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Abstract: The aim of this study was the analysis of interpolyelectrolyte complexes (IPECs) based on
Eudragit® EPO and Eudragit® L100 as prospective carriers for gastroretentive drug delivery systems
(GRDDS) using two model drugs: metronidazole (MZ) and acyclovir (ACR). Eudragit® EPO/L100
IPECs with different pH concentrations were characterized by different degrees of swelling in mim-
icking fasted stomach medium (0.1 M HCl) and saved their shape for 6 h. The microenvironmental
changes in IPEC structures in acidic medium were investigated using FT-IR spectroscopy, thermal
and elemental analysis. IPEC samples showed bioadhesive properties that were not significantly
different from the positive control (Carbopol) in the test with the mucin compacts. The release rate
of metronidazole (class I BCS) from IPEC matrices increased with the increasing degree of swelling.
IPEC 1 provided 49.62 ± 6.20% and IPEC 2 reached 87.69 ± 5.15% of metronidazole release after 6 h
in mimicking fasted stomach medium (0.1 M HCl). The total amount of released acyclovir (class III
BCS) from IPEC 1 was 25.76 ± 5.67% and from IPEC 2 was 21.48 ± 5.00%. Release of both drugs
was controlled by relaxation of polymeric chains in matrices according to the Peppas–Sahlin model.
According to the received results, investigated interpolymer complexes are prospects for further
evaluation as carriers for gastroretentive bioadhesive systems.

Keywords: interpolyelectrolyte complexes; Eudragit®; gastroretentive systems; drug delivery systems;
bioadhesive systems; metronidazole; acyclovir

1. Introduction

Gastroretentive drug delivery systems (GRDDS) are used for site-specific drug release
and systematic action in the upper part of the gastrointestinal tract (GIT), especially for
the drugs with an absorption window in the proximal small intestine [1,2] and local action
for treatment of the inflammatory or cancerous diseases and eradication of Helicobacter
pylori [3,4]. There are several technologies to achieve increasing drug residence in the upper
part of the GIT, such as magnetic systems [5], mucoadhesive systems [6,7], expandable
systems [8], floating systems [9,10], high-density systems [11,12] and polymeric fibrous
materials [13,14].

Bioadhesive gastroretentive drug delivery systems are on the way to prolong the
drug residence time in the upper part of the GIT. It is known that polymers for bioadhe-
sive systems include hydrogen-bond-forming groups, such as carboxyl, hydroxyl, amide
and sulfate groups. Bioadhesive GRDDS action is based on a complex process with sev-
eral mechanisms, including electrical theory, adsorption, wetting, diffusion and fracture
theories [15,16]. Bioadhesive polymers such as Carbopol®, chitosan, hydroxypropyl methyl-
cellulose (HPMC) and sodium carboxymethyl cellulose (CMC-Na) are usually used for such
type of GRDDS [17–19]. However, several polymer excipients must be used to ensure the
required gastroretentive effect. For example, Naseem at el. Developed gastroretentive for-
mulations consisting of osmotically controlled polymer, hydrophilic polymer, hydrophilic
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gums, gel-forming polymers and mucoadhesive polymers with microcrystalline cellu-
lose [6]. Zhu et al. provided results of an assessment of bioadhesive gastroretentive
minitablets containing HPMC, Carbopol® 971P, microcrystalline cellulose and aerosil [17].
Development of gastroadhesive matrix systems based on a combination of Eudragit® E100,
CMC-Na and locust bean gum was reported by Ngwuluka et al. [20]. This study was fo-
cused on developing a gastroretentive drug delivery system employing a triple-mechanism
interpolymeric blend matrix comprising high density, swelling and bioadhesiveness for the
enhanced site-specific zero-order delivery of levodopa in Parkinson’s disease.

The combination of oppositely charged types of methacrylate copolymers, including
their blends, in order to control the site and time of drug release from oral drug delivery
systems (DDS) was discussed in previously published reviews [21,22]. A comprehensive
analysis of the physico-chemical principles of the intermacromolecular interactions in oral
DDS, based on chemically complementary Eudragit®-grade copolymers, was published by
our research group [23,24].

Investigation of the interpolyelectrolyte complexes (IPEC) based on oppositely charged
Eudragit® copolymers have been actively carried out over the last fifteen years [25–37]. The
main reason for this fact is the structure of (meth)acrylate copolymers; Eudragits contain
oppositely charged groups, from which reaction of polycomplex formation is possible.

Initially, the influence of the combination of two oppositely charged polymers, Eudragit®

EPO (EPO) and Eudragit® L100 (L100), was studied for oral controlled DDS [26]. These
grades were combined in the polycomplex matrix system because of their hydrophilic–
hydrophobic properties that could be suitable in colon-specific controlled DDS. The com-
bination of two pH-dependent copolymers EPO/L100 at the necessary molar ratio can
provide the required diffusion transport properties and controlled drug release. FTIR anal-
ysis indicated that samples were not stable in a strongly acidic gastric-mimicking medium.
However, swelling testing of the polycomplex systems using gastric-mimicking conditions
showed that all IPEC samples were characterized by an unexpected stability within the
strongly acidic medium in spite of the destroying of ionic bonds.

Thus, taking into account our results, we decided to follow this interesting idea and
do additional experiments focused on finding prospective bioadhesive IPEC samples for
the development of sustained gastroretentive drug delivery polyelectrolyte matrix based
on oppositely charged Eudragit® EPO and Eudragit® L100 [38].

It is also known that IPECs contain ionized groups of the individual polymers in the
defective areas of their structure and, therefore, using IPEC can provide bioadhesive effects
for drug delivery systems [39,40].

Moreover, we have established that EPO exhibits mucoadhesive properties and retains
the dye on the mucosal surface better compared to free sodium fluorescein. This good
retention of the dye mediated with EPO on mucosal surfaces is likely to be related to its
cationic nature, which ensures electrostatic attraction of this polymer to the negatively
charged mucosal surface [41].

Recently, we have also reported that better retention properties of IPECs based on
Eudragit® EPO/Eudragit® L100-55 copolymers compared to pure EPO is possibly related
to their insoluble nature and slower elimination from the mucosal surface [42].

The aim of this study was the analysis of two IPECs based on Eudragit® EPO and
Eudragit® L100, previously chosen as prospective carriers for GRDDS by additional evalu-
ating of swelling, bioadhesiveness and release properties for the enhanced gastro-specific
delivery for two model drugs: metronidazole (MZ) and acyclovir (ACR).

The main absorption site of ACR is the upper part of GIT. Moreover, it has a short
half-life of approximately 2.5 h [43]. Therefore, development of GRDDS of ACR may
improve its bioavailability.

On the other hand, MZ is an antibacterial drug that is used for treatment of chronic
bacterial infection caused by Helicobacter pylori and plays an important role in the devel-
opment of peptic ulcers and gastric carcinoma [44]. Development of a dosage form of MZ
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with localized action in the stomach can also help in solving the problem of increasing
effectiveness of pharmacotherapy of these diseases.

2. Materials and Methods
2.1. Materials

EPO is a polycation, terpolymer of dimethylamino-ethyl methacrylate with methyl
methacrylate and butyl methacrylate (mole ratio 2:1:1, MW 150,000 g/mol), L100 is
polyanion, copolymer of methacrylic acid and methyl methacrylate (mole ratio 1:1, MW
135,000 g/mol), which were used for preparation of IPECs and physical mixtures (PhM).
These copolymers were generously provided by Evonik Industries AG (Darmstadt, Ger-
many). MZ and ACR were purchased from Merck (Sigma-Aldrich, St. Louis, MO, USA).
Mucin isolated from pig stomachs (type II) (Merck group, Sigma-Aldrich, St. Louis, MO,
USA) and fragments of the pig stomach mucosa were used to study bioadhesive properties.

Sodium hydroxide (NaOH), reagent grade, ≥98%, pellets (anhydrous) (Sigma-Aldrich,
St. Louis, MO, USA) and hydrochloric acid (HCl), 36.5–38.0% (Sigma-Aldrich, St. Louis,
MO, USA) were used for the preparation 1 M solutions for pH adjusting. Hydrochloric
acid (HCl), 36.5–38.0% (Sigma-Aldrich, St. Louis, MO, USA), was used for preparation of a
0.1 M solution to simulate the fasted stomach.

2.2. Preparation of Solid Interpolyelectrolyte Complexes (IPEC) and Physical Mixtures (PhM)

Preparation of solid IPECs based on Eudragit® copolymers was carried out in an
aqueous solution under pH 6.0 (IPEC 1) and pH 6.5 (IPEC 2). Solutions of EPO and L100
were prepared separately, adjusted to the necessary pH and mixed as it was described
earlier [26]. The powders of vacuum-dried (vacuum oven VD 23, Binder GmbH, Tuttlingen,
Germany) IPEC samples were previously ground using an automatic accessory for mixing
and grinding ShakIR (Pike Technologies, Madison, WI, USA) before pressing them into
the matrices.

PhMs were prepared by mixing powders of copolymers EPO and L100 using an auto-
matic accessory for mixing and grinding ShakIR (Pike Technologies, Madison, WI, USA).

2.3. Preparation of Tablets

Matrices of IPEC and PhM for studying swelling ability (100 mg, 8 mm in diameter),
were obtained by pressing on a PressPRO 15-ton programmable automated hydraulic press
for IR spectroscopy (Pike Technologies, Madison, WI, USA) at a pressure of 2.45 MPa.

Tablets for analysis of drug release contained a mixture of IPEC or PhM (50 mg)
and model drug (100 mg), 8 mm in diameter, which were pressed on a PressPRO 15-ton
programmable automated hydraulic press for IR spectroscopy (Pike Technologies, Madison,
WI, USA) at a pressure of 2.45 MPa.

2.4. Determination of the Degree of Swelling of Matrices

The study of the swelling ability was carried out in mimicking fasted stomach medium
(0.1 M HCl) at a temperature of 37 ± 0.5 ◦C for 6 h. The polymeric matrix was placed in a
tared basket, which was immersed into a thermostatic bath IC control eco 18c (IKA® Werke
GmbH, Staufen, Germany). The total volume of the medium was 40 mL. The basket was
removed from the medium every 30 min and the matrix was carefully dried using a filter
paper and weighed.

The degree of swelling (H%) was calculated by the formula:

H% = ((m2 − m1)/m1)·100, (1)

in which m1 is the mass of the dry sample; m2 is mass of swollen sample.
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2.5. Elemental Analysis

The compositions of the IPEC samples and IPEC samples after swelling assessment
were investigated by elemental analysis using a CHNS/O Elemental Analyzer Thermo
Flash 2000 (Thermo Fisher Scientific, Paisley, UK) and calculated as Z = [EPO]:[L100]
(mol/mol). The vacuum-dried samples (at 40 ◦C for 2 days) were weighed into a crucible
on a XP6 Excellence Plus XP micro balance (Mettler Toledo, Greifensee, Switzerland). The
crucibles with samples were packed and placed into the combustion reactor via autosampler.
Temperature in the oven was 900 ◦C, a gas flow rate was 10 mL/min. Calibration of the
instrument was performed with atropine standard (Thermo Fisher Scientific, Paisley, UK).
Eager Xperience Data Handling Software (version 1.3.07/2014) was used to analyze the
results. All measurements were performed in triplicate.

The content of nitrogen (%) was taken into account. Only EPO contains nitrogen. The
compositions of the IPEC samples were calculated, taking into account molar masses of the
initial copolymer units and the percentage of nitrogen in each sample.

2.6. Fourier-Transformed Infrared (ATR-FTIR) