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Abstract: The required energy savings can be achieved in all automotive domains through weight
savings and the merging of manufacturing processes in production. This fact is taken into account
through functional integration in lightweight materials and manufacturing in a process close to
large-scale production. In previous work, separate steps of a process chain for manufacturing a center
console cover utilizing a sensoric hybrid laminate have been developed and evaluated. This includes
the process steps of joining, forming and inline polarization as well as connecting to an embedded
system. This work continues the research process by evaluating impact localization methods to
use the center console as a haptic input device. For this purpose, different deep learning methods
are derived from the state of the art and analyzed for their applicability in two consecutive studies.
The results show that MLPs, LSTMs, GRUs and CNNs are suitable to localize impacts on the novel
laminate with high localization rates of up to 99%, and thus the usability of the developed laminate
as a haptic input device has been proven.

Keywords: impact localization; localization; machine learning; deep learning; artificial intelligence;
hybrid assembled composite; piezoceramic compound

1. Introduction

The scarcity of raw materials and the resulting rising prices are putting an increas-
ing focus on lightweight construction. This also applies to electromobility, where every
saved mass is synonymous with extended range. In the past, there have been many ap-
proaches and research activities to combine a wide variety of materials by exploiting their
respective specific properties. The resulting composites are often referred to as hybrid com-
posites. For structural components made of flat, semi-finished products, the best known
hybrid laminates are GLARE (glass laminate aluminium-reinforced epoxy) and ARALL
(aramid-fibre-reinforced epoxy resin aluminium foil laminate) which are used in aircraft
construction [1]. However, the efficient use of materials in the right place with their specific
properties is not the only way to reduce weight. With the growing safety and comfort
requirements in the automotive domain, the number of sensors and cables is constantly
increasing. For this reason, it makes sense to integrate functions, such as sensors, directly
into the component and to connect these elements during the production process. There
are different approaches for integrating functions directly into the semi-finished product
and these can be differentiated according to the type of semi-finished product. On the one
hand, functions can be integrated into sheet metal structures by printing strain gauges
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onto a tube as described by Ibis and Groche [2] or by joining a piezoceramic ring into a
metal tube using forming technology as reported by Brenneis et al. [3]. On the other hand,
sensor integration can be realized through direct integration of macro-fibre composites
(MFCs) into a sheet metal structure as shown by Müller et al. [4]. Furukawa et al. [5] have
made similar developments for semi-finished plastics, exploiting the direct piezoelectric
effect by adding PZT (lead zirconate titanate) particles to an epoxy resin matrix. Of course,
this also works for thermoplastics, where CNTs (carbon nanotubes) are added to the PZT
particles for improved electric field coupling as reported by Hardt et al. [6]. In previous
work, both semi-finished products were combined to form a sensory hybrid composite
suitable for large-scale production. Depending on the application, this can be used as an
input system inside a car as reported by Schmidt et al. [7] or for monitoring the condition
of safety-relevant components as reported by Schmidt et al. [8] in 2020.

This article is structured as follows. First, an overview of the relevant research is
given. Then, the materials used and the methods for data collection are described. Building
on this, an initial impact detection study is presented, from which the primary study is
developed, described and analyzed based on its findings. Finally, the concluding results
are discussed and summarized and directions for future research are outlined.

2. Related Work

Research in the field of impact localization on surfaces has a history of more than
20 years [9]. In recent years, there has been an increasing use of lightweight composites,
which offer a high stability despite their low weight. Impacts on such composites can
lead to structural changes, which can also affect the stability and thus become a safety
risk [10]. Hence, the use of machine learning techniques for impact localization and health
monitoring has increased in recent years. While conventional methods are based on the use
of the wavelet transform and the extreme learning machine as presented by Fu et al. [11],
other approaches using a Least Square Support Vector Regression approach, such as that
described by Datta et al. [12], or the Least Squares Support Vector Machine (SVM), as shown
by Lu et al. [13], have been proposed.

Furthermore, artificial neural networks are widely used in this field of research.
Sung et al. [14], for instance, present a localization approach based on the wavelet trans-
form and subsequent usage of the Levenberg–Marquardt algorithm. In this study, a square
specimen with PZT sensors has been used. Haywood et al. [15] present an approach based
on Multilayer Perceptron (MLP) and an approach using an adaption of a generic algorithm
for triangulation of a composite rectangular panel with piezoelectric sensors. For training,
standard signal-processing features have been used, like the arrival time, maximum and
minimum amplitude. A comparable approach is presented by Park et al. [16] for a com-
posite laminate fabricated with graphite/epoxy and four multiplexed FBG sensors. This
approach uses an MLP as well as the arrival time of the waves as features, resulting in an
average localization error of 9.17 mm.

