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Abstract: Phenacoccus solenopsis Tinsley (Hemiptera: Coccomorpha: Pseudococcidae), the cotton
mealybug, is an invasive polyphagous species that has been extending its geographic range, posing
a conspicuous threat to many Mediterranean crops of economic importance. These include three
species of Solanaceae, namely Solanum lycopersicum L. (tomato), Solanum tuberosum L. (potato) and
Solanum melongena L. (eggplant) all of which are economically important worldwide. In this study, we
used age-stage two-sex life tables to investigate the suitability of these three plant species as hosts for
P. solenopsis and to calculate pest fitness, life history parameters and population projection parameters.
All tested host plants that were suitable for the pest and eggplant host plant induced a higher
fecundity (276.50 ± 10.78 eggs/female), net reproductive rate (R0) (243.32 ± 15.83 offspring/female)
and finite rate of increase (λ) (1.18 ± 0.0043 day−1) and more extended adult longevity (males:
6.50 ± 0.34 days and females: 24.15 ± 0.50 days). Population growth predictions over a period of
90 days of infestation, commencing with an initial population of 10 eggs showed that adult population
size was 674,551 on tomato, 826,717 on potato and 355,139 on eggplant. Our data on plant host
preference of P. solenopsis will aid the development of appropriate management strategies and achieve
successful control of this invasive pest in key Mediterranean crop systems.

Keywords: tomato; potato; eggplant; polyphagous pest

1. Introduction

Invasive insect pests remain a constant threat to agricultural production systems
worldwide. Their invasion benefits from both climate change and the rapid global trade
of agricultural products including ornamentals, fruits and seedlings. In most cases, their
establishment outside their native range can cause significant economic and ecological
losses by disturbing ecosystem balance and impairing already implemented Integrated Pest
Management (IPM) strategies, often leading to the overuse of synthetic insecticides [1–3].

Among invasive agricultural pests, mealybugs (Hemiptera: Coccomorpha: Pseudo-
coccidae) are a major threat due to their biological features including cryptic behavior, high
reproductive capacity, ecological plasticity and, in many cases, the ability to develop resis-
tance to insecticides [4,5]. The cotton mealybug Phenacoccus solenopsis Tinsley has expanded
its geographical distribution over the last decades [6]. Thus far, it has been reported in
more than 70 countries worldwide and it is considered one of the most devastating pests
of cotton in Asia (e.g., China, India, Iran and Pakistan) [7–9]. More recently, this pest has
invaded several Mediterranean countries including Algeria, CyprusEgypt, France, Greece,
Israel, Italy, Morocco, Tunisia and Turkey [10–17].

Phaenacoccus solenopsis is a highly polyphagous sap-feeding insect attacking about
300 host plant species belonging to 65 families, in particular species of Amaranthaceae,
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Asteraceae, Cucurbitaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Malvaceae and Solanaceae.
It primarily feeds on the aerial parts of the plants, but can attack also roots and collars, pro-
ducing abundant wax and honeydew, the latter promoting the development of sooty mould.
Mealybug infestations cause distorted and bushy shoots, crinkled and/or twisted and
bunchy leaves and ultimately death in the absence of efficient control measures [8,9,14,18].

Currently, cotton remains the preferred host crop of P. solenopsis with yield losses
in Pakistan, China and India of 0.48, 1.4 and 1.12 million tons, respectively, during
2008–2009 [18]. Hence, an intensive and irrational use of insecticides for its management
was adopted, leading to the emergence of resistance to many insecticides in several field
populations [19–22]. In other invaded regions where cotton is not a key crop, P. solenopsis
spread adapting to wild and ornamental hosts such as Lantana camara L. (Verbenaceae) and
Hibiscus rosa-sinensis L. (Malvaceae) or has become a serious pest of Solanaceous crops,
as has happened in Israel and Egypt where it has been reported on bell pepper, eggplant,
tomato and potato [11,23,24]. Owing to the recent invasion of P. solenopsis in European and
Mediterranean countries, it is therefore critical to assess the suitability of most relevant
Solanaceous vegetables as host plants to reduce the possible yield losses and to develop
efficient monitoring and control protocols.

