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Abstract: This study evaluated effects of high starch (20%) on hematological variations, glucose
and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in
largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably
increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes,
monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05).
There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed
high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG
and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and
NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes
of D3–D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial
Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase
amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key
molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic
disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb
redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in
largemouth bass.

Keywords: Micropterus salmoides; high starch; hematological variations; metabolic changes; inflammatory
responses

1. Introduction

As the cheapest and widest energy source or ingredient, starch is also a good binder for
animal feeds [1,2]. In most cases, adequate amount of dietary starch could enhance growth
and feed efficiency, but it can also save protein by redirecting amino acids away from the
oxidative process in humans, terrestrial animals, and fish species [3,4]. Meanwhile, optimal
contents of dietary starch could improve metabolism and enhance antioxidant capacity
and immunity in animals [5–7]. Nevertheless, carnivorous fish exhibit reduced capacity
to digest dietary starch compared to omnivorous and herbivorous fish, as indicated by
various research studies involving grass carp (Ctenopharyngodon idellus), Chinese longsnout
catfish (Leiocassis longirostris) [8], jundiá catfish (Rhamdia quelen), Nile tilapia (Oreochromis
niloticus) [9], and largemouth bass (Micropterus salmoides) [10]. Several studies have proved
that long-term intake of excessive dietary starch could induce metabolic dysfunction [6,11]
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and then impair the innate immunity in fish [12,13]. Therefore, the regulatory mechanisms
of high starch have been a hot research area in carnivorous fish species and other animals.

Too much starch in the diet can cause an increase in serum glucose (GLU) levels,
impacting glucose metabolism and lipid metabolic indices, like high-density lipoprotein
cholesterol (HDL-C), triacylglycerol (TAG), total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), etc. [1,7,12]. Previous studies have found glucose and lipid metabolic
processes can be regulated by different signaling pathways mediated by serum hormones,
including glucagon (GC), insulin (INS), adiponectin (ADPN), and leptin (LEP) [7,14,15]. In
addition, the processes of glycogen synthesis and decomposition are also modulated by
these serum hormones in animals in response to higher dietary starch [14,16,17]. Moreover,
several studies have reported that higher dietary starch could induce hepatic cholesterol
and bile acid accumulation in humans and animals [18]. These metabolic processes, such
as glycolysis and gluconeogenesis, lipolysis and lipogenesis, glycogen synthesis, and
cholesterol and bile acid accumulation, are mainly regulated by various signaling pathways,
including AKT and SREBP signaling pathways in humans and animals [19,20]. While most
research has concentrated on glycolysis, gluconeogenesis, lipolysis, and glycogen synthesis
in carnivorous fish, there are limited data available regarding the synthesis and storage
of bile acids through hepatic cholesterol in carnivorous fish species consuming higher
dietary starch.

Throughout the breakdown of nutrients, such as starch, reactive oxygen species (ROS)
were consistently formed in humans, terrestrial animals, and fish species [3,21]. Although
optimal amounts of ROS could play essential functions in growth, metabolism, and immune
defense, ROS overload could induce the damage of proteins, lipids, and DNA [22,23]. So,
it is important to alleviate these oxidative stresses induced by ROS overload through
different adequate antioxidant enzymes and molecules, including superoxide dismutase
(SOD), catalase (CAT), thioredoxin 2 (Trx2), thioredoxin reductase 2 (TrxR2), peroxiredoxin
3 (Prx3), and glutathione S-transferase (GST) [13,24,25]. Past research has indicated that
carnivorous fish fed diets high in starch exhibited low antioxidant capacity and strong
oxidative stress [13,23,26]. In addition, excessive ROS can cause cellular damage in these
immune regulatory cells, including leukocytes, macrophages, and natural killer cells [27].
Prasad and colleagues [21] have shown that immune and inflammatory responses can
be influenced by the release of various cytokines, such as tumor necrosis factor-α (TNF-
α), interferons (IFNs), and interleukins (ILs), which was also supported by Herb and
Schramm [28] and Liu et al. [29]. In animals, the leukocyte numbers and platelet (PLT)
counts have appeared as biomarkers of inflammation or inflammatory response in clinical
practices recently [3,30–32]. And the secretion and maturation of these pro-inflammatory
cytokines could be mediated by the NLRP3 inflammasome in animal cells [33]. Excessive
production of ROS can activate the NLRP3 inflammasome [34–36]. Yet, there were limited
data regarding the connection among elevated starch-induced ROS, NLRP3 inflammasome,
and inflammatory markers in carnivorous fish.

Largemouth bass is a common fish species that is economically important and exten-
sively cultivated in China due to its rapid growth, abundant harvest, soft flesh, lack of
intermuscular spines, and other favorable characteristics [37]. Numerous previous research
projects have investigated the prolonged impacts of increased dietary starch on the devel-
opment characteristics, metabolic capacities, and overall health of the liver and intestines in
largemouth bass [17,18,38]. Little information could be obtained on the short-time relation-
ship between high starch-mediated hematological variations, metabolic changes, oxidative
stress, inflammatory responses, and histopathology in largemouth bass. This research
sought to investigate the processes that lead to the development of metabolic fatty liver in
largemouth bass fed a diet high in starch. This study utilized a system dynamics approach,
analyzing data from various body and blood measurements as well as metabolic, oxidative
stress, antioxidant, inflammatory, and histopathological markers in largemouth bass fed
with high starch.
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2. Materials and Methods
2.1. Diets, Fish, and Feeding Trials

Two isonitrogenous and isolipidic (crude protein: 46.72%, crude lipid: 9.86%) trial
diets were produced with two levels of dietary starch (0% and 20%), respectively (Table 1).
All used ingredients were firstly filtrated with 60-mesh screens, mixed, produced into
pellets with 2.5 mm diameter, air-dried, and then stored following methods outlined by
Wu et al. [39]. Juvenile largemouth bass were acquired from a nearby fish breeder and
introduced to recirculating tanks (1000 L) with a starch-free diet for two weeks. Following
the acclimation period, 720 healthy fish (with an average starting weight of 7.43 ± 0.15 g)
were chosen and distributed at random among 24 recirculating tanks (each with a capacity
of 500 L and containing 30 fish). After the distribution, all fish were still fed a diet without
starch for one month to maintain physiological consistency. Then, control groups with
3 tanks were still fed with a control diet without starch; these experimental groups (21 tanks)
were fed with a high-starch diet (20%) and randomly distributed into seven groups (D1–D7)
for 7 days. During the culturing time, all fish were fed with 3% of the total fish weight per
day at 08:00 and 17:00. The recirculated water was filtered, with a temperature range of
26.3 to 28.4 degrees Celsius, pH range of 6.8 to 7.1, dissolved oxygen levels above 5.8 mg/L,
low nitrite levels less than 0.02 mg/L, low ammonia nitrogen levels less than 0.05 mg/L,
and exposed to natural sunlight.

Table 1. Composition and nutrient levels of experimental diets (air-dry basis).

Ingredient
Composition of Diets (%)

Diet 1 Diet 2

Fish meal a 20.00 20.00
Soybean meal b 10.00 10.00

Casein c 35.00 35.00
Pregelatinized tapioca starch d 0.00 20.00

Rapeseed oil e 6.50 6.50
Lecithin f 2.00 2.00

Mineral premix g 2.00 2.00
Vitamin premix h 1.00 1.00
Choline chloride i 0.40 0.40

Microcrystalline cellulose j 23.10 3.10
Nutrient levels (%)

Moisture 7.31 7.18
Crude protein 46.63 46.74

Crude lipid 10.85 10.55
Ash 6.33 6.43

a Supplied by Zhejiang Dongyu Biotechnology Co., Ltd. (Huzhou, China). b Supplied by Ningbo Food Co.,
Ltd. (Ningbo, China). c Obtained from Gansu Hualing Dairy Co., Ltd. (Lanzhou, China). d Supplied by Xinxin
biochemical technology Co., Ltd. (Hangzhou, China). e Rapeseed oil was produced using oil press. f Supplied
by Jiangsu Yuanshengyuan Biological Engineering Co., Ltd. (Nanjing, China). g Mineral premix (mg kg−1 diet):
Ca(H2PO4)2, 12,000 mg; KI, 0.4 mg; CoCl2·6H2O, 52 mg; CuSO4·5H2O, 16 mg; FeSO4·7H2O, 200 mg; ZnSO4·7H2O,
280 mg; MnSO4·H2O, 45 mg; MgSO4·7H2O, 1200 mg; NaCl, 60 mg. h Vitamin premix (mg kg−1 diet): vitamin A,
35 mg; vitamin D, 6 mg; vitamin C, 1000 mg; vitamin E, 300 mg; thiamine, 30 mg; riboflavin, 50 mg; pyridoxine
hydrochloride, 20 mg; vitamin B12, 0.1 mg; vitamin K3, 10 mg; inositol, 800 mg; pantothenic acid, 60 mg; folic
acid, 20 mg; niacin, 200 mg; biotin, 60 mg. i Supplied by Zhejiang Yixing Feed Group Co., Ltd. (Jiaxing, China).
j Supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Fish Tissue Samples’ Preparation

After the experiment, all fish in these trial groups were first fasted for about 24 h,
anesthetized with MS-222 (Sigma, St. Louis, MO, USA), and weighed to evaluate fish body
indices. Twenty fish in each tank were randomly selected, weighed, and used for blood
sampling for hematological assays. All the serum and liver samples were gathered with
methods supplied by Wu et al. [39]. These tested samples were firstly frozen using liquid
nitrogen and subsequently kept at −80 ◦C for additional measurements. Frozen liver tissue
samples were powderized in liquid nitrogen, suspended with physiological saline, and
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centrifuged with methods supplied by Wu et al. [39]. All the supernatants were gathered,
divided into Eppendorf tubes, and then frozen at −80 ◦C for further experimental tests.