A realistic specimen has been used by LeClerc et al. [17]. They analyze the feasibility
of MLPs for a full-scale aircraft component, with ribs, spars and stringers equipped with
nine piezoceramic patches as sensors. LeClerc et al. [17] present a regression, a classification
and a hybrid approach representing a combination of both methods. The results show
the feasibility of MLPs in the case of regression, with a validation error of 1.76%, and
classification, with a validation error of 2.5%. The hybrid approach results in a validation
error of 1.26%, showing the potential of combining both methodologies.

An alternative deep learning methodology, Convolution Neural Networks (CNNs), is
evaluated by Damm et al. [18] for impact localization. The specimen used is a carbon-fibre-
reinforced plate with PZT sensors. As a feature, the sensor signal has been transformed
using the short-time Fourier transformation. This study confirms the applicability of
this approach, with a high classification accuracy of over 97%. A comparable approach
is presented by Tabian et al. [19] using a CNN on a complex composite structure. The
authors use a composite part containing a fuselage section with stiffeners and frames. As
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sensors, 12 DuraAct PZT sensors are attached on the inside. The localization and energy
estimation results reach a more than 94% accuracy. However, it has to be noted that only
three classes have been used for the localization and two, respectively, four classes for the
energy classification.

Chen et al. [20] combine a CNN with deep recurrent neural network (RNN) layers.
Specifically, two bidirectional long short-term memory (LSTM) layers are included as RNN
representatives. The authors use five accelerometer sensors and the respective sensor
signals as features. The localization evaluation results in a mean absolute error of 11.82 mm
and a misjudgment rate of 2.51%.

In summary, it is evident that deep learning technologies present the current state of
the art in impact localization. Even simple MLPs achieve a high accuracy. Furthermore,
CNNs also show very good results, which have already been proven in other domains,
such as image processing. In the most recent work of Chen et al. [20], the applicability of
RNNs, in particular LSTM networks, is shown. Additionally, piezoelectric sensors like
PZT are widely used to measure acoustic waves for propagation as a basis for feature
extraction. However, only Tabian et al. [19] and LeClerc et al. [17] use a complex spec-
imen, while most of the presented scientific work focuses on standard plates without
forming operation. According to this, the analysis of formed specimens or components is
currently under-represented.

In previous investigations, a novel active material for hybrid laminates was developed
by Hardt et al. [6]. This piezoelectric compound material consists of polypropylene (PP)
which is highly filled with PZT. In addition, a small amount of carbon nanotubes (CNTs) is
admixed to improve the electrical properties of the matrix material and the field coupling
into the piezoceramic particles [6]. The optimal material composition and processing
properties for foil extrusion and the continuous joining of the hybrid laminates were also
determined in previous investigations [6]. Based on this, hybrid structures with sensor
functions can be produced. The functional layer in piezo-active fibre metal laminates
(PFMLs) can be used for structural health monitoring in fibre-reinforced hybrid metal
structures. Schmidt et al. [8] reported the possibility of using the sensor signals of the
piezoelectric foil layer to detect the time of failure of the PFML in static and dynamic load
tests. In addition, it was shown that the damage index can identify damage in the PFML that
would lead to a complete failure of the structure in the future. Furthermore, piezoelectric
foil enables the use of PFMLs as well as hybrid metal laminates without fibre reinforcement
(piezo-active metal laminates, PMLs) as input devices, as shown by Schmidt et al. [7]. Based
on the described PMLs, Schmidt et al. [7] propose a full haptic input device system with real-
time capabilities using a center console as specimen. The center console does not represent
a standard plate. Instead, it is a formed and realistic specimen. For impact localization, a
conventional machine learning approach has been used utilizing an SVM. As a training
feature, a gradient-based approach is used. The best classification accuracy achieved is
84.28% on the validation dataset using a polynomial kernel with 20 classes representing a
five by four grid. The work has proven the feasibility of PMLs for impact localization. The
achieved SVM classification accuracy is a promising result, but for practical use, a higher
classification accuracy would be desirable. For this reason, the current work analyzes
the feasibility of deep learning methods to localize impacts on a center console using the
described PML.

3. Material and Methodology
3.1. Material and Specimen Preparation

The sensoric hybrid laminate consists of three components: the first electrode is an
aluminium sheet made of the alloy EN AW 6082 T4; a thermoplastic piezoceramic foil,
which determines the sensoric properties; and copper patches, which act as the second
electrode. For the large-scale production capability of the laminate, it was crucial that the
thermoplastic piezoceramic foil could be produced in a foil extrusion process. During
the process, the maximum piezoelectric effect had to be exploited by using the highest
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possible filler content of piezoceramic particles (NCE55 (CTS Corporation, Lisle, IL, USA))
in the polymer component. Furthermore, the electric field coupling in the stochastically
distributed PZT particles was increased by adding CNTs. These active components were
embedded in a polyproylene matrix (Moplen HP501H (LyondellBasell Industries N.V.,
Rotterdam, The Netherlands)). The optimum balance between processability and signal
strength is the composition of 70 wt. % PZT and 0.5 wt. % CNTs as reported by Hardt
et al. [6]. The next step in the process chain was the pre-treatment of the aluminium sheet
and the subsequent continuous joining process in an adapted rolling mill that was described
by Hardt et al. [6]. Finally, the component (cover of the center console of the “VW up!”)
was cut to size before forming and the laminate was molded to its final shape using a
variothermal tool. For understanding the forming process, several investigations regarding
limits, failure and springback have been performed and reported by Hardt et al. [6] and
Schmidt et al. [7]. Before contacting the embedded system, the polarization and thus the
alignment of the domains of the piezoceramic particles in the sheet thickness direction was
carried out. For this purpose, the cover of the center console of a “VW up!” was polarized
in an oil bath at 125 ◦C for 5 min with an electric field strength of 4.5 KV