Life table analyses including life history parameters and population fluctuations are
an essential tool for studying insect ecology and fitness. They provide helpful information
about insect biology and reproductive capacity allowing prediction of their performance
and mortality patterns in relation to different host plants and environmental conditions [25].
However, for biparental species, conventional age-specific life tables often omit the contri-
bution of males and differentiation by stage [26]. To fill this gap, Chi and Liu [27], Chi [28]
and Chi et al. [29] developed the age-stage two-sex life table which has been successfully
applied to study various ecological aspects of insect pests and their natural enemies [30–32].

In this study, we investigated the biology, survival, reproduction and life table pa-
rameters of P. solenopsis when reared on three economically important Solanaceous host
plants, S. lycopersicum (tomato), S. tuberosum (potato) and S. melongena (eggplant), based on
the age-stage two-sex life table using the TWOSEX-MSChart® software. We also assessed
population-projection parameters using the TIMING-MSChart® program.

2. Results

Values for the developmental time of each stage, longevity and total duration of the
life cycle of males and females on different hosts are presented in Table 1.

The egg-incubation time was the same on all host plants (1 d). For females, the
duration of the first instar was longer on eggplant (6.18 ± 0.12 days) than on potato
(5.58 ± 0.11 days) and tomato (4.88 ± 0.13 days) (PTP = 0.0001; PTE = 0; PPE = 0.0005). The
duration of the second instar did not differ among host plants ranging from 4.70 ± 0.15 to
4.84 ± 0.18 days (PTP = 0.701; PTE = 0.8721; PPE= 0.1412). The duration of the third instar
was greater on eggplant (7.09 ± 0.24 days) than on tomato (6.30 ± 0.26 days) and potato
(6.28 ± 0.20 days) (PTP = 0.0202; PTE = 0.0287; PPE = 0.0111). For males, the duration of the
first instar was greater on eggplant (6.50 ± 0.43 days) than on potato (5.36 ± 0.15 days) and
tomato (4.71 ± 0.36 days) (PTP = 0.1045; PTE = 0.0035; PPE = 0.0185). The duration of the
second instar was greater on potato (6.54 ± 0.41 days) than on tomato (5.28 ± 0.47 days)
and eggplant (5.16 ± 0.48 days) (PTP = 0.047; PTE = 0.8721; PPE = 0.1412). The duration of
the pupa was greater on potato (7.09 ± 0.54 days) and tomato (6.71 ± 0.47 days) than on egg-
plant (4.50 ± 0.22 days) (PTP = 0.602; PTE= 0.0001; PPE= 0.0001). The total female pre-adult
developmental duration was greater on eggplant than tomato and potato (PTP = 0.0717;
PTE = 0; PPE = 0.001) and that of male was greater on potato than on tomato and eggplant
(PTP = 0.0082; PTE = 0.5937; PPE = 0). The longevity of adults was greater on eggplant
than on tomato and potato for both males (PTP = 0.9248; PTE = 0; PPE = 0) and females
(PTP = 0.0008; PTE = 0; PPE = 0). The duration of the life cycle of females was greatest on
eggplant and lowest on tomato and potato (PTP = 0.3548; PTE = 0; PPE = 0) and that of
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males was the longest on potato and eggplant and the shortest on tomato (PTP = 0.0168;
PTE = 0.0203; PPE = 0.5512).

Table 1. Developmental duration and adult longevity of Phenacoccus solenopsis on different host plants
(25 ± 1 ◦C, 60 ± 5% RH and 16:8 h (L:D)). Values are means ± standard errors. Means in a row
followed by different letters are significantly different at p < 0.05 using paired bootstrap test.