2.3. Measurement of Hematological and Serum Biochemical Indices

The TEK 8500 VET automated blood analyzer from Jiangxi Tekang Tech (Nanchang,
China) was utilized for the assessment of hematological parameters and cell populations,
such as red blood cells (RBCs), hemoglobin (HGB), white blood cells (WBCs), eosinophils
(EOS), neutrophils (NEU), basophils (BAS), lymphocytes (LYM), monocytes (MON), and
platelets (PLT). All measurements were performed with 15 replicates.

Serum levels or activities of various biomarkers including GLU, INS, HDL-C, LEP,
TAG, LDL-C, TC, aspartate aminotransferase (AST), total bile acid (TBA), albumin (ALB),
alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN),
LDH, GC, and ADPN were measured using commercial diagnostic kits provided by
Jiancheng Biotech (Nanjing, China). All analyses were performed with 9 replicates.

2.4. Measurement of Glucose and Lipid Metabolic Parameters in Fish Liver

Diagnostic kits from Jiancheng Biotech (Nanjing, China) were used to measure the ac-
tivities or contents of various enzymes and compounds including glucokinase (GCK),
phosphofructokinase (PFK), pyruvic acid (PA), pyruvate kinase (PK), lactic dehydro-
genase (LDH), phosphoenolpyruvate carboxylase (PEPC), lactic acid (LA), fructose-1.6-
bisphosphatase (FBP), liver triglyceride (LTAG), acetyl coenzyme A (Ac-CoA), malonyl
monoacyl CoA (Mal-CoA), and liver glycogen (LAG). Levels of glucose transporter 2
(GLUT2), glycogen synthetase (GCS), glucose 6-phosphatase (G6Pase), glycogen branch-
ing enzyme (GBE), fatty acid synthase (FAS), glycogen debranching enzyme (GDE), and
acetyl-CoA carboxylase (ACC) were assessed through relative ELISA kits following the
manufacturer’s instructions (Hengyuan Biotech, Shanghai, China). The crude lipid content
in the liver was measured using the chloroform-methanol method supplied by Araujo
et al. [40]. All measurements were performed with 9 replicates.

2.5. Measurement of Antioxidant and Inflammatory Parameters in the Liver

Commercial diagnostic kits from Jiancheng Biotech (Nanjing, China) were used to
measure levels of total superoxide dismutase (T-SOD), glutathione S-transferase (GST), CAT,
malondialdehyde (MDA), hydrogen peroxide (H2O2), and total antioxidant capacity (T-
AOC). ELISA kits from Jiangsu Meimian Industrial Co., Ltd. (Hangzhou, China) were used
to evaluate the contents of ROS in the liver. Levels of TNF-α, IL-1β, IL-6, IFN-γ, IL-8, IL-12,
and IL-17 in these fish liver samples were also assessed with ELISA kits purchased from
Shanghai Hengyuan Biotech (Shanghai, China) following their recommended protocols.
All measurements were performed with 9 replicates.

2.6. Measurement of Gene Expression in the Liver

RNA extraction, RNA integrity examination, quantification, and RNA reverse tran-
scription were performed with methods supplied by Wu et al. [13]. All the cDNA samples
were treated with ethanol (95%) and then frozen at −80 ◦C for further analysis. All the
primers were designed according to relative gene sequences from largemouth bass in the
GenBank (Table 2). The CFX96 machine from Bio-Rad in Hercules, CA, USA was utilized
for conducting real-time qPCR analysis, with expression variations analyzed using the
2−∆∆CT method as outlined by Yang et al. [37]. All measurements were performed with
9 replicates for further analyses.

Table 2. The list of PCR primers used in this study.

Gene Forward (5′-3′) Reverse (5′-3′) Reference

GLUT2 TCACCGTGTTTATTTATCTTCG AGCTCCGTATCGTCTTTGG XM_038728860
GCK AAGGGAACAATGTTGTGGG AGCTGCGGTCCTCGTAAT XM_038703172
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Table 2. Cont.

Gene Forward (5′-3′) Reverse (5′-3′) Reference

PFK CTGTATAATCCCTGCCACCAT TCTCCACCACAAACACTCG XM_038720351
PK CACCAACCCATTCATTTGC GTGTCATCACCTCAGAGTAGCG XM_038711316

LDH GCAGGAGGGTGAAAGCC GGTTGGAGACCACGATGAGT XM_038726015
FBP CTGCGGCTGCTGTATGAA CCCGCTGATGGATGCTCT XM_038704229

G6Pase GTCAACAAGCAACCCAACG AGTGAGGACACCACGACCC XM_038734911
ISR CCCGAGACATCTATGAGACCG CAAAGCACGACGCCAAAT XM_038715865

ISRS2b TCCCCGTTCACACTCCTCT CATTTTTGTTCCGCACCAC XM_038720730
PI3Kc GCCAGTAGTGAGCAGTGAAAGC TCCATGACGGCATAGATAGCA XM_038693595
AKT1 AGCGGGCTCGGTTCTACGGT ATCTTTGTCCAGCATGAGGTTT MG993041

SREBP1c GAGGACACCAAGCCGAATG TGCCAGAGGGTTGAGGGA XM_038699585
G6PD TGGTGCTGGGTCAGTATGT GCGCAGGTAAAGGTGGC XM_038722146
PGD TTTGTGGTCTGCGCTTACA GATCCTCCTGGGCTTCTTC XM_038739743

GYG2 GATAGCCAAGGAACAGCC TGAAGCATCTTAGAACGGAGT XM_038722829
GCS CATCCAACGGACACGAAC CATCTTGAACTTGTCAGGGA XM_038695255
GBE TTGACGGCTTCCGATTT ATTGGCAAGCATCAGGTA XM_038694127
PP1 GGCTGTTTGAGTATGGTGGC TCTGGGTATTTGATCTTGTAGGC XM_038728851
GDE TCCTTGATGTAACCCACGAC CAGTAGCACAGCAAGCCATA XM_038718921
ACC GCCAGTCTCCCAACTCCTA ATGCGATACCTGTCCACCT XM_038709728
FAS CATTCCGTAGTAGGATAAGTCAACA CATAGTCATAACCACGCAGTCG XM_038735140
SCD CCCTTCAGCATCTCCTTT GTGGTAATGTGGCCTTGTA XM_038735580
ME1 TCGCTAAGGAGGAGTGTTTG GTTTCTTGATCTGTGGGTGC XM_038712129

FABP-L GGTCAAGTCGGTGGTTCA ATGCGTTTGCTTGTCCTC XM_038704629
FATP4 GATTCTACCGTTCATCTACCC GAATGATCCTGCCGACTA XM_038733650

GK TGCGGACTCAATCAACG TCCATCAGCCAGCGTAG XM_038720816
GPAT3 AGAGGGCGATAGTGAGGG CAGGATGGGAAGTTTGGTC XM_038733141
GPAT4 CTGTTGTTGGGCTGTTGC TCCATTCTTGGGTTTATTCTC XM_038704699
DGAT2 CTTCCGCTTGCCCGTCCTT GCATTTCCTGTCCCGTTAT XM_038708163

Plin2 GAGTGGACACGGCCCTAA GAACCCAGGCGGACATAG XM_038730762
APOB100 GATTGTAAAGTTTGAGGCTGAC TGCATGAATTTCGTAGGG XM_038727548
SREBP2 TGTTGCCGTGGGTGATG TTGCGATGCCTCCAGAAT XM_038694760
AACS GCTCGGCTCAACTACGCT CGAACAACGCCACATCTT XM_038703519

HMGCRa GGTGGAGTGCTTAGTAATCGG CACGCAGGGAAGAAAGTCA XM_038702603
HMGCS CCTGGACGACTTTGGCTAT CCTGTGAAGGGTCCTGTCT XM_038733206
CYP51 TCGCCTCAGACTGTAGCAG GAGGTAGCGGTCAGGGTT XM_038725400
SOAT2 CTTGGCAATGGGCTTCGG GCTCTGTCGCTTGTCGTTC XM_038695616
ABCG5 ACGGATGTAGGGAGGGAC CGCTTCTTGTAGGAGGGTA XM_038737039
ABCG8 GCTTTCTCATGCCTCCTTTA GTTCATCGCCTCCACCAC XM_038737035
NPC1L1 CCTTCCCTCCTCGCTGAT CCAAGAACACGCCCAATC XM_038702470
CYP7A1 CGGCGGTTGCGTTACTT GATAGCAGGGTCCAATAGTTC XM_038717160

CYP27A1 TTGCCTCTATGCCATCAGTC TCACTCCGAAGCCAAACG XM_038720051
BSEP AGATGCTCCGTACCAAGCG CACCAAGTAACCTCCAAACCTAT XM_038716782
NTCP CAAGGCTGTCGGAGGCAACG ATGGAGGAGAAGGGAACG XM_038732638
OATP1 GCAGTGGCAGTTGGGATC GCAGCAGCAGAAGGAGGTAT XM_038738452
OST-α CCAAGAAGACCACCATCA TACACCACGACTGCAAAA XM_038708198
MRP3 ACGTGGAGTTCCGCGACTA GTGCGACCAACGATACCAA XM_038719452

Cu/Zn-SOD TGAGCAGGAGGGCGATTC GCACTGATGCACCCATTTGTA XM_038708943
Mn-SOD CAGGGATCTACAGGTCTCATT ACGCTCGCTCACATTCTC XM_038727054

CAT ACCTATTGCTGTCCGCTTCTC TCCCAGTTGCCCTCCTCA XM_038704976
GST1 GAGCCCATCAGAACACCC ACCCAAATAGCACCCAAC XM_038711179
Trx2 TTCAGGACCACGATGACTTCAC TGCAACAGCCTTCTCCAACC XM_038693856

TrxR2 GCCTTCTGTAGAGGGAGACA CTGAACCACCACCAATGAC XM_038703974
Prx3 ACAAAGCCAATGAGTTCCA TTGCCTAAGCCTCCAGTC XM_038737170

COX4 GCCTGACAAACGCTACAAAG GGTACAAGGCAATCTTCTCCTC XM_038723148
NOX1 GTGTCCCATCCCTCAGTT GCCGCATCACAATCTTC XM_038698886

NOXA1 TCCTACACTGCCACCTATGC TGGACCTTCACCACCACAG XM_038704394
HO1 TCTTTGGCGTAAACTGGAGG TAGCGAGTGTAGGCGTGGG XM_038694281

TNF-α CAACGGCAAGTGTCAAACCC TCTTGTCCTGAGCCCTTGGTAT XM_038723994
IL-1β GCGACCGCAGTAAGAAAG CAGACGGGATAGTCGATGTA XM_038733429
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Table 2. Cont.

