variety of proteoforms can serve as some kind of evolutionary mechanism. Despite
all these assumptions, they require additional confirmation. As a minimum, the presence
of such a strong variance at the level of plasma proteoforms can serve as an analogue of
fingerprints at the molecular level and have practical significance.

6. Role of Bioinformatics

The main challenge of bioinformatics is to build a true understanding of processes
from proteomics data [67–69]. Currently, many tools and databases are available for this
purpose. For example, the Kyoto Encyclopedia of Genes and Genomes, BioCarta, Gen-
MAPP, and PANTHER contain extensive information on metabolism, signal transduction,
and interactions [70–72]. In addition, there are oncology-specific databases, such as Net-
path [73]. Data about protein interactions can be found in BioGRID, IntAct, MINT, HRPD,
or STRING [69,74–76]. Moreover, based on a list of the given proteins, these programs
allow for drawing protein interaction networks [76].

But the point is, as we are going to decipher the details of protein functionality at
the proteoform level, we need to transform all these platforms according to these needs.
Knowing the gene name of the protein is not enough. As a minimum, the data about
protein variety generated genetically at the isoform level should be included in the above-
mentioned databases. The proteoforms are on the line.

7. Clinical Aspects of Proteoforms

It is necessary not only to take inventory of proteoforms but also to find out how
they function, how proteoforms differ in different cell types, and how they change in

https://www.phosphosite.org/
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diseases [77]. The assessment of PTMs itself is a very complex technical task. But the
development of new and improved proteomics technologies makes it possible to solve
it. Moreover, this is necessary in order to understand the functions that underlie many
etiological processes [78,79]. This is where precision or personalized medicine can help
better understand the many things that affect a patient’s health. Precision medicine is an
approach to treating and preventing disease that considers individual genomic, proteomic,
and metabolomic characteristics, as well as lifestyle and environmental influences.

One important area of proteomics is the clinical study of disease (especially cancer)
biomarkers and potential drug targets. In the past 10 years, proteomics research has made
significant progress [80–83]. To find specific biomarkers, proteomics researchers usually
try to analyze the diversity of the human proteome, which includes multiple proteoforms.
Considering the perturbation of protein and proteoform profiles induced by the disease,
there is hope in finding disease-specific proteoforms to be used as biomarkers or drug
targets. A correlation between exact proteoforms and a given disease phenotype will give
us a chance to perform a proteoform-specific assay [84,85].

Proteoforms may be more specific markers of body conditions. There are some clinical
examples of proteoform usage in clinics. Maybe the best example is a fucosylated form
of alpha-fetoprotein (AFP-L3) that is a more reliable biomarker than an unmodified form
of AFP for the early diagnosis of hepatocellular carcinoma (HCC). Also, a high level of
AFP-L3 has been found in the plasma of patients with various carcinomas [86].

The products of protein degradation (the degradome) can also be useful biomarkers, as
numerous pathological conditions, including protein aggregation diseases, autoimmunity,
and cancer, are accompanied by alterations in protease activity [39].

As an important proteomics step in the long-term clinical study of proteoforms, the
inventory of proteoforms in normal and cancer cell types and blood plasma is necessary.
The Human Plasma Proteome Project (HPPP) was initiated in 2002 “as the means to
overcome the major challenges for proteomics studies utilizing blood plasma”. In the last
10 years, significant progress has been made, mainly due to the Consortium for Top-Down
Proteomics. The results obtained by the Consortium are being compiled in the Blood
Proteoform Atlas (BPA). In the context of liver transplantation, the BPA has been shown to
have potential for clinical use based on a proteoform signature that distinguishes normal
graft function from acute rejection and other causes of graft dysfunction [59].

The appearance of multiple proteoforms produced by genetic polymorphisms, alter-
native splicing, PTMs, etc., produces a landscape where some proteoform signatures can
be different between the norm and cancer and can be used as specific biomarkers. There is
hope that progress in proteomics methods should improve the situation in searching for
these biomarkers [26,54,87,88]. Proteomics is generating and analyzing a large volume of
data, and these data exactly fit the situation with multiple variations in plasma proteomes
during cancer development and progression. Here, high-throughput, quantitative mass
spectrometry is the best choice. There is already a good example of the possibility of using
it in the clinic [89]. Geyer et al. introduced a rapid and robust “plasma proteome profiling”
LC–MS/MS pipeline. Their single-run shotgun proteomics workflow enables quantitative
analysis of hundreds of plasma proteins from just 1 µL of plasma [89]. Also, AutoPiMS,
a single-ion MS-based multiplexed workflow for top-down tandem MS (MS2), was intro-
duced recently and can be used for the analysis of cancer biopsies in a semi-automated
manner. AutoPiMS allowed direct identification of more than 70 proteoforms from human
ovarian cancer sections [87].

Precision medicine helps health care providers better understand the many
things—including environment, lifestyle, and heredity—that play a role in a patient’s
health, disease, or condition. According to the Precision Medicine Initiative, precision
medicine is “an emerging approach for disease treatment and prevention that takes into
account individual variability in genes, environment, and lifestyle for each person”.

As new innovations in proteomics technology are starting to become routine practice
in clinics, the proteoform profiles themselves can be used as powerful diagnostic markers
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in many diseases, including cancer (Figure 7). However, several obstacles remain to be
overcome before that happens [90]. The most important is the normalization of proteomics
methods for the production of reliable protein and proteoform patterns [91]. Here, arti-
ficial intelligence-based methods will provide invaluable assistance. They can especially
help gain more insights from the data generated by proteomics techniques. The greatest
limitation faced by the proteomics field has been its intricacy.
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Figure 7. Example workflow for personalized medicine. Once patients have completed all required
tests, multi-omics analyses are performed, the results of which are integrated to create individual
molecular profiles, including proteoform patterns of specific marker proteins. These profiles are then
compared with previously defined biomarker–omics signatures of diseases, which guide treatment
selection. Based on this correspondence, the appropriate treatment method is selected.

8. Conclusions and Future Perspectives

Despite the constant efforts to generate a clear definition for a variety of protein forms
(proteoforms), some ambiguity exists in this area. It happens partially because of the tight
intersection of the proteome and peptidome areas. Sometimes it is difficult to find the point
of transition between these kingdoms. But when talking about proteoforms, we need to
accept and keep in mind all the nuances that are involved in their formation.

The complexity of different human proteoforms emerging due to PTMs is tremendous,
but available information indicates that only a small part of it is being implemented. It
seems that there is strict control over the production and maintenance of PTMs. This control
can be organism-specific and slightly different for different people. Due to this personal
variability of proteoform patterns, in sum, the number of all proteoforms presented in the
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whole human population could cover all possible proteoform patterns. Future in-person,
detailed analyses of proteoform profiles (patterns) could confirm this speculation. Here, the
situation is that each protein can have many proteoforms according to sites of modification,
but because of slightly different systems of personal regulation, the patterns of PTMs
that are realized in each organism are different. Methods are needed that allow targeted
identification of proteoforms in complex samples. There is already a good example that
describes an approach based on the principles of selected/multiple reaction monitoring
(SRM/MRM)—proteoform reaction monitoring (PfRM) [92]. The results provide hope
that PfRM has the potential to facilitate accurate quantification of protein biomarkers for
diagnostic purposes and improve our understanding of disease etiology at the proteoform
level [92].

In conclusion, it seems that there is no immediate, simple answer to the question
about the regulation of proteoform variety. The situation will become clearer when more
information about proteoform variety in different samples of human origin is obtained.
The available proteoform databases gathering this information should play a pivotal role
in this process.
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