mm [8]. Figure 1 shows
the structure of the resulting material and a possible application example.
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Figure 1. Visualization of the used material structure with an application example.

3.2. Data Generation

For data generation, the described center console was divided into 16 areas of ap-
proximately equal size, resulting in a grid of 4 × 4 fields. Afterwards, seven test persons
tapped 60 times on each of the 16 generated fields. There was no explanation as to how
the tapping has to be executed in order to ensure heterogeneous and intuitive behavior of
the test persons. The measurements were performed with the same technology as used by
Schmidt et al. [7]. Thus, data acquisition was achieved by using the built-in ADC of the
Zybo Zynq-SoC board with a sampling rate of 500 kHz. One second was recorded for each
field and tapping per sensor. It was ensured that in every recorded signal a tapping signal
was recorded by manual evaluation after the recording. In total, 6720 samples were created.

3.3. Research Methodology

Based on the generated data, two studies were carried out to evaluate the feasibility
of deep learning technologies for impact localization using the described center console.
A preliminary study was conducted to analyze the general applicability of deep learning
technologies for the use of impact localization on the hybrid laminates with piezoceramic
sensors, as well as the identification of the necessary data preprocessing steps. Based on
the preliminary study results, a second study was conducted, evaluating the feasibility of
various deep learning methods for impact localization on the described center console. In
the following, the preliminary study is described and the results are presented, followed by
the main study’s description.
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4. Preliminary Study
4.1. Preliminary Study Design

The preliminary study serves to identify necessary methods for data preparation and to
identify input formats for the deep learning technologies. For this purpose, the sensor data
were divided into measurement windows with the size of 16,384 samples while ensuring
that the impact signal is exactly in one of the measuring windows. The sample count
of the measurement window was decided by the supported sample size from common
FFT IP-Cores of FPGAs, since the final realization should be performed using embedded
devices like FPGAs as designed by Schmidt et al. [7]. Furthermore, 16,384 is a power of
two, leading to the possibility of efficient FFT implementation in both the FPGAs and
microprocessors. For the implementation of this behavior, the average amplitude of the
noise on each channel was determined. Subsequently, the signals were filtered using a
Butterworth filter. On this basis, the average channel noise was subtracted, resulting in a
representation of the deviation of the impact signal from the background noise. Using a
threshold, the first sample index with a significant deviation from the baseline was detected
on all channels. Subsequently, the minimum of the determined indexes was used to define
the start of the impact signal. Starting from the start index, a minimal shift of the start
index by 10% (1638 samples) was executed to ensure a quiet phase at the beginning of the
measurement window and to prevent possible fluctuations in the start index determination.

The 16,384 samples before the impact were stored as a basis for training and can be
interpreted as an additional class representing no impact. The samples for which no start
index was identified by the described function were excluded. In consequence, 5823 of
6720 samples could be used for the training process. The reduction is determined by the
test persons lightly tapping on the center console, leading to a too low impact for the static
defined threshold. In order to generate an evenly distributed dataset, 330 samples were
randomly selected for each class. The 330 samples represent the smallest possible dataset
per class, reasoned by the excluded samples without a detected start index. Each of the
330 samples were randomly separated, with 80% used for the training and 20% for the
validation processes, leading to an even distribution of the represented classes and test
subjects. Additionally, 330 samples without impacts were added to the dataset, separated
accordingly into 80% for training and 20% for validation. All data were normalized using
the overall maximum amplitude to ensure an amplitude range between 0 and 1.

4.2. Preliminary Study Results

For the first evaluation step, two LSTM networks were trained using the generated
dataset for training and validation with the raw sensor signal. The LSTM network was
chosen because of its specialization in detecting long-term relationships, as they are ex-
pected in case of the sensor signals. Additionally, the work presented by Chen et al. [20] has
proven the feasibility of LSTM networks in combination with CNNs for impact detection.
The first LSTM network represents a simple realization with two layers and 30 neurons
(20/10), while the second implementation represents a complex structure of four layers
and 425 neurons (250/100/50/25). For both LSTM networks, the training did not converge
and the maximum achieved classification accuracy was an insufficient 6%, showing the
necessity of additional data. Therefore, the damage index results for SHM application
of the used PLM [8] inspired the use of the signal amplitude spectrum as well as the
signal power spectrum. The shift in the frequency domain not only changes the signal
representation, but also adds the intensity information of each frequency bin. Furthermore,
the short-term energy used is represented by the signal power spectrum since the sum of
all frequency powers is equivalent to the short-term energy of the signal, also analyzed by
Schmidt et al. [8] as an SHM feature.

Within this context, four signal combinations were generated (Table 1), representing the
analysis basis for the feasibility of the use of additionally generated data. As a comparison
basis, the data combination RAW-SPEC is used, containing the raw sensor signal and the
corresponding amplitude spectrum. The RAW-SPEC-POW combination adds the signal
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power spectrum as additional data, while RAW-POW replaces the signal spectrum with
the signal power spectrum. To analyze the influence of the amplitude spectrum, the SPEC
dataset was used. Therefore, the data contain only the amplitude spectrum of the recorded
signals as training data.

Table 1. Name and data combination of the prepared datasets used in the preliminary study.

Name Sensor Data Amplitude Spectrum Power Spectrum

RAW-SPEC X X
RAW-SPEC-POW X X X
RAW-POW X X
SPEC X

The results of the training process for the complex LSTM network with four layers
and 425 neurons are shown in Figure 2a. In contrast to the first attempt, using only the
raw sensor data, it can be seen that all data combinations lead to a convergence of the
LSTM network, resulting in classification accuracy scores of 97.4% to 99.02% in the training
phase. Comparing the training results of the RAW-SPEC and RAW-SPEC-POW datasets, it
is observable that adding the power spectrum leads to a decrease in the convergence speed
and the achieved classification accuracy is approximately 1% lower. A similar observation
can be made when comparing the training results of the RAW-SPEC and RAW-POW
datasets. Comparing the training results of the RAW-SPEC and SPEC datasets, a similar
convergence speed and classification accuracy can be observed.
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(a) Accuracy results of the training dataset.
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(b) Accuracy results of the validation dataset.

Figure 2. Accuracy comparison of the training and validation dataset using an LSTM network with
four layers and 425 neurons for 20 epochs.

A comparison of the classification accuracy for the given datasets in the validation
process is shown in Figure 2b. Overall, the characteristics of the convergence speed and
classification accuracy are comparable with respect to the training results. However, the clas-
sification accuracy evolution over the epochs on the validation dataset fluctuates slightly
in comparison to the training dataset. When comparing the validation results using the
RAW-SPEC and the RAW-SPEC-POW datasets, it can be seen that the convergence speed
slows down and the classification accuracy is approximately 2% lower. When analyzing
the validation results of the RAW-SPEC and RAW-POW datasets, the same behavior is
observable, resulting in a comparable classification accuracy difference. When comparing
the validation results using the RAW-SPEC and the SPEC datasets, the convergence speeds,
just like the classification accuracy, are on an comparable level. In detail, a classification
accuracy difference of approximately 1% is achieved. When analyzing the resulting con-
vergence in detail, it can be seen that the fluctuation in the classification accuracy over all
epochs is higher for the SPEC dataset using the spectrum information only.
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In consequence, all generated datasets lead to the convergence of the used LSTM
network and result in high classification accuracy levels of 94% to 96% on the validation
dataset, showing the general possibility to detect the impact on the center console using
hybrid laminates with piezoelectric sensors. However, the datasets including the power
spectrum data fall behind in the case of the resulting classification accuracy. Furthermore,
the RAW-SPEC and SPEC datasets result in higher classification accuracies compared to the
other datasets. Taking into account these results and the lower classification accuracy results
of the RAW-SPEC-POW dataset compared to the RAW-SPEC dataset, it can be concluded
that the power spectrum should not be considered as input data. On the other hand,
the SPEC dataset containing the spectrum data only provides promising results for training
and validation. RAW-SPEC and SPEC dataset usage results in a similar convergence speed
and classification accuracy in training and validation. As a consequence, the amplitude
spectrum data lead to a huge improvement compared to the insufficient results using
only the raw sensor data. Furthermore, it is observable that the raw sensor data have
no significant influence on the classification accuracy in both training and validation.
Due to the good performance of the datasets containing the amplitude spectrum and the
insufficient results when using only the raw data, the original assumption that long-term
dependencies in the signals have to be detected is invalidated. Thus, the application of
non-RNN deep learning methods has to be evaluated as well.

For the usage on embedded devices, the additional transformation of the signal to
the frequency domain leads to a higher computational load, accompanied by a higher
power consumption. Therefore, it is desirable to find other models providing a comparable
accuracy but using the raw sensor data only or reducing the computational load of the
devices. To identify possible models, the following main study has been conducted on the
basis of the described preliminary study results.

5. Main Study
5.1. Main Study Design

One result of the preliminary study is that detecting long-term dependencies is not
mandatory. For this reason, the aim of the main study is to evaluate different deep
learning methods for the applicability of impact localization on hybrid laminates with
piezoceramic sensors.

Therefore, three further LSTM networks have been implemented for comparison with
the LSTM network from the preliminary study containing four layers with 425 neurons
(250/100/50/25). The first LSTM network (LSTM-3L) uses three layers and 175 neurons
(100/50/25), the second LSTM network (LSTM-2L) uses two layers and 125 neurons
(100/25), and the third LSTM network (LSTM-BI) uses three bidirectional layers with
175 neurons (100/50/25).

Since the LSTM networks are RNNs, an alternative RNN is implemented for compar-
ison. Three gated recurrent units (GRUs) have been implemented. While the first GRU
network (GRU-2L) uses two layers with 70 neurons (50/20), the second GRU networks
(GRU-4L) uses four layers with 120 neurons (25/50/25/20) and the last GRU network
(GRU-BI) uses three bidirectional layers and 150 neurons (75/50/25).

Due to the localization results of the CNN networks presented by Tabian et al. [19]
and Damm et al. [18], two CNN networks have been implemented. The first CNN (CNN-
2×2) contains two sets of two convolution layers followed by one max pooling layer, one
dropout layer and one normalization layer. After the two sets of layers, one flatten layer,
one dense layer, one normalization layer and a dropout layer have been added. The second
CNN (CNN-1×2) is equally implemented like CNN-2×2, but it contains just one set of
two convolution layers followed by one max pooling layer, one dropout layer and one
normalization layer.

The fourth category of deep learning techniques implements two MLPs. The first MLP
(MLP-2L) uses two layers with 30 neurons (10/20) while the second MLP (MLP-4L) uses
four layers with 160 neurons (10/50/75/25). For the construction, learning and validation



Technologies 2024, 12, 47 8 of 16

of all networks, the deep learning library Keras was used, which utilizes the TensorFlow
framework in the backend [21,22]. With this setup of deep learning networks, the main
state-of-the-art methods are represented at different complexity levels.

The preliminary study has shown that the amplitude spectrum improves the clas-
sification accuracy. For this reason, two main datasets were created on the basis of the
preliminary study results. The first dataset is equivalent to the SPEC dataset of the prelimi-
nary study, while the second dataset (RAW) contains only the raw data. The SPEC dataset
was chosen due to its good performance in the preliminary study. Although the results
using the SPEC dataset are promising, it is desirable to identify deep learning methods that
do not require data preprocessing to reduce the computational complexity of embedded
systems. Therefore, the RAW dataset was used, containing all raw sensor data. Comparing
the accuracy fluctuation over the different epochs on the RAW-SPEC and SPEC datasets
from the preliminary study, it is shown that the fluctuation in the RAW-SPEC dataset is
slightly smoother compared to the SPEC dataset.

The two datasets have been extended by applying artificially generated data. Therefore,
Gaussian noise was added to the recorded sensor data, simulating different moments of
recording, since the general channel noise is independent of the sensor signals. Additionally,
the data were randomly and slightly shifted in the measurement window, simulating the
variation in the start index determination. Furthermore, the data were scaled by multiplication
with a random number between 0.8 and 1.2, imitating different tapping intensities of the test
subjects. Finally, the generated datasets were normalized with the maximum amplitude over
all data, ensuring an amplitude range of between 0 and 1. Following this methodology, the
sample count was increased to 1650 samples for each of the 17 classes, leading to an overall
sample size of 28,050. The separation into training and validation datasets was achieved
according to the preliminary study with a ratio of 80% and 20%.

In summary, four datasets have been generated. The first dataset, RAW, uses the
raw sensor data only, the second dataset, SPEC, contains the corresponding amplitude
spectra of the RAW dataset, the third dataset, RAW-AI, contains the RAW dataset with
the extended artificial data and the fourth dataset, SPEC-AI, contains the corresponding
amplitude spectra of the RAW-AI dataset.

5.2. Main Study Results

The defined deep learning methods were successively evaluated on the described
datasets. For this purpose, the methods were trained on the different datasets, and the
loss function as well as the classification accuracy were analyzed. For all networks, the
categorical cross-entropy was used as a loss function.

5.2.1. LSTM and GRU Networks

Since the LSTM network showed an insufficient performance on the RAW dataset
in the preliminary study, the LSTM networks were evaluated on the SPEC and SPEC-AI
datasets only. Similarly, the GRU networks were evaluated only on the SPEC and SPEC-AI
datasets, due to the close architecture of the GRU and LSTM networks and them belonging
to the same method class (RNNs).

The classification accuracy results of the LSTM and GRU networks for the training process
using the SPEC dataset are shown in Figure 3a. It is evident that all used models converge during
20 epochs of training. Furthermore, all networks result in high classification accuracies between
96.2% and 100%. The networks with the highest convergence speed are the bidirectional models
LSTM-BI and GRU-BI. Additionally, both result in the highest classification accuracy, with 99.5%
for LSTM-BI and 100% for the GRU-BI model. A faster convergence, just like the high accuracies,
results from the additional feedback provided by the bidirectional implementation of the models.
However, in the case of the sequential GRU and LSTM models, the GRU models fall behind in
classification accuracy compared to the LSTM models.

Similar results are achieved for the validation dataset shown in Figure 3b. All models
converge for the validation dataset and training dataset and result in high classification
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accuracies of between 90.64% and 97.95%. Just as in the training process, the bidirectional
models LSTM-BI and GRU-BI result in the highest convergence speed and in the highest
classification accuracies, with 97.95% for GRU-BI and 96.98% for the LSTM-BI network. In
consequence, the bidirectional model training is successful, without overfitting occurring,
even though the GRU-BI model reached 100% classification accuracy in the training phase.
Furthermore, the GRU-2L and GRU-4L fall behind in both the classification accuracy and
convergence speed compared to the LSTM models.
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(a) Accuracy in the training process.
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(b) Accuracy in the validation process.

Figure 3. Classification accuracy comparison of the LSTM and GRU networks in the training and
validation process using the SPEC dataset for 20 epochs.

To compare the influence of the artificially generated data, the same procedure was
evaluated on the SPEC-AI dataset. The results on the training dataset are comparable to
the SPEC dataset for both architectures. However, there are differences in the validation
process (see Figure 4). The LSTM-2L network converges slower on the SPEC-AI dataset,
but results in a comparable accuracy. The resulting difference is about 1% in training and
2.5% in validation. No significant difference between SPEC and SPEC-AI dataset usage
can be found by comparison of the other LSTM methods. By comparing the GRU-4L
network results, it becomes evident that the training process benefits from the artificially
generated data usage, since the convergence speeds have been increased and the oscillation
of the validation results has been reduced. In consequence, the classification accuracy also
increases by 1.3%. Both GRU-BI and GRU-2L benefit mainly in the first epochs from the
artificially generated data, but attain comparable classification accuracy levels of 96.3%
(GRU-BI) and 90.5% (GRU-2L).

Considering the loss function, the generalization of the networks is confirmed in
Figure 5a,b, showing the convergence of all models used. The loss function characteristic
of the LSTM-2L network using the SPEC-AI dataset (LSTM-2L-SPEC-AI) confirms that the
generalization of the LSTM-2L network using the SPEC-AI dataset is less efficient compared
to the SPEC dataset. The lowest loss function results are shown by the LSTM-BI on both
datasets, proving the high classification accuracy results on both datasets. Furthermore,
the GRU loss function analysis proves the described results, especially the improved
convergence speed of GRU-4L via SPEC-AI dataset usage. Additionally, the bidirectional
GRU model, GRU-BI, achieves the lowest loss values, proving the high classification
accuracy results. In the case of the remaining sequential GRU networks, the loss functions
show no significant difference regardless of SPEC or SPEC-AI dataset usage.
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Figure 4. Classification accuracy comparison of the LSTM and GRU networks in the validation
process using the SPEC-AI dataset for 20 epochs.
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Figure 5. Loss function comparison of the used LSTM and GRU networks in the validation phase
between SPEC and SPEC-AI datasets for 20 epochs.

5.2.2. CNN Networks

The described CNN networks have been evaluated on all four datasets. A comparison
is provided by the CNN-2×2 on the SPEC and SPEC-AI datasets, while the evaluation
on the RAW and RAW-AI datasets with CNN-2×2 is used to identify the possibility of
CNN usage with the raw sensor data. CNN-1×2 has been evaluated on the SPEC and
SPEC-AI datasets only to evaluate a possible calculation complexity reduction compared
to CNN-2×2.

The results of the classification accuracy for the training phase are shown in Figure 6a.
It is shown that the classification accuracy in training converges very rapidly for all net-
works, resulting in accuracies between 96.6% and 99.8%. When comparing the results
between the SPEC and SPEC-AI datasets, no significant differences are observable. The
very rapid increase and stagnation at the high classification level suggest that overfitting
may have occurred. In addition, CNN-1×2 shows a lower classification accuracy on both
the SPEC and SPEC-AI datasets compared to the CNN-2×2 networks. Furthermore, a slight
oscillation is observable in the case of CNN-1×2.

The results of the classification accuracy for the validation process (compare Figure 6b)
show a strong oscillation, especially for the CNN-2×2 network on the RAW and RAW-AI
datasets. Thus, for this network and the datasets with raw sensor data, an overfitting of
the network is observed and no generalization of the network could be achieved. Equally
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to the training results, the CNN-2×2 and the CNN-1×1 networks show on the SPEC and
SPEC-AI datasets comparably high classification accuracies.
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(a) Accuracy in the training process.
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Figure 6. Classification accuracy comparison of the CNN networks in the training and validation
process using the SPEC and SPEC-AI datasets for 20 epochs.

When analyzing the loss function, overfitting of the CNN-2×2 network on the raw
sensor data is confirmed by an equally high oscillation of the loss function. The results
of the remaining combinations are shown in Figure 7. For CNN-2×2 on the SPEC and
SPEC-AI datasets, a low and converging loss function can be observed. Furthermore, it
can be seen that the artificially generated data improved the generalization by eliminating
the spike at epoch 11. On the contrary, CNN-1×2 shows a relatively high loss function
and no convergence, indicating overfitting. The high loss function level and the slight
oscillation observed in the training phase lead to the conclusion of overfitting. The high
loss function shows a high learning error. Since the classification accuracy is also on a high
level, the networks improve the classification in each epoch for another class but worsen
the result of another one. Thus, the classification accuracy maintains an even level but
exhibits a slight oscillation. In consequence, the CNN-1×2 network architecture is not
sufficiently complex since the more complex CNN-2×2 network results in a generalized
model. Thus, only the CNN-2×2 can be successfully trained to the present dataset.
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Figure 7. Loss function comparison of the CNN networks in the validation process using the SPEC
and SPEC-AI datasets for 20 epochs.
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5.2.3. MLP Networks

As the final deep learning method, MLPs were evaluated for their applicability in
impact localization. The networks MLP-2L and MLP-4L were evaluated on all four datasets
accordingly. A direct comparison of the training performance of the two networks on
the four datasets is shown in Figure 8a. The graph shows a convergence of the training
classification accuracy for all combinations except MLP-4L using the SPEC dataset. The
results show that MLP-2L using the SPEC and the SPEC-AI datasets, as well as MLP-4L on
the SPEC-AI dataset, exhibits a high convergence speed, resulting in high accuracy rates of
about 100%. When comparing the methods on the raw sensor datasets RAW and RAW-AI,
a reduced convergence speed is shown. However, the achieved classification accuracies
result in comparably high rates between 97% and 99.8%.
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(a) Accuracy of the MLP networks.
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Figure 8. Classification accuracy and loss function comparison of the MLP networks in the training
process using the SPEC and SPEC-AI datasets for 20 epochs.

In the case of MLP-4L using the SPEC dataset, the classification accuracy remains
low at 5 % to 8 % for 11 epochs and jumps to 87 % only in two epochs, finally resulting
in a 100 % classification accuracy. This behavior can be explained by the loss function
analysis of the training process. Figure 8b shows the loss function for MLP-4L on the SPEC
dataset. It becomes evident that the the low classification accuracies in the first epochs
result from two high training errors in epoch six and eight. These huge errors lead to a
reset of the training process. The reason for these errors may be the insufficient amount of
data in the SPEC dataset, since MLP-2L, with two fewer layers, provides a good training
performance just as the same network on the SPEC-AI dataset with five times more data. In
consequence, the MLP-4L network profits from the artificially generated data, improving
the training performance.

Considering the results of the validation process, a comparable behavior is observed
(see Figure 9a). Also, all methods and dataset combinations, with the exception of the
MLP-4L network on the SPEC dataset, converge and all methods reach a high level of
classification accuracy of 91.5% to 99.3%. Since the training process failed in the first epochs
in the case of MLP-4L using the SPEC dataset, insufficient accuracies are also achieved
on the validation dataset in the first epochs. However, the final classification accuracy
achieved is 99.2%. Comparable to the training, the methods using the SPEC and SPEC-AI
datasets achieve higher accuracies compared to those using the RAW and RAW-AI datasets.
A comparison of the MLP-4L network on the RAW and RAW-AI datasets shows that
the additional artificially generated data contribute to a better generalization, since the
oscillations are reduced.
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The results are confirmed by an analysis of the loss function, shown in Figure 9b.
It is equally evident that using the SPEC and SPEC-AI datasets results in a lower loss
level than that using the RAW and RAW-AI datasets, which in turn is reflected in the
classification accuracies. Similarly, a higher oscillation is observed for MLP-2L on the RAW
dataset compared to the RAW-AI dataset. This is in agreement with the observations of
the validation classification accuracy results. However, in the case of MLP-2L using the
SPEC dataset, a high loss value is observed at epoch 4, leading to an oscillation in the
classification accuracy (see Figure 9a).
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(a) Accuracy comparison of the MLP networks.
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Figure 9. Classification accuracy and loss function comparison of the MLP networks in the validation
process using the SPEC and SPEC-AI datasets for 20 epochs.

6. Discussion

For each deep learning method, at least one combination of a dataset and a network
has been identified that provides classification accuracies of over 90%.