Gene Forward (5′-3′) Reverse (5′-3′) Reference

IL-8 TTCTCCTGGCTGCTTTGG TGGATGGCCCTCCTGTTA XM_038704093
IL-12 CCGCTGTTATTCAGTCTTACC GCATCAGGGAGCAGTTCA XM_038693841
IFN-γ GAGTTGCTTTGGCGTTTG TGTTGATGCTCCTGGTGA XM_038709291

Caspase1 ATGAAGCCAGCAGGAAGC TTGGGATGAGTGCGTTTG XM_038694367
Caspase3 CGTGGTACAGACCTGGATG GCCTGGAGCAGTGGAATA XM_038699323
Caspase6 ATGCCGTGGACAGTGAGTT CATACCAGGACCCGTTGAT XM_038710174
Caspase8 CAGGCTCCATCTACATCC TCCCTTGCTGACCTCC XM_038718636
Caspase9 TCCCAGTTCAGCACATCA GGACCTCATTAGGCGACAC XM_038734900
NOD1 TGTTGGTGGGAGGTATTTG TGGTAAGACGTGGGTGGT XM_038712291
NOD2 GGGCAATAAGATAGGTGATG TGATAATGTTGGCGAGGG XM_038701062
ASC AAATAAGGTGGAGGGTAA AGTCTGCTTCACAGTGGC XM_038710753

GSDME ACATGACGGACGCTACGA GCTGAAAGGTGCTGGAAA XM_038711654
β-actin TTCACCACCACAGCCGAAAG TCTGGGCAACGGAACCTCT XM_038695351

GLUT2, glucose transporter 2; GCK, glucokinase; PFK, phosphofructokinase; PK, pyruvate kinase; LDH, lac-
tate dehydrogenase; FBP, fructose-1,6-bisphosphatase; G6Pase, glucose-6-phosphatase; ISR, insulin receptor;
IRS2b, insulin receptor substrate 2b; PI3Kc, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic; AKT1, AKT
serine/threonine kinase 1; SREBP1c, sterol regulatory element-binding protein 1c; G6PD, glucose-6-phosphate
1-dehydrogenase; PGD, 6-phosphogluconate dehydrogenase; GYG2, glycogenin 2; GCS, glycogen synthase;
GBE, 1,4-alpha-glucan-branching enzyme; PP1, serine/threonine-protein phosphatase PP1; GDE, glycogen de-
branching enzyme; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD, acyl-CoA desaturase; ME1,
NADP-dependent malic enzyme 1; FABP-L, fatty acid-binding protein liver type; FATP4, long-chain fatty acid
transport protein 4; GK, glycerol kinase; GPAT3, glycerol-phosphate acyltransferase 3; GPAT4, glycerol-phosphate
acyltransferase 4; DGAT2, diacylglycerol O-acyltransferase 2; Plin2, perilipin 2; APOB100, apolipoprotein B
100; SREBP2, sterol regulatory element-binding protein 2; AACS, acetoacetyl-CoA synthetase; HMGCRa, 3-
hydroxy-3-methylglutaryl-Coenzyme A reductase; HMGCS, hydroxymethylglutaryl-CoA synthase; CYP51, lanos-
terol 14-alpha demethylase; SOAT2, sterol O-acyltransferase 2; ABCG5, ATP-binding cassette sub-family G
member 5; ABCG8, ATP-binding cassette sub-family G member 8; NPC1L1, Niemann-Pick C1-like protein 1;
CYP7A1, cholesterol 7-alpha-monooxygenase; CYP27A1, sterol 26-hydroxylase; BSEP, bile salt export pump;
NTCP, sodium/taurocholate cotransporting polypeptide; OATP1, solute carrier organic anion transporter family
member 1; OST-α, organic solute transporter subunit alpha; MRP3, canalicular multispecific organic anion trans-
porter 2; Cu/Zn-SOD, Cu/Zn-superoxide dismutase; Mn-SOD, Mn-superoxide dismutase; CAT, catalase; GST1,
glutathione S-transferase 1; Trx2, thioredoxin 2; TrxR2, thioredoxin reductase 2; Prx3, peroxiredoxin 3; COX4,
cytochrome c oxidase; NOX1, NADPH oxidase 1; NOXA1, NADPH oxidase activator 1; HO1, heme oxygenase-1;
TNF-α, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; IL-8, interleukin 8; IL-12, interleukin 12; IFN-γ,
interferon-gamma; Caspase1; Caspase3; Caspase6; Caspase8; Caspase9; NOD1, nucleotide-binding oligomerization
domain-containing protein 1; NOD2, nucleotide-binding oligomerization domain-containing protein 2; ASC,
apoptosis-associated speck-like protein containing a CARD; GSDME, gasdermin-E.

2.7. Measurement of Histomorphometrical Parameters of the Liver

Six fish were selected at random from each category, and liver tissue samples mea-
suring 0.5 cm × 0.5 cm × 0.5 cm were rinsed with 0.6% saline and then immersed in
a 4% paraformaldehyde solution for 48 h. The liver tissue samples were then fixed,
dehydrated, embedded, and stained with hematoxylin and eosin (HE), periodic acid
Schiff (PAS), or oil red O (ORO) before being examined under light microscopy (DM500,
Leica, Leica Microsystems (Schweiz) AG, Heerbrugg, Switzerland). Liver micrographs
were captured at 20 × and 40 × magnification and recorded using a digital camera fol-
lowing the procedures outlined in our laboratory’s previous publication [39]. K-Viewer
(https://kv.kintoneapp.com/en/user/, accessed 31 March 2023) 1.0 software (1.0.4) (Kon-
foong Bioinf Tech Co., Ltd, Ningbo, China) and Slide Viewer (accessed 21 April 2023)
2.5 software (2.5.0) (3DHISTECH Ltd., Budapest, Hungary) were utilized for image analysis
conducted by Wu et al. [39]. Each analysis was conducted with 3 duplicates.

2.8. Data Analysis

All results were expressed as mean ± SD (standard deviation). Groups were compared
using SPSS 25.0 (IBM, Chicago, IL, USA) through a one-way analysis of variance (ANOVA).
Tukey’s multiple interval test was used for multiple comparisons between different dietary
treatments. Furthermore, orthogonal polynomial contrasts about linear and/or quadratic

https://kv.kintoneapp.com/en/user/
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effects were used with the methods supplied by Wu et al. [39]. A significant difference was
indicated when p was less than 0.05.

3. Results
3.1. Body Indices and Lipid Contents in the Liver

The viscerosomatic index (VSI), hepatosomatic index (HSI), and intestinal somatic
index (ISI) of the fish showed a tendency to rise as the number of days on a high starch diet
increased in largemouth bass juveniles, reaching their peak in the D7 trial groups (p < 0.05)
(Figure 1A–C). Furthermore, no significant variances were seen in ISI among the D3, D5
and D7 trial groups (p > 0.05). The liver’s crude lipid contents increased as the high starch
diet was cultured for more days, reaching its peak in the D7 groups (p < 0.05), although
there were no notable differences between the D1 and D3 groups (p > 0.05).
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Figure 1. Effect of high-starch diet on body index including VSI (A), HSI (B), ISI (C) and crude lipid
content in the liver (D) in largemouth bass. Data are reported as the mean ± SD of three replicates
(n = 3). Bars with different superscripts (a–e) are significantly different (p < 0.05). To calculate
animal-specific parameters, the following equations were used: hepatosomatic index (HSI, %) = liver
weight/final body weight (FBW) × 100. Viscerosomatic index (VSI, %) = viscera weight/FBW × 100.
Intestinalsomatic index (ISI, %) = intestinal fat weight/FBW × 100.

3.2. Hematological Parameters

With the increase in the consumption of a high-starch diet by largemouth bass over
several days, there was first a rise and then a decrease in the trends on RBC counts in the
D1–D7 groups (p > 0.05), while there were no notable differences in RBC counts between
the D0 and D7 groups (p > 0.05). Furthermore, HGB levels rose in the D1, D3, and D5
groups and reached their peak in the D5 trial groups before declining in the D7 treated
groups (p < 0.05). Additionally, there was a notable increase in the counts of WBC and
LYM (p < 0.05), with WBC peaking in the D7 groups (p > 0.05), and LYM peaking in the
D5 groups (p > 0.05). In the meantime, all NEU, MON, and EOS levels showed marked
increases when compared to the D0 group, peaking in the D7 groups (p < 0.05). There were
no notable differences in MON and EOS counts between the D3 and D5 groups (p > 0.05).
Conversely, there was a marked inverse correlation between PLT counts and the duration
of consuming a high-starch diet in comparison to the D0 groups (p < 0.05). However, no
significant differences were presented between the D5 and D7 groups (p > 0.05) (Table 3).
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Table 3. Effects of dietary days on hematological parameters in largemouth bass fed high starch
(mean ± SD, n = 15).

Items
Days of High Starch Diet

D0 D1 D3 D5 D7 AN LT QT

RBC A 3.34 ± 0.10 b 3.61 ± 0.19 ab 3.61 ± 0.25 a 3.60 ± 0.18 ab 3.52 ± 0.17 ab 0.028 0.461 0.061
HGB B 117.13 ± 4.32 c 134.88 ± 5.08 a 133.00 ± 5.88 a 136.63 ± 3.93 a 126.00 ± 5.24 b 0.000 0.031 0.154
WBC C 129.75 ± 6.27 b 160.97 ± 13.91 a 160.22 ± 22.52 a 163.54 ± 7.90 a 175.13 ± 11.92 a 0.000 0.000 0.001
NEU C 2.71 ± 0.30 e 5.20 ± 0.53 d 6.90 ± 0.42 c 7.68 ± 0.48 b 8.67 ± 0.27 a 0.000 0.000 0.000
LYM C 129.55 ± 5.67 c 135.88 ± 13.28 bc 145.88 ± 16.04 ab 149.59 ± 7.37 a 147.65 ± 5.05 a 0.002 0.000 0.000
MON C 4.79 ± 0.19 d 10.44 ± 0.21 c 11.56 ± 0.25 b 12.03 ± 0.49 b 13.24 ± 0.55 a 0.000 0.000 0.000
EOS C 0.14 ± 0.02 c 0.18 ± 0.01 c 1.27 ± 0.13 b 1.59 ± 0.04 b 2.12 ± 0.40 a 0.000 0.000 0.000
BAS C 0.14 ± 0.01 d 0.31 ± 0.07 d 3.08 ± 0.01 c 4.15 ± 0.09 b 6.53 ± 0.39 a 0.000 0.000 0.000
PLT C 825.80 ± 47.56 a 448.75 ± 49.66 b 309.88 ± 57.81 c 258.38 ± 50.96 cd 223.63 ± 34.89 d 0.000 0.000 0.000

Note: a–e Values in the same row with different letters indicate significant differences (p < 0.05). AN: ANOVA,
LT: linear trend, QT: quadratic trend. A = 1012/L, B = g/L, C = 109/L.

3.3. Biochemical and Hormone Indicators in the Serum

High dietary starch significantly increased contents or levels of GLU, HDL-C, and
LDL-C in the serum of D1–D7 groups when compared with that in the D0 groups fed with
a no-starch diet (p < 0.05). The peaked levels of HDL-C, and LDL-C were all shown in
the D7 groups (p < 0.05), with no notable differences among D1, D3, D5, and D7 groups
(p > 0.05). TG and TC contents were notably heightened and peaked in the D5 and D7
groups (p < 0.05), respectively. AST activities were firstly heightened and then maintained
stable trends in D1, D3, D5, and D7 groups (p > 0.05). Similarly, ALT activities and TBA
contents were also markedly heightened to the maximal levels in the D5 and D3 groups,
respectively, with no significant differences between the D3 and D5 groups (p > 0.05). In
addition, amounts of ALP, ALB, LDH, and BUN were all first increased in the D1 and D3
groups when compared with that in the D0 groups (p < 0.05) and then reduced in the D5
and/or D7 groups. However, amounts of ALP, ALB, LDH, and BUN in the D7 groups were
still significantly higher than those in the D0 groups (p < 0.05). In addition, the contents of
INS and ADPN first rose to their peaks in the D3 groups when compared to those in the D0
groups (p < 0.05) and then decreased to the lower levels in the D5 and D7 groups when
compared to that in the D3 groups (p < 0.05). However, GC amounts were increased and
peaked in the D7 groups when compared to that in the D0 groups. The levels of LEP were
also firstly heightened and reached maximal values in the D5 groups and then decreased in
the D7 groups, although LEP levels in the D7 groups were markedly higher than those in
the D0 groups (p < 0.05) (Table 4).

Table 4. Effects of dietary days on biochemical and hormone indicators of serum in largemouth bass
fed high starch (mean ± SD, n = 9).

Items
Days of High Starch Diet

D0 D1 D3 D5 D7 AN LT QT

GLU A 4.39 ± 0.06 d 5.59 ± 0.06 c 5.73 ± 0.32 c 6.71 ± 0.14 b 8.76 ± 0.39 a 0.000 0.022 0.000
HDL-C A 2.07 ± 0.12 b 2.60 ± 0.06 a 2.78 ± 0.10 a 2.51 ± 0.15 a 2.79 ± 0.13 a 0.000 0.012 0.098
LDL-C A 1.42 ± 0.05 b 1.85 ± 0.08 a 1.94 ± 0.05 a 1.90 ± 0.10 a 2.03 ± 0.09 a 0.000 0.001 0.038

TG A 5.18 ± 0.11 d 6.44 ± 0.30 c 7.32 ± 0.17 b 9.17 ± 0.42 a 9.00 ± 0.27 a 0.000 0.000 0.506
TC A 5.99 ± 0.42 c 7.34 ± 0.20 d 7.91 ± 0.08 a 8.07 ± 0.07 a 8.12 ± 0.25 a 0.000 0.043 0.166
AST B 56.10 ± 6.50 b 84.77 ± 2.47 a 90.00 ± 3.37 a 85.33 ± 6.61 a 97.70 ± 6.87 a 0.000 0.002 0.096
ALT B 3.73 ± 0.15 c 6.90 ± 0.26 b 8.17 ± 1.10 ab 9.37 ± 2.15 a 9.05 ± 0.35 a 0.001 0.000 0.008
TBA C 8.10 ± 0.46 d 9.10 ± 0.10 c 11.20 ± 0.44 a 10.57 ± 0.25 ab 10.00 ± 0.20 b 0.000 0.015 0.000
ALP B 104.77 ± 5.08 d 138.50 ± 2.88 b 156.47 ± 3.58 a 143.57 ± 5.14 b 114.80 ± 4.93 c 0.000 0.715 0.000
ALB D 8.27 ± 0.12 c 10.50 ± 0.20 a 10.10 ± 0.10 b 9.80 ± 0.10 b 7.20 ± 0.26 d 0.000 0.026 0.222
LDH B 751.93 ± 23.11 d 1037.03 ± 28.85 b 1398.83 ± 20.26 a 941.77 ± 24.41 c 925.3 ± 27.77 c 0.000 0.754 0.001
BUN A 0.99 ± 0.03 c 1.66 ± 0.06 a 1.55 ± 0.04 a 1.21 ± 0.08 b 1.11 ± 0.08 b 0.000 0.272 0.501
INS E 20.18 ± 0.88 c 22.09 ± 0.32 b 23.76 ± 0.49 a 19.13 ± 0.19 d 18.51 ± 0.47 d 0.000 0.048 0.003
GC F 9.17±0.06 c 8.71±0.06 d 7.70±0.08 e 9.42±0.08 b 10.05±0.03 a 0.000 0.054 0.000

ADPN G 57.18 ± 1.29 c 63.85 ± 1.60 b 84.15 ± 2.29 a 66.42 ± 2.74 b 66.27 ± 2.89 b 0.000 0.725 0.167
LEP G 0.12 ± 0.01 e 0.24 ± 0.01 d 0.31 ± 0.01 c 0.49 ± 0.01 a 0.37 ± 0.03 b 0.000 0.000 0.000

Note: a–e Values in the same row with different letters indicate significant differences (p < 0.05). A = mmol/L,
B = U/L, C = umol/L, D = g/L, E = mU/L, F = pg/ml, G = µg/L.
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3.4. Activities or Contents of Glucose and Lipid Metabolism in Fish Liver

Compared to the D0 groups, amounts and activities of GLUT2, GCK, PFK, PK, LDH,
PEPC, and ACC were all notably heightened in the livers of D3, D5, and D7 groups fed
with high-starch diet (p < 0.05) and reached maximal levels in D5 or D7 groups, respec-
tively. The contents of PA and LA were also notably heightened in the livers of D1–D7
groups fed with a high-starch diet (p < 0.05), although decreased in the D7 groups when
compared with their peak in D5 and D3 groups (p < 0.05), respectively. In addition, activi-
ties of FBP, G6Pase, GCS, GBE, and FAS were first increased in D3 or D5 treated groups
(p < 0.05) and then decreased in D7 groups. However, activities of GDE were signifi-
cantly reduced in the D1–D7 groups when compared with D0 groups (p < 0.05), although
there were no differences between the D1–D3, and the D5–D7 groups. While, LAG con-
tents were increased in D1–D7 groups and reached the maximal level in the D7 groups
(p < 0.05). Although there was no significant variation among the D0, D1, and D3 groups
(p > 0.05), Ac-CoA contents were increased in D5 and D7 groups (p < 0.05). Moreover,
there were similar variable patterns in the contents of Mal-CoA and LTAG. Compared to
the D0 groups, the maximal contents of Mal-CoA and LTAG were both shown in the D5
groups, although no significant variation could be observed between the D5 and D7 groups
(p > 0.05) (Table 5).

Table 5. Effects of dietary days on glucose and lipid metabolism of liver in largemouth bass fed high
starch (mean ± SD, n = 9).

Items
Days of high starch diet

D0 D1 D3 D5 D7 AN LT QT

GLUT2 A 3.84 ± 0.38 c 4.26 ± 0.17 bc 4.86 ± 0.20 b 7.88 ± 0.62 a 7.60 ± 0.15 a 0.000 0.000 0.000
GCK A 0.26 ± 0.03 d 0.44 ± 0.02 c 0.53 ± 0.02 b 0.73 ± 0.04 a 0.53 ± 0.06 b 0.000 0.003 0.000
PFK B 0.47 ± 0.02 e 0.89 ± 0.07 d 1.48 ± 0.08 c 2.11 ± 0.11 b 2.33 ± 0.10 a 0.000 0.000 0.000
PK C 0.08 ± 0.02 d 0.09 ± 0.01 cd 0.11 ± 0.01 c 0.16 ± 0.01 b 0.2 ± 0.02 a 0.000 0.000 0.000

LDH C 0.51 ± 0.01 c 0.78 ± 0.03 b 0.78 ± 0.08 b 0.81 ± 0.01 b 0.98 ± 0.01 a 0.000 0.156 0.001
PEPC D 4.14 ± 0.09 e 6.84 ± 0.14 d 8.38 ± 0.66 c 9.9 ± 0.42 b 14.33 ± 0.37 a 0.000 0.000 0.000
FBP E 27.42 ± 0.79 c 27.94 ± 0.84 c 33.02 ± 1.00 b 35.98 ± 0.87 a 32.00 ± 0.84 b 0.000 0.002 0.000

G6Pase A 7.11 ± 0.18 d 10.13 ± 0.33 c 14.46 ± 0.66 a 14.05 ± 0.58 a 11.34 ± 0.27 b 0.000 0.002 0.001
GCS F 31.41 ± 0.99 c 41.20 ± 0.86 b 41.16 ± 1.59 b 50.32 ± 1.08 a 33.32 ± 1.56 c 0.000 0.066 0.085
GBE G 16.49 ± 0.18 c 16.30 ± 0.32 c 25.45 ± 0.90 a 17.81 ± 0.67 b 17.06 ± 0.43 bc 0.000 0.082 0.019
GDE G 32.51 ± 1.28 a 23.84 ± 1.28 b 23.14 ± 1.05 b 21.12 ± 1.34 bc 19.16 ± 1.46 cd 0.000 0.024 0.000
LAG H 48.25 ± 0.60 e 85.80 ± 0.11 d 102.08 ± 0.90 c 104.97 ± 0.59 b 109.49 ± 0.13 a 0.000 0.000 0.000

LA I 0.52 ± 0.01 d 0.77 ± 0.02 c 0.97 ± 0.01 a 0.9 ± 0.01 b 0.75 ± 0.01 c 0.000 0.085 0.000
PA J 0.1 ± 0.01 d 0.19 ± 0.01 c 0.36 ± 0.01 a 0.37 ± 0.01 a 0.3 ± 0.01 b 0.000 0.002 0.000

Ac-CoA A 4.50 ± 0.38 c 4.15 ± 1.21 c 5.04 ± 0.08 c 9.56 ± 0.83 b 10.90 ± 0.19 a 0.000 0.475 0.000
ACC K 1.27 ± 0.04 d 1.27 ± 0.03 d 1.44 ± 0.02 c 1.53 ± 0.03 b 2.01 ± 0.03 a 0.000 0.000 0.000
FAS L 48.00 ± 0.71 e 81.69 ± 0.36 d 102.68 ± 0.79 a 93.87 ± 0.56 c 98.08 ± 0.73 b 0.000 0.000 0.000

Mal-CoA J 287.40 ± 24.89 d 335.78 ± 11.55 c 366.26 ± 13.63 bc 443.40 ± 15.15 a 392.92 ± 25.33 ab 0.000 0.000 0.034
LTAG I 0.13 ± 0.02 c 0.13 ± 0.01 c 0.21 ± 0.01 b 0.25 ± 0.01 a 0.23 ± 0.01 ab 0.000 0.001 0.000

Note: a–e Values in the same row with different letters indicate significant differences (p < 0.05). A = ng/mg prot,
B = U/mg, C = U/g prot, D = IU/L, E = U/mg prot, F = nmol/min/mg prot, G = IU/g prot, H = mg/g,
I = mmol/g prot, J = µmol/mg prot, K = mmol/h/mg prot, L = U/L.

3.5. Gene Expression Variations of Glucose Metabolism in Fish Liver

The levels of GLUT2, GCK, PFK, PK, FBP, and G6Pase showed a rising trend, peak-
ing in the D5 or D7 groups when compared to the D0 groups (p < 0.05). In the D3
and D5 groups, the levels of LDH transcription showed a notable increase (p < 0.05),
while the remaining three groups did not exhibit any significant differences statistically
(p > 0.05) (Figure 2). High dietary starch significantly increased the mRNA levels of
glucose-6-phosphate 1-dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (PGD),
glycgenin 2 (GYG2), glycogen synthetase (GCS), 1,4-alpha-glucan branching enzyme (GBE),
and serine/threonine-protein phosphatase PP1 (PP1) (p < 0.05). The mRNA expression of
glycogen debranching enzyme (GDE) was significantly reduced in the D5 and D7 groups,
with no significant difference between the two groups (p > 0.05) (Figure 3).
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Figure 2. Effect of high-starch diet on related mRNA levels of hepatic glucose metabolism in
largemouth bass. Data are reported as the mean ± SD of three replicates (n = 3). Bars with different
superscripts (a–d) are significantly different (p < 0.05).
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Furthermore, there were rising trends in the levels of insulin receptor (ISR), insulin
receptor substrate 2 (ISR2b), serine/threonine kinase 1 (AKT1), and sterol regulatory ele-
ment binding protein 1c (SREBP1c) observed in the livers of subjects on high-starch diets
(p < 0.05). In addition, the levels of PIK3c were significantly higher in the D5 groups
compared to the D0 groups (p < 0.05), with no statistical differences observed among the
latter (p < 0.05). The highest levels of SREBP1c were shown in the D5 groups compared
to those in the other four groups, although there were no statistical differences observed
among D1, D3, and D7 groups (p > 0.05) (Figure 4).
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3.6. Gene Expression Variations of FA and TAG Metabolism in Fish Liver

The high-starch diet significantly upregulated the expression of genes involved in
fatty acid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS),
acyl-CoA desaturase (SCD), and NADP-dependent malic enzyme 1 (ME1), with the highest
levels observed in the D5 groups compared to those in D0 groups (p < 0.05). Levels of
mRNA for fatty acid-binding protein liver type (FABP-L) and fatty acid transport protein 4
(FATP4) were significantly increased to their highest levels in D7 or D5 groups (p < 0.05),
respectively. Additionally, high starch was found to notably enhance the expression of
glycerol kinase (GK), glycerol-3-phosphate acyltransferase 3 (GPAT3), GPAT4, and diacyl-
glycerol O-acyltransferase 2 (DGAT2) related to triglyceride production in the livers of
fish fed with high-starch diet (p < 0.05). Similarly, the levels of perilipin-2 (Plin2) were
notably increased to the highest point in the D5 groups and then decreased in the D7 groups
(p < 0.05), with no significant variations between the D3 and D7 groups (p > 0.05). Moreover,
the levels of the triglyceride transporter apolipoprotein B-100 (APOB100) were significantly
increased to the highest point in the D5 groups, then decreased in the D7 groups (p < 0.05),
with no significant difference between the D1 and D3 groups (p > 0.05) (Figure 5).
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3.7. Cholesterol Metabolism and Bile Acid Synthesis of Gene Expression

In the hepatic cells of fish fed a high-starch diet, the expression levels of genes involved
in cholesterol metabolism, including sterol regulatory element-binding protein 2 (SREBP2),
acetoacetyl-CoA synthetase (AACS), 3-hydroxy-3-methylglutaryl-Coenzyme A reductase
a (HMGCRa), hydroxymethylglutaryl-CoA synthase (HMGCS), and lanosterol 14-alpha
demethylase (CYP51), were significantly elevated in the D3 treated groups compared to
the D0 control groups (p > 0.05) and then decreased in the D7 groups compared to the D3
treated groups (p < 0.05). Both HMGCRa and HMGCS showed no significant differences
not just between the D1 and D3 groups, but also between the D5 and D7 groups (p > 0.05).
SREBP2 and AACS were not significantly different between D0, D5, and D7 groups
(p > 0.05), and CYP51 was not significantly different between D7 and D0 groups (p > 0.05).
Expression levels of sterol O-acyltransferase 2 (SOAT2) consistently rose in high-starch
groups as feeding time increased, peaking in the D7 groups (p < 0.05). Conversely, the
expression of ATP-binding cassette sub-family G member 5 (ABCG5) and ABCG8 were re-
duced in the D3, D5, and D7 treated groups compared with the D0 control groups (p < 0.05).
Additionally, there was first an increase trend on the levels of Niemann-Pick C1-like protein
1 (NPC1L1) in the D1 and D3 groups and then, they reduced to the original levels in D5
and D7 groups when compared with the D0 groups (Figure 6).
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In addition, the mRNA transcription levels of bile acid processing, such as CYP7A1
and CYP27A1, were significantly increased in the D1 and D3 groups (p < 0.05) and then
reduced in the D7 groups in comparison to the D0 groups. The expression of the bile
salt export pump (BSEP) only decreased significantly in the D7 groups compared to D0
(p < 0.05), with no significant differences observed among D0, D1, D3, and D5 groups.
The transcription levels of sodium/taurocholate cotransporting polypeptide (NTCP) were
significantly increased in the D3 and D5 treated groups (p < 0.05) and then reduced in the
D7 treated groups in comparison to the D0 groups. Amounts of solute carrier organic anion
transporter family member 1 (OATP1) were constantly up-regulated and reached the peak
in the D7 treated groups (p < 0.05). Moreover, organic solute transporter subunit alpha
(OST-α) was notably up-regulated in D1–D7 groups and obtained the maximal levels in
D3 treated groups compared with D0 control groups (p < 0.05). However, no significant
variations were observed in the transcription of canalicular multispecific organic anion
transporter 2 (MRP3) (p > 0.05) (Figure 7).
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3.8. Variation of Antioxidant and Oxidant Parameters

The liver’s T-SOD and CAT activities were notably reduced in D1–D7 groups fed
with the high-starch diet compared to the D0 groups (p < 0.05). There were no significant
differences in T-SOD levels among the D1, D3, and D5 groups (p > 0.05), nor in CAT levels
between the D1 and D3 groups and among the D3, D5, and D7 groups (p > 0.05). ROS and
H2O2 levels were both elevated and peaked in the D5 groups (p < 0.05), with no significant
variation observed between the D3 and D7 groups in terms of ROS (p > 0.05). Amounts
of GST and MDA were peaked in the D7 groups (p < 0.05), with no significant differences
observed among D0, D1, and D3 for GST (p > 0.05) and among D1, D3, and D5 treated
groups for MDA levels (p > 0.05). T-AOC levels were lower in the D5 and D7 groups
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compared to the D0 groups (p > 0.05), with no significant differences observed among the
D0, D1, and D3 groups, as well as between the D5 and D7 groups (p > 0.05) (Table 6).

Table 6. Effects of dietary days on the antioxidative and oxidative indices of liver in largemouth bass
fed high starch (mean ± SD, n = 9).

Items
Days of High Starch Diet

D0 D1 D3 D5 D7 AN LT QT

T-SOD A 17.34 ± 0.50 a 12.81 ± 0.80 b 12.79 ± 0.54 b 12.94 ± 0.51 b 10.72 ± 0.61 c 0.000 0.228 0.065
CAT A 18.62 ± 1.00 a 15.13 ± 0.62 b 13.27 ± 0.94 bc 11.78 ± 1.47 c 12.01 ± 0.57 c 0.000 0.004 0.000
GST A 45.24 ± 1.78 c 42.79 ± 1.15 c 47.71 ± 1.90 c 61.04 ± 2.67 b 73.63 ± 2.68 a 0.000 0.000 0.000
ROS B 5.08 ± 0.13 a 6.57 ± 0.14 b 7.69 ± 0.13 c 8.26 ± 0.15 d 7.74 ± 0.15 c 0.000 0.000 0.000

H2O2
C 16.11 ± 0.12 e 20.01 ± 0.21 d 22.59 ± 0.31 c 34.04 ± 0.47 a 27.74 ± 0.65 b 0.000 0.000 0.022

T-AOC C 0.56 ± 0.06 a 0.47 ± 0.09 ab 0.44 ± 0.07 ab 0.36 ± 0.08 bc 0.26 ± 0.07 c 0.000 0.014 0.000
MDA D 9.52 ± 0.49 c 12.81 ± 0.80 b 12.79 ± 0.54 b 12.94 ± 0.51 b 17.34 ± 0.50 a 0.002 0.012 0.032

Note: a–e Values in the same row with different letters indicate significant differences (p < 0.05). A = U/mg prot,
B = mg/mL, C = mmol/g prot, D = nmol/mg prot.

The expressions of Cu/Zn superoxide dismutase (Cu/Zn-SOD) and manganese super-
oxide dismutase (Mn-SOD) were initially reduced to a minimum in the D1 and D3 groups
compared to the D0 control groups (p < 0.05), respectively, both followed by an increase in
the D5 groups (p < 0.05) and then were reduced in the D7 groups. There were no significant
differences in the transcription levels of CAT in the D0–D7 groups (p > 0.05). Furthermore,
GST1 transcriptions were notably elevated in the D3 and D5 groups compared to the D0
group, reaching its peak in the D3 and D5 groups (p < 0.05), with no significant differences
between these two groups (p > 0.05). In contrast, the expressions of thioredoxin 2 (Trx2),
thioredoxin reductase 2 (TrxR2), and peroxiredoxin 3 (Prx3) were decreased as high-starch
feeding increased compared to the D0 groups (p < 0.05) (Figure 8A). The livers of large-
mouth bass fed a high-starch diet showed increased transcription variations of cytochrome
c oxidase 4 (COX4), NADPH oxidase 1 (NOX1), NADPH oxidase activator 1 (NOXA1),
and heme oxygenase 1 (HO1), reaching their peaks in the D5 and/or D7 groups compared
to those in the D0 groups (p < 0.05). Furthermore, there were no significant variations in
COX4 levels among D0, D1, and D7 groups. There were no notable variations in HO1
transcription levels between the D5 and D7 treated groups (p > 0.05) (Figure 8B).
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bass. (A) Antioxidant and oxidative parameters, (B) ROS generating and oxidative stress indexes.
Data are reported as the mean ± SD of three replicates (n = 3). Bars with different superscripts (a–d)
are significantly different (p < 0.05).

3.9. Variation of Molecules in Inflammatory Responses in Fish Liver

In the livers of largemouth bass fed high starch, TNF-α contents were constantly
heightened and peaked in the D7 treated groups compared to the D0 control groups
(p < 0.05). There were similar variation trends in the levels of IL-6, IL-8, IL-17, and IL-
1β in the D1–D7 groups and were notably higher than those in the D0 control groups
(p < 0.05). IL-6 contents were firstly heightened and peaked in the D3 treated groups
compared to the D0 groups (p < 0.05). Similarly, contents of IL-8, IL-17, and IL-1β were also
firstly heightened and all reached the maximum in the D5 treated groups compared to those
in the D0 groups (p < 0.05). Contents of IL-12 in high-starch groups were notably higher than
that in the D0 groups, although there were no differences among the D1–D7 treated groups
(p > 0.05). IFN-γ levels were notably increased in the D5 and D7 groups compared with
those in D0, D1, and D3 treated groups (p < 0.05), while there were no significant differences
among the D0, D1, D3 groups and between the D5, D7 groups (Table 7).

Table 7. Effects of dietary days on the anti-inflammatory and pro-inflammatory cytokines of liver in
largemouth bass fed high starch (mean ± SD, n = 9).

Items
Days of High Starch Diet

D0 D1 D3 D5 D7 AN LT QT

TNF-α A 160.77 ± 11.54 e 280.00 ± 7.69 d 644.10 ± 8.01 c 704.36 ± 18.18 b 749.23 ± 10.18 a 0.000 0.000 0.000
IL-6 A 86.49 ± 3.94 d 155.24 ± 3.94 c 239.27 ± 3.61 a 190.31 ± 5.80 b 192.40 ± 9.26 b 0.000 0.013 0.000
IL-8 B 77.13 ± 1.21 c 106.21 ± 2.26 b 124.71 ± 1.39 a 126.67 ± 4.28 a 106.32 ± 3.92 b 0.000 0.034 0.000

IL-12 A 106.48 ± 1.44 b 159.62 ± 1.63 a 165.28 ± 9.98 a 164.34 ± 6.19 a 166.86 ± 4.84 a 0.000 0.006 0.000
IFN-γ A 67.16 ± 4.31 b 65.93 ± 11.77 b 69.12 ± 13.07 b 106.65 ± 3.77 a 115.44 ± 4.41 a 0.000 0.000 0.000
IL-17 A 6.20 ± 0.85 e 19.83 ± 0.26 d 43.21 ± 1.29 b 51.35 ± 1.06 a 29.59 ± 0.95 c 0.000 0.010 0.000
IL-1β A 25.06 ± 3.27 d 36.00 ± 1.78 c 52.88 ± 2.42 a 54.48 ± 2.85 a 47.30 ± 1.15 b 0.000 0.001 0.000

Note: a–e Values in the same row with different letters indicate significant differences (p < 0.05). A = ng/L,
B = pg/L.

Expression levels of IL-1β, IL-8, and TNF-α were first increased and reached the
maximum in the D3 and/or D5 groups compared to those in the D0 groups (p < 0.05)
and then reduced in D7 groups. Although there were no differences in the D0, D1, and
D3 groups (p >0.05), expression levels of IL-12 and IFN-γ were notably increased in the
D5 and D7 groups compared to those in the D0 groups (p < 0.05), with no significant
differences observed among D5 and D7 (p > 0.05). In addition, transcription levels of
apoptosis genes (caspase 1 and caspase 3) were increased in the D5 and D7 groups, and
both peaked in the D7 trial groups (p > 0.05). And the transcription levels of caspase
6, caspase 8, and caspase 9 also first increased and reached peaks in the D5 and/or D3
groups compared to those in the D0 groups (p < 0.05) and then all decreased in D7 groups,
with notable differences between D7 and D0 groups (p > 0.05) (Figure 9A). Moreover, the
expression levels of NLRP3 inflammasome key molecules, including nucleotide-binding
oligomerization domain-containing protein 1 (NOD1), NOD2, and gasdermin-E (GSDME),
were notably elevated after consuming a high-starch diet, peaked in the fish liver of D7 or
D5 groups compared to that of D0 groups (p < 0.05). Although there were no significant
differences in the D0–D5 groups, apoptosis-associated speck-like protein-containing CARD
(ASC) levels were notably elevated in the D7 groups (p < 0.05) (Figure 9B).
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Figure 9. Effect of high-starch diet on related mRNA levels of hepatic inflammation in largemouth
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(p < 0.05).

3.10. Fish Hepatic Histopathological Lesions

The liver samples of juvenile largemouth bass in the high-starch group (B–E) and
the control group (A) were observed by photographing, hematoxylin-eosin staining (HE),
periodic acid-Schiff staining (PAS), and Oil Red O staining (ORO) (Figure 10). Within the
D0 category (A1–A3), the livers of the largemouth bass displayed a reddish hue and no
apparent abnormal characteristics, featuring well-formed hepatocytes with distinct nuclei.
Additionally, the glycogen granules and lipid droplets in the liver cells of the largemouth
bass were both smaller and of a lighter shade. Within the D1 groups (B1–B3), there were
instances of pale livers displaying a dense nuclear phenotype and indistinct liver cords,
often indicating the early stages of liver fibrosis in clinical settings. Additionally, there was
an increase in glycogen granules and lipid droplets. In D3 (C1–C3), D5 (D1–D3), and D7
(E1–E3) groups, the white areas in the livers of largemouth bass increased and the shape
became larger, and glycogen granules and lipid droplets were increased with culturing
times with the high-starch diet.
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(magnification × 20), and ORO staining (magnification × 40) of the liver sections of juvenile large-
mouth bass fed with high-starch diet containing D0 (A1–A3), D1 (B1–B3), D3 (C1–C3), D5 (D1–D3),
and D7 (E1–E3).

4. Discussion

Previous studies have found dietary starch levels could modulate body indices (VSI,
HSI, and ISI), which can also influence animal body compositions [41,42]. The current
research found that high-starch diet (20%) led to a notable increase in VSI, HSI, and ISI in
largemouth bass as the culturing days increased, similar with previous studies on giant
gourami (Osphronemus goramy) [7], blunt snout bream (Megalobrama amblycephala) [43], and
black carp (Mylopharyngodon piceus) [13]. Additionally, our findings indicated a significant
rise in hepatic lipid levels over time due to high starch exposure, aligning with earlier
studies on largemouth bass [44,45] and GIFT tilapia (Oreochromis niloticus) [5]. Higher
dietary starch, when combined with these findings and our results, was found to induce
hepatic lipid synthesis and accumulation in largemouth bass.

Hematological parameters have been important physiological assays for analyzing
pathological variations in human and fish species [31,46,47]. Our results showed that high
starch increased RBC counts and HGB levels, especially in the D1, D3 and D5 groups, which
was in line with former results in Siberian sturgeon (Acipenser baerii) [48]. It is well-known
that RBC and HGB undertake key roles in increasing oxygen-carrying, metabolic capacity
and redox regulation in humans and animals [49–51]. Therefore, combining these findings
and our results, it could be inferred that the largemouth bass needs more oxygen to carry
out various physiological activities during the absorbing and metabolic processes of higher
dietary starch. In addition, our results found high starch significantly increased counts
of WBC, NEU, LYM, MON, EOS, and BAS with increasing culturing times, which agrees
with previous results in Labeo rohita [52] and gilthead sea bream (Sparus aurata) [53]. It is
well-known that adequate counts of WBC, NEU, LYM, MON, EOS, and BAS could improve
immunity and enhance the defense effects when the animal is infected by some kinds of
pathogens or fed with adequate nutrients [54]. However, excessive counts of WBC, NEU,
MON, EOS, and BAS could induce inflammation and/or inflammatory responses in dairy
goat [55], rat [56], and humans with type 2 diabetes mellitus [57]. The combination of these
discoveries and our study outcomes indicates that increased consumption of dietary starch
may lead to inflammation or inflammatory reactions in largemouth bass.

Serum biochemical indices are widely recognized as crucial indicators of health and
metabolic status in both humans and animals. ALT and AST variations reflect hepatic
metabolism and environmental abnormalities in animals [58]. Increased serum ALT and
AST levels in the D3, D5, and D7 groups indicated that hepatic metabolism might be
disturbed or damaged mediated by high dietary starch in largemouth bass [17]. Meanwhile,
serum BUN variations could correlate with nitrogen utilization and reflect the homeostasis
of exogenous amino acids [59]. So, higher BUN contents presented in D1–D7 groups
indicated high dietary starch might impair exogenous nitrogen utilization in largemouth
bass. Although ALP could act as an immune defense biomarker [60,61], excessive levels
of ALP could couple degeneration, necrosis, and destruction of the liver due to cellular
damage [62]. Moreover, higher levels of serum ALP are also correlated with the bile ducts
obstructed in metabolic liver diseases [60]. Combined with higher serum ALP activities in
fish fed high-starch diets in this study, it is suggested high dietary starch could cause cellular
damage in largemouth bass. In addition to being an important immune index, serum ALB
also plays a key role in the antioxidant function [63]. Considering the lower levels of serum
ALB in D7 groups, it indicated that high dietary starch could impair immunity and increase
the danger of oxidative stress in largemouth bass. Previous studies have found higher
levels of serum TBA could be correlated with early-stage metabolic liver disease mediated
by higher contents of cholesterol in animals [37,64]. Therefore, elevated levels of serum
TBA suggest that increased dietary starch not only worsens liver damage but also triggers
cholestatic disease in largemouth bass [65,66]. In typical physiological conditions, HDL-C
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moves total cholesterol from peripheral tissues to the liver for additional processing and
bile acid production, whereas LDL-C transports hepatic cholesterol to other tissues [67].
Our findings showed contrasting trends in the HDL-C and LDL-C levels in D7 groups when
compared with those in D0 groups (Table 4), which is consistent with previous findings in
mice [68] and juvenile blunt snout bream [43]. Moreover, some researches have shown the
level of TG and TC is positively proportional to the severity of fatty liver [67,69]. Combined
with higher contents of serum TAG and TC, it is suggested that high dietary starch could
not only prevent TC and TAG from being absorbed and utilized by the body, but also
induce their accumulation in the body and then result in dyslipidemia and metabolic fatty
liver [70].

Carnivorous fish are recognized as having weak capabilities for processing glucose
and often present persistent hyperglycemia after feeding on a diet with high starch [2].
INS, ADPN, and GC play a crucial role as endocrine hormones in maintaining the glucose
balance by managing fluctuations in serum glucose levels in both mammals and animals,
as highlighted in studies by del sol Novoa et al. [71], Xu et al. [72], and Zhong et al. [17].
Elevated levels of serum glucose can trigger INS and ADPN release or decrease glucagon
production to alleviate stress from hyperglycemia and maintain the glucose balance [73].
Our research discovered contrasting trends in the levels of serum INS, ADPN, and GC,
despite a consistent increase in serum glucose levels in largemouth bass fed a high-starch
diet. Likewise, earlier research has demonstrated that a 20% wheat starch diet led to
a notable increase in blood glucose and INS levels in largemouth bass [6] and over a
4-week period in rainbow trout [74]. Conversely, it was observed that a high-starch diet
resulted in significantly higher blood glucose levels after 3 h of feeding, but had no impact
on INS levels in largemouth bass fed a diet with high starch (13.56%) [18]. As for these
differences on the INS contents, it might be due to the different sample time in these
studies. Furthermore, the levels of INS and ADPN were both decreased in the D7 groups,
indicating that inadequate secretion of these hormones was the primary cause of glucose
intolerance in carnivorous fish species [2]. In addition to reducing appetite signal, LEP also
plays a crucial role in controlling fat or lipid reserves in both humans and animals [75–77].
Considering these findings and higher contents of serum LEP in this study, it indicated
that higher starch could induce LEP secretion, which could then initiate the self-regulatory
mechanism in response to higher serum glucose in largemouth bass [78]. Moreover, higher
LEP levels were also presented in these obese individuals with a higher percentage of
body fat, which was mainly mediated by typical LEP resistance in obesity [79]. The
combination of these discoveries and our own results indicates that elevated starch levels
may lead to LEP resistance, ultimately disrupting the regulation of lipid metabolism in
largemouth bass, although further research about this resistance mechanism is needed to
fully understand this.

As a major metabolic organ, the liver tissue plays important roles regulating glucose
and lipid metabolic processes, include glycolysis, gluconeogenesis, glycogen synthesis,
lipogenesis and lipolysis [10]. The important role of GLUT2 in regulating glucose transfer
between the liver and serum through the PI3K/AKT signaling pathway has been widely
recognized [80,81]. Our research found that elevated levels of dietary starch significantly
increased GLUT2 levels at both transcription and protein levels, consistent with findings in
rainbow trout (Oncorhynchus mykiss) [82], blunt snout bream [83], and Gibel carp (Carassius
gibelio) [84]. This indicates that high starch intake may enhance the transport of plasma
glucose into hepatic cells by stimulating GLUT2 in largemouth bass. Numerous past
research has indicated that elevated levels of starch can trigger glycolysis pathways through
the INS signal pathway in mice [85], blunt snout bream [86], common carp (Cyprinus
carpio) [87], and largemouth bass [45]. Levels of GCK, PFK, PK, ISRa, ISRS2b, PI3Kc, and
AKT1 were significantly increased in the D5–D7 groups that were fed the high-starch
diet, as well as with higher PA contents in our findings. Our results, along with these
discoveries, suggest that elevated levels of starch may enhance glucose metabolism by
stimulating glycolysis through the activation of the typical PI3K/AKT signaling pathway
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in largemouth bass. Additionally, gluconeogenesis was also stimulated with elevated levels
of FBP and G6Pase in the D5–D7 groups that were given high-starch diet, which is similar
with former results in largemouth bass fed 13.56% dietary starch [18], suggesting there
was a competition between dietary glucose and endogenous productive glucose. Based on
these findings, it was suggested that high levels of starch could lead to glucose metabolic
disorders and hinder glucose utilization in largemouth bass.

Furthermore, the hepatic production of glycogen in animals may be controlled by
the PI3K/AKT signaling pathway, which acts on its downstream proteins and enzymes
(GYG2, GCS, GBE, and GDE) as indicated by Yang et al. [37] and Zhang et al. [88]. Typically,
increased levels of GYG2, GCS, and GBE may play important functions in enhancing
glycogen production, whereas elevated GDE levels could facilitate the breakdown of
hepatic glycogen [2]. Past research has shown that the amounts of glycogen in the liver
increased as the levels of starch in the diet rose for red spotted grouper (Epinephelus
akaara) [89] and blunt snout bream [90]. Furthermore, by utilizing [U-14C] glucose as a
marker, it showed a significant rise in glycogen synthesis from glucose in largemouth
bass when the dietary starch level was raised from 5% to 15% [91]. Combined with these
findings, it indicated that high starch may induce hepatic glycogen synthesis in largemouth
bass through the PI3K/AKT signal transduction pathway, as evidenced by the variations
of these key molecules, LAG contents, and PAS-stained histological sections in our results.
Nevertheless, levels of hepatic LA and LDH activities in serum and liver showed significant
increases in the D1–D7 groups, mirroring findings in goats [92] and cattle [93] that were
given a high-starch diet. Past research has shown that increased LA accumulation can lead
to risks such as lactic acidosis, nonalcoholic fatty liver disease, and tumors in humans and
animals [94–97]. Based on these discoveries and our findings, it appears that excessive LA
levels could lead to lactic acidosis and metabolic disorders in largemouth bass fed a diet
high in starch.