Developmental Duration (Days) Host Plants

Tomato Potato Eggplant

Egg incubation 1 ± 0.00 a (n = 50) 1 ± 0.00 a (n = 50) 1 ± 0.00 a (n = 50)

First-instar nymph

Female 4.8837 ± 0.1323 c (n = 27) 5.5897 ± 0.1132 b (n = 28) 6.1818 ± 0.1216 a (n = 23)

Male 4.7142 ± 0.3619 b (n = 23) 5.3636 ± 0.1511 b (n = 22) 6.50 ± 0.4320 a (n = 27)

Second-instar nymph

Female 4.7441 ± 0.1870 a (n = 26) 4.8461 ± 0.1835 a (n = 26) 4.7045 ± 0.1564 a (n = 23)

Male 5.2857 ± 0.4755 b (n = 23) 6.5454 ± 0.4103 a (n = 22) 5.1666 ± 0.4819 b (n = 27)

Third-instar

Female nymph 6.3023 ± 0.2688 b (n = 26) 6.2820 ± 0.2084 b (n = 26) 7.0909± 0.2417 a (n = 22)

Male pupa 6.7142 ± 0.4751 a (n = 23) 7.0909 ± 0.5436 a (n = 22) 4.50 ± 0.2249 b (n = 27)

Total pre-adult

Female 16.9302 ± 0.3591 b (n = 26) 17.7179 ± 0.2493 b (n = 26) 18.9772 ± 0.2868 a (n = 22)

Male 17.7142 ± 0.8108 b (n = 23) 20.0000 ± 0.1899 a (n = 22) 17.1666 ± 0.6044 b (n = 27)

Adult longevity

Female 21.0697 ± 0.3421 b (n = 26) 19.8205 ± 0.1197 c (n = 26) 24.1590 ± 0.5029 a (n = 22)

Male 3.1428 ± 0.1437 b (n = 23) 3.1818 ± 0.2248 b (n = 22) 6.5000 ± 0.3457 a (n = 27)

Total life cycle

Female 38.0000 ± 0.4319 b (n = 26) 37.5384 ± 0.2466 b (n = 26) 43.1363 ± 0.5683 a (n = 22)

Male 20.8571 ± 0.8877 b (n = 23) 23.1818 ± 0.3234 a (n = 22) 23.6666 ± 0.7670 a (n = 27)

Data on fecundity, adult preoviposition period (APOP), total preoviposition period
(TPOP) and oviposition days on the different host plants tested are shown in Table 2.

Table 2. Fecundity, adult preoviposition period (APOP), total preoviposition period (TPOP) and
oviposition days of Phenacoccus solenopsis on different host plants (25 ± 1 ◦C, 60 ± 5% RH and
16:8 h (L:D)). Values are means ± standard errors. Means in a row followed by different letters are
significantly different at p < 0.05 using paired bootstrap test.

Parameters
Host Plants

Tomato Potato Eggplant

APOP (days) 6.3953 ± 0.2162 b 5.2051± 0.1964 c 10.0909 ± 0.5255 a

TPOP (days) 23.3256 ± 0.405 b 22.9222 ± 0.3091 b 29.0682 ± 0.5807 a

Fecundity (eggs) 155.6046 ± 11.9904 c 244.9230 ± 9.7554 b 276.5000 ± 10.7814 a

Oviposition (days) 12.7209 ± 0.2469 b 13.6410 ± 0.1725 a 10.8409 ± 0.1109 c

The greatest APOP was registered on eggplant followed by tomato and potato
(PTP = 0.0001; PTE = 0; PPE = 0). Similarly, TPOP was greater on eggplant than on tomato
and potato (PTP = 0.4267; PTE = 0; PPE = 0). Concerning fecundity, it was greater on eggplant
(276.50 ± 10.78 eggs/female) than on potato (244.92 ± 9.75 eggs/female) and on tomato
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(155.60 ± 11.99 eggs/female) (PTP = 0; PTE = 0; PPE = 0.0298). The number of oviposition
days was greatest on potato (13.64 ± 0.17 days) followed by tomato (12.72 ± 0.24 days) and
eggplant (10.84 ± 0.11 days) (PTP = 0.0022; PTE = 0; PPE = 0).

The mean net reproductive rate (R0) of P. solenopsis was significantly different on the se-
lected host plants, attaining its highest value on eggplant (243.32 ± 15.83 nymphs/female),
followed by potato (191.04 ± 16.23 nymphs/female) and tomato (133.82 ± 12.78 nymphs/
female) (PTP = 0.0056; PTE = 0; PPE = 0.0213). The average intrinsic rate of increase (r)
was greatest on potato (0.18 ± 0.00 d−1) compared to tomato and eggplant (PTP = 0.0245;
PTE = 0.5411; PPE = 0.0024). The finite rate of increase (λ) was significantly greater on
tomato and eggplant (1.18 ± 0.005 d−1 and 1.18 ± 0.004 d−1, respectively) than on potato
(1.20 ± 0.004 d−1) (PTP = 0.0244; PTE = 0.5411; PPE = 0.0024) (Table 3).

Table 3. Net reproductive rate (R0), the intrinsic rate of increase (r), finite rate of increase (λ) and
generation time (T) of Phenacoccus solenopsis on different host plants (25 ± 1 ◦C, 60 ± 5% RH and
16:8 h (L:D)). Values are means ± standard errors. Means in a row followed by different letters are
significantly different at p < 0.05 using the paired bootstrap test.

Parameters
Host Plants

Tomato Potato Eggplant

R0 133.82 ± 12.7829 c 191.04 ± 16.23395 b 243.32 ± 15.83068 a

r 0.1731 ± 0.00424 b 0.1860 ± 0.0039 a 0.1696 ± 0.00364 b

λ 1.1889 ± 0.005042 a 1.2044 ± 0.00469 b 1.1848 ± 0.00431 a

T 28.2854 ± 0.4532 b 28.2371 ± 0.3660 b 32.3899 ± 0.5958 a

The age-stage-specific survival rate (sxj) of P. solenopsis on different host plants indicates
the probability that a newborn will survive to age x and develop to stage j (Figure 1).

Due to variable developmental rates among individuals, significant overlap was
observed between stages in the survival curves. The first females emerged on days 12, 14
and 15, while the first males appeared on days 14, 19 and 16 on tomato, potato and eggplant,
respectively. The survival rates of preadult instars ranged between 92% and 100%, while
those of females were 84%, 78% and 86% on tomato, potato and eggplant, respectively. The
lowest survival rate was recorded for males not exceeding 20% on all studied host plants.

The single age-stage survival rate (lx) predicts that an egg will survive to age x
(Figure 2). On all host plants, the lx curve was constantly around 100% during the early
stages, indicating a relatively low mortality rate.

The age-stage-specific fecundity (fx) curve peak on potato was greater than that
recorded for eggplant and tomato. The curve of age-specific fecundity (mx) showed that
reproduction began at 19 days on tomato and potato and 3 days later on eggplant, and that
the fecundity on potato and eggplant was greater than on tomato.
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Figure 2. Age-specific survival rate (lx), female age-specific fecundity (fx), age-specific fecundity
(mx) and age-specific maternity (lx*mx) versus age of Phenacoccus solenopsis on different host plants
(25 ± 1 ◦C, 60 ± 5% RH and 16:8 h (L:D)).

The age-stage life expectancy (exj) estimates the life duration of an individual of age
x and stage j. The longevity of P. solenopsis at age zero (e01) was 35.6 days on tomato,
34.38 days on potato and 40.80 days on eggplant (Figure 3).

The age-stage reproductive value (vxj) shows the contribution of an individual from
age x to stage j to the future population. The curves of reproductive value significantly
increased when reproduction began, as shown in Figure 4. The value of vxj peaked on day
26 for tomato and potato and on day 30 for eggplant with values of 54.87 d−1, 99.57 d−1

and 103.59 d−1, respectively.
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Population growth predictions of P. solenopsis on considered host plants generated via
the TIMING-MSChart® program are shown in Figure 5, which reveals considerable growth
curves. Simulations suggest that they start to appear on the 12th, 14th and 15th days on
eggplant, respectively (Figure 6A). The total predicted adult population size (Nt) after
90 days was 674,551 on tomato, 826,717 on potato and 355,139 on eggplant (Figure 6B,C).
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3. Discussion