Taking into account the validation accuracy and the achieved loss function values,
the best results are obtained for CNN-2×2 using the SPEC-AI dataset. This CNN achieves a
training accuracy of 99.8%, a validation accuracy of 99.5% and a loss function value of 0.017.
These results represent the highest validation accuracy, accompanied by the minimum
loss value, obtained by all compared methods. A comparable result is achieved by the
same network on the SPEC dataset, with 99.9% accuracy in training, 99.4% in validation
and a slightly higher loss value of 0.029. This is remarkable because CNN-1×2 did not
accomplish generalization.

The MLPs achieved comparable results. MLP-4L achieved, on the SPEC-AI dataset, a
training accuracy of 100%, a validation accuracy of 99.4% and a loss value of 0.064. Thus,
the results are generally similar to the results of CNN-2×2, but the loss value, as an error
measurement, is about 3 times higher. The same MLP achieves a training accuracy of 100%,
a validation accuracy of 99.2% and a loss value of 0.057 on the SPEC dataset. However, it
should be noted that the training process on the SPEC dataset was fraught with problems
in the first epochs, resetting the training process. Nevertheless, the very good classification
results of the MLPs offer the possibility of efficient use on embedded systems, since their
mathematical complexity is lower compared to CNNs and RNNs.

Among the representatives of RNNs, GRU-BI and LSTM-BI on the SPEC dataset have
proven to be particularly suitable. GRU-BI also achieves a training accuracy of 100% and
a validation accuracy of 98%, with a loss value of 0.065.

Considering the RNNs, comparing LSTM to LSTM-BI and GRU to GRU-BI, it is clear
that bidirectional concatenation leads to improved results and faster training convergence.
However, the mathematical complexity of the networks is essentially higher, resulting in
significantly longer training and classification times. This is a disadvantage, especially
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when focusing on embedded systems. Furthermore, the results on the raw sensor data
were not satisfying, so further preprocessing of the data by applying an FFT is necessary,
which in turn leads to an increase in the computation time in live operations.

Looking at the results by dataset, the MLPs and CNN-2×2 achieve high accuracies in
training and validation on the RAW dataset, but perform worse on the loss values. Even
the addition of artificially generated data does not lead to a significant improvement, even
through the training and validation accuracies are slightly improved. When comparing the
values of the SPEC and SPEC-AI datasets, a similar picture emerges, with the exception of
the results already mentioned for CNN-2×2 and GRU-4L. However, it is evident that the
training process can be improved by adding artificially generated data, as shown by the
MLP-4L results using the SPEC dataset.

7. Conclusions and Future Work

The focus of this work is a feasibility analysis of deep learning methods for impact
detection as a haptic input device interface. For this purpose, a preliminary study and
a main study were conducted. The preliminary study has been used to demonstrate the
general applicability of deep learning methods and to identify necessary preprocessing
steps, resulting in various datasets for the main study. The main study analyzed different
realizations of LSTMs, RNNs, CNNs, and MLPs by evaluating the classification accuracy in
training and validation as well as the loss function using the derived datasets. The results
show the high potential of deep learning methods with validation accuracies of up to 99%.
The results are consistent with those described in the state of the art.

The current study proves the usability of the PZT-based laminate for impact detection
by using deep learning methods for the used center console. In addition, the suitability of
MLPs for impact localization is evident, as is the suitability of the more recently developed
CNNs. Nevertheless, the results are not directly comparable to the results in the state of the
art, since in the present study, the center console is a formed specimen, while most related
works use planar plates. Even though PZT-based sensors have been used in this study as
well as in numerous previous works, the used laminate in this study differs clearly from the
state of the art. In contrast to applied monolithic PZT sensors, PZT particles are integrated
into the plastic layer of the laminate. Thus, the sensor is an integral part of the hybrid
laminate. This active layer offers the possibility of a functionalized semi-finished part that
can be transformed to a component with integrated sensor functions. In comparison to
conventional PZT-based sensors and applied or integrated foils of polyvinylidene fluoride
(PVDF), the sensitivity of the piezoactive layer and the amplitude of the generated sensor
signal are lower. However, this leads to a higher capability of the investigated laminate.
Environmental influences like thermal effects, external vibrations or acoustic waves are
filtered by the material itself. Due to the accompanying noise reduction, less noise is picked
up and the signal quality is increased. Accordingly, the tapping carried out by users has to
be slightly stronger, which is why approximately 14% of the recordings had to be excluded
in our experiments. On the other hand, the high sensitivity of monolithic PZT and PVDF
leads to undesirable effects and faulty detections of impacts when using conventional
piezoceramic sensors or PVDF layers. This behavior was also determined in investigations
in the field of structural health monitoring.

Subsequent research should analyze whether the very good classification results are
related to the used network structure or to the independently developed laminate. For this
purpose, it is necessary to perform further studies where identical samples are trained and
analyzed with the same networks. Furthermore, upcoming work should evaluate whether
the identified networks can be efficiently implemented on embedded systems, or whether
they require additional hardware acceleration via GPUs or FPGAs.
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