Typically, Ac-CoA is converted by ACC1 into Mal-CoA, which is then transformed by
FAS into fatty acids (FAs) within the liver cells [18,98]. The citrate-pyruvate pathway, facili-
tated by ME, and the pentose-citrate pathway, facilitated by G6PD, supply the necessary
energy for this process [37]. Consistent with prior findings in largemouth bass that were
given a high-starch diet [18], we also observed elevated levels of ACC, FAS, Mal-CoA, SCD,
ME1, G6PD, and PGD in fish fed a high-starch diet. This suggests that high starch intake can
stimulate fatty acid production by up-regulating the expression of these genes associated
with lipid synthesis in the liver of largemouth bass. Moreover, FATP1 can facilitate the
transfer of FA to the endoplasmic reticulum within liver cells for the production of LTAG,
as demonstrated by Ipsen et al. [99] and López [100]. And GK, GPAT3, GPAT4, and DGAT2
are the rate-limiting enzymes during LTAG synthesizing processes [101]. Then, these
synthesized LTAG could bind apolipoprotein B100 (APOB100) and enter the bloodstream
by free diffusion [102]. Meanwhile, Plin2, as a key lipid droplet coated protein, is tightly
related with lipid droplet biogenesis and storage in tissues [103]. Elevated levels of Plin2
are often associated with various metabolic disorders, including insulin resistance and type
2 diabetes in human and animals [103,104]. The study found that FABP10, GPAT3, GPAT4,
DGAT2, APOB100, and Plin2 levels were notably higher in groups consuming high-starch
diets, consistent with earlier findings in largemouth bass [18] and gilthead sea bream [105].
Previous research has shown that the AKT/SREBP1c signaling pathway can stimulate LTG
synthesis in both animals and fish, as documented by Wang et al. [106] and Ferre et al. [107].
In addition to increased levels of these important molecules, this study also showed that
high starch in largemouth bass can activate the AKT/SREBP1c signal pathway, leading to
enhanced FA and LTAG synthesis, as well as lipid droplet formation, as demonstrated by
LTAG levels and histological sections stained with HE and ORO in this study.
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SREBP2, a crucial transcription factor, has the ability to regulate the metabolism and
balance of cholesterol in the liver by influencing the transcription of genes that are regulated
by sterols, such as AACS, HMGCS, HMGCRa, and CYP51 [18,19]. AACS has the ability to
use ketone bodies for the creation of cholesterol and fatty acids, converting acetoacetate into
its CoA ester to generate acetoacetyl-CoA in the cytosol [108]. This process is facilitated by
HMGCS, which transforms acetoacetyl-CoA into 3-hydroxy-3-methylglutaryl-CoA (HMG-
CoA) [109,110]. Subsequently, HMGCRa is able to facilitate the transformation of HMG-CoA
into mevalonic acid in order to generate cholesterol [111]. CYP51 plays an essential role
in the sterols’ production and is a significant focus of cholesterol-lowering medications
according to recent studies [112–114]. Our results showed that a diet with high-starch
significantly increased the levels of SREBP2 and its target genes related to cholesterol
synthesis (AACS, HMGCS, HMGCRa, and CYP51) in groups D1, D3, and D5. This effect was
consistent with findings in largemouth bass [18] and male C57BL/6J mice [115], suggesting
that high starch intake may stimulate cholesterol production through the SREBP2 signaling
pathway in the hepatic cells of largemouth bass. The expression of these genes was
significantly reduced in the D7 groups compared to that in the D3 groups, which might be
due to the negative feedback regulatory mechanism mediated by higher contents of TC in
the liver of largemouth bass [19,20], although further research is needed to fully understand
this regulatory process. In addition, SOAT2 plays an important function in lipid droplet
biogenesis and storage by converting cholesterol to cholesteryl ester in cells [104,116]. Prior
research has shown that an increase in lipid droplets can be triggered by elevated glucose
levels in normal colon cells and colorectal cancer stem cells [117], as well as in mice with
type 2 diabetes [118]. Based on these results, it is proposed that increased levels of SOAT2
may be responsible for the accumulation of lipid droplets in largemouth bass fed a high-
starch diet. Meanwhile, ABCG5 and ABCG8 act as key proteins transporting endogenous
cholesterol out of the liver into other tissues, while NPC1L1 plays key roles in up-taking
intestine cholesterol into hepatic cells [119,120]. Combined with these findings and lower
levels of ABCG5, ABCG8, and NPC1L1 in this study, it indicated these three key reduced
transporters might mediate the hepatic cholesterol decomposition in largemouth bass [116].

In general, bile acid synthesis is mainly regulated by two key rate-limiting enzymes
(CYP7A1 and CYP27A1) mediating the oxidation of cholesterol in hepatocytes [120,121].
Higher CYP7A1 and CYP27A1 levels in D1–D3 groups indicated high starch could induce
bile acid synthesis via the oxidation of cholesterol in hepatocytes of largemouth bass. The
reduced levels of CYP7A1 and CYP27A1 in D5–D7 groups might be caused by the negative
feedback regulatory mechanism mediated by higher TBA contents in hepatocytes [121,122].
Furthermore, liver bile acids may be moved into the bile canaliculus using the bile salt
transporter known as the canalicular bile salt export pump (BSEP) [123,124]. Although
there were no marked differences among D0–D5 groups, lower BSEP levels in D7 groups in-
dicated high starch might block the transportation of hepatic bile acids into bile canaliculus
and then result in possible cholestasis [120,121]. Two important transporting polypeptides,
NTCP and OATP1, facilitate the absorption of bile acids from the portal vein into hepa-
tocytes [125]. Higher NTCP and OATP1 levels in D1–D5 groups indicated that bile acids
could be taken up into hepatocytes induced by high starch, which might further aggra-
vate cholestasis in largemouth bass. In humans and rodents, studies have found higher
levels of hepatic OST-α could help bile acid excretion into the circulating system [122,126].
Combined with higher OST-α mRNA levels and serum TBA contents, it indicated that
high starch could drive bile acid excretion into the circulating system via a heightening
expression of hepatic OST-α in largemouth bass, although this driving mechanism needed
to be studied in fish species [127].
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It is well known that cellular ROS is mainly generated by NADPH oxidases (NOX) and
the respiratory electron transport chain (ETC) of mitochondria during glucose metabolic
processes in animals [28,128,129]. Our study revealed that the expression of certain genes,
such as G6PD, NOX1, NADPH oxidase activator 1 (NOXA1), and cytochrome c oxidase
4 (COX4), along with the levels of H2O2 significantly increased with high-starch diets.
This is consistent with findings in humans with diabetes [23,25,130], suggesting that high
starch intake may enhance oxidative phosphorylation, leading to elevated ROS levels in
largemouth bass liver. In general, SOD and CAT in antioxidant systems could catalyze ROS
and reduce oxidative stress in animals [5,21]. Meanwhile, increased GST and MDA amounts
can symbolize physiological biomarkers to oxidative or inflammatory stress in cultured
animals [1,3]. Past research has shown that the antioxidant abilities were diminished by
elevated starch levels in black carp [131], black sea bream (Acanthopagrus schlegelii) [12],
GIFT tilapia [5], and largemouth bass [132]. Similarly, our results also found a notable
reduction in the amounts of SOD, CAT and T-AOC along with a significant increase in
the amounts of GST, MDA, and H2O2 in the D5 and D7 groups that were given a high-
starch diet. Moreover, a specialized thioredoxin system within mitochondria, consisting of
Trx2, TrxR2, and Prx3, has been identified as crucial for protecting against oxidative stress
induced by H2O2 through disulfide reductase functions [133,134]. Our results show that a
high-starch diet could inhibit the genetic expressions of Trx2, TrxR2, and Prx3 in the liver
in largemouth bass. Considering these findings and our data, it indicated that high starch
could aggravate ROS damage and disturb mitochondrial redox homeostasis by decreasing
antioxidant capabilities in largemouth bass [128].

Numerous research studies have shown that an overabundance of NOX-derived ROS
can lead to inflammation by boosting the generation of pro-inflammatory cytokines in the
liver, such as IL-1β, TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17, and others [24,29]. Prior studies
have discovered elevated amounts of inflammatory markers such as IL-1β, TNF-α, and IFN-
γ, which were presented in human with diabetes [135–137], pig with malnutrition [138], and
mice fed high-carbohydrate diets [139]. Likewise, our results showed elevated concentra-
tions of IL-1β, IL-6, IL-8, IL-12, IL-17, TNF-α, and IFN-γ in the hepatic cells of largemouth
bass with increasing time of feeding high-starch diet in this study. Combined with previous
results and our findings, it further proved that inflammatory responses could be caused by
ROS excessively generated during the metabolism of higher dietary starch in largemouth
bass. In addition, the secretion and maturation of these pro-inflammatory cytokines were
mediated by the typical NLRP3 inflammasome in human and animal cells [24,33]. The
NLRP3 inflammasome consists of the NLRP3 sensor molecule, the ASC adaptor protein,
and pro-caspase-1 [35]. Various molecular and cellular events, including ROS overload,
can lead to the stimulation of the NLRP3 inflammasome [27,140]. In the formation of
NLRP3 inflammasomes, pro-caspase-1 can transform into cleaved-caspase-1, triggering
the processing of pro-IL-1β precursors into their active states [135,141]. Recent research
has shown that elevated glucose levels can stimulate the generation of ROS, boost the
triggering of the NLRP3 inflammasome, and increase IL-1β release in macrophages [34,142]
as well as in RSC96 (rat Schwann cell line) cells [27]. Moreover, additional research has
shown that elevated glucose levels can lead to the depletion of retinal pericytes through a
process of inflammatory cell death involving NLRP3 and caspase-1 [141]. The research also
revealed increased ASC, NOD1, NOD2, GSDME, and caspase-1 expression in fish groups
exposed to high starch, mirroring findings in human and rat cells [27,34]. By combining
these discoveries with our own results, we can conclude that inflammatory reactions may
be initiated by the activation of the NLRP3 inflammasome induced by ROS overload in
largemouth bass fed with high starch (Figure 11).
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Figure 11. The summary of glucose and lipid metabolism, antioxidant and oxidative responses, and
inflammatory responses in the hepatic cells of largemouth bass.

5. Conclusions

In summary, our results found high starch could increase body physical indicators
(HSI, VSI, and ISI) and counts of leukocytes (WBC, NEU, MON, EOS, and BAS). And
high starch could cause insufficient secretion of INS and ADPN and then induce glucose
metabolic disorders and abnormal glycogen accumulation. Meanwhile, high starch could
cause abnormal TAG and cholesterol accumulation via SREBP1/2 signal pathways. In
addition, high starch could induce oxidative stress by heightening ROS contents and
reducing antioxidant capabilities. Oxidative stress or ROS overload induced by high
starch in largemouth bass can activate the NLRP3 inflammasome, leading to inflammatory
responses (Figure 11).
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