Although cotton remains its preferred host, P. solenopsis is considered to be a potential
economic pest of many other crops [33]. Its host range has been expanding over the
last decade alongside its geographic spread largely due to favorable climate change. As
a result, many Solanaceous crops including tomato, potato and eggplant, have become
common hosts for this species in several newly colonized countries such as Algeria, Egypt,
Israel, Iran, Italy and Tunisia, and in these newly invaded countries, where cotton is
limited or absent, the damage to Solanaceous crops can be severe due, in particular, to
its considerable reproductive capacity: P. solenopsis may go through many generations
per cropping cycle. Furthermore, modelling studies predict that there will be a rise in the
number of generations/year of this species, prompted by global warming [6]. In addition,
it has been demonstrated that P. solenopsis produces more honeydew on tomato than on
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cotton [34], causing a greater amount of indirect damage, linked to the development of
sooty mould which causes a reduction of photosynthesis and a depreciation of fruit quality.
The production of honeydew also prompts a mutualism between ants and P. solenopsis
that contributes to the rapid infestation by the mealybug, also hampering the possible
action of natural enemies. For example, it has been demonstrated how ants successfully
facilitated the invasion of another mealybug, Delottococcus aberiae De Lotto (Hemiptera:
Pseudococcidae), on citrus in Spain [35]. In Mediterranean crops, the situation may be
even more complicated due to the absence of coevolved specific natural enemies of this
pest and the concomitant pressure posed by other invasive pests such as Tuta absoluta
(Meyrick, 1917) (Lepidoptera: Gelechiidae) (the tomato leafminer) on tomato and eggplant
and Leptinotarsa decemlineata (Say, 1824) (Coleoptera: Chrysomelidae) (the Colorado potato
beetle) on potato [3,14].

Previous studies have shown that host plants can significantly affect the life history
parameters and population dynamics of P. solenopsis [36–39] and have a significant impact
on Aenasius bambawalei (Girault, 1915) (Hymenoptera: Encyrtidae), an efficient solitary
endo-parasitoid of this pest, described from India and possibly accidentally introduced
into that country along with its host pest [40].

In our study, tomato, potato and eggplant were all found to be suitable hosts for the
pest. The theory suggests that the most appropriate host plant for a polyphagous insect
pest should allow shorter APOP and TPOP and higher fecundity, net reproductive rate
(R0) and finite rate of increase (λ). Nabil [41] reported very high population densities of
P. solenopsis in open field crops of eggplant in the Hihhya district, Sharqia Governorate in
Egypt, reaching 328.75 individuals/leaf during September 2016. High densities of different
instars of the pest reaching 150 individuals per plant were also recorded when reared on
tomato in Israel by Spodek et al. [11]. In Egypt, natural infestation of the pest on tomato
was also reported in Qalyubia governorate [42].

Significant differences in the selected parameters may be reasonably attributed to
specific biochemical and morphological features and are in accordance with what has
been reported in previous studies. For example, Shahid et al. [43] tested 25 different host
plants for the development of P. solenopsis, correlating their morphological traits to the
population dynamic of the pest. The authors concluded that eggplant is one of the most
favorable host plants for the mealybug. Similarly, Nagrare et al. [44] found that the highest
net reproductive rate was on cotton (284 females/female/generation) and the lowest was
on tomato.

It is reasonable to hypothesize that the abundant glandular trichomes scattered on
tomato leaves and stems play a key role in hampering the development of P. solenopsis.
Nonetheless, it can conclude its cycle even on this plant, thus becoming another serious
threat in the whole Mediterranean area.

The potential damage of P. solenopsis to eggplant and tomato can be particularly
significant when they are grown in greenhouses, where it takes advantage of optimal
climatic conditions and high host density. Indeed, Prasad et al. [45] observed the greatest
fecundity and survival of crawlers at 30 ◦C and 32 ◦C, respectively, which are both common
temperatures of protected crops in Mediterranean countries. This situation may lead to the
overuse of chemicals in these crops while increasing plant protection costs and disrupting
already implemented control schemes for other relevant pests. Furthermore, in Asia (in
particular, Pakistan and India) P. solenopsis has already developed resistance to a wide
range of insecticides including organophosphates, pyrethroids and neonicotinoids due to
the continuous and severe use of these compounds on cotton cultivations [19–21]. This
has severe consequences on efficient chemical control options of this pest on invaded host
crops in the Mediterranean Basin since recent phylogenetic analyses performed in Tunisia
and Italy revealed that the populations introduced in both countries most probably derive
from Asian stock [16,17]. The data presented in this study may be a starting point for
the development of suitable agroecological management strategies, such as those based
on inter- and border cropping, with a view to progressive reduction of pest populations
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on cultivated crops and with the enhancement of biological control. These strategies are
mostly needed in relation to reducing the application of synthetic insecticides as required
by the European Union and by consumers.

4. Materials and Methods
4.1. Plants

Plants used in this study were tomato (Variety ‘Dorra’), potato (Variety ‘Spunta’) and
eggplant (Variety ‘Tizona’) grown in a glasshouse from seed (or tuber) in plastic trays
(330 mm × 250 mm × 130 mm) in peat substrate, watered with tap water every two days
and maintained under identical natural conditions without fertilizers and chemicals until
they reached 150 mm height.

4.2. Insects

A laboratory rearing of P. solenopsis was initiated at the High Agronomic Institute
of Chott-Mariem, Sousse, Tunisia, using specimens collected on Lantana camara L. (Verbe-
naceae) in Tunis, Tunisia, in spring 2022. The identity of specimens was confirmed using
both morphological and molecular approaches [17]. Initially, the mealybug was reared for
five generations on potato plants (Variety ‘Spunta’) obtained from tubers placed in plastic
containers (330 mm × 250 mm × 130 mm) filled with fine sand. To avoid possible effects
of host shifting during the experiments, two other colonies were set up using individuals
reared on potato, on tomato and on eggplant. All colonies were maintained for five genera-
tions in a climatic chamber at 25 ± 2 ◦C, 60–70% RH and 16:8 h (L:D) photoperiod before
their use in the bioassay.

4.3. Experimental Protocol

For each host plant (tomato, potato and eggplant), 50 plants were transplanted indi-
vidually into plastic cups with 200 mL peat substrate. Peer cohorts of P. solenopsis were
used to collect eggs and a single freshly laid egg (<1 h) was transferred to the central vein
of an apical leaf using a fine soft paintbrush under a binocular microscope (Leica® MZ8,
Leica Microsystems, Wetzlar, Germany). Plants bearing eggs were then incubated in a
climatic cabinet (Scimmit, Shanghai Scimmit Technology, Shanghai, China) at 25 ± 1 ◦C
temperature, 60 ± 5% relative humidity and 16:8 h (L:D) photoperiod. Plants were watered
daily with tap water using a 50 mL volume syringe. The entire life cycle of each mealybug
individual on each plant was monitored daily until its death. The moults during the larval
stages were recorded by the presence of exuviae. Newly emerged adults were kept as cou-
ples to record the following parameters: egg incubation period, duration of each immature
stage, pre-oviposition period, oviposition period, fecundity, post-oviposition period, adult
sex and adult longevity.

4.4. Demographic Analyses

Collected data on the development and reproduction on each considered host plant
were analyzed according to the age-stage two-sex life table theory as described by Chi
and Liu [27] and Huang and Chi [46]. We calculated age-stage-specific survival rate (sxj:
the probability that a newly laid egg will survive to age x and stage j), age-stage-specific
fecundity (fxj: the mean fecundity of females at age x), age-specific survival rate (lx: the
probability that a newly laid egg will survive to age x), and age-specific fecundity (mx: the
mean fecundity of individuals at age x) (Supplementary Materials S1).

The means and standard errors of the life table parameters were estimated using
the bootstrap method with a bootstrap number of m = 100,000 in order to ensure precise
estimates [47]. TWOSEX-MSChart® [48] for Windows® (Version 2023.12.15) was used to
construct and analyze age-stage two-sex life tables. A paired bootstrap test within TWOSEX-
MSChart® was used to compare differences in developmental time, adult longevity, adult
preoviposition period (APOP), total preoviposition period (TPOP), oviposition days and
fecundity between treatments. The population parameters were also compared using the



Plants 2024, 13, 1381 12 of 14

paired bootstrap test, based on the confidence interval of difference [47,49]. The p values
of the paired bootstrap test were defined as follows: PTP, tomato to potato; PTE, tomato to
eggplant; PPE, potato to eggplant.

4.5. Population Projection

The TIMING-MSChart® [50] program (Version 04/18/2024) was used to simulate
population growth rate and the structure of each age-stage of P. solenopsis over a period of
90 days with an initial population of 10 eggs and without control.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13101381/s1. References [51–55] are cited in the supplementary
materials.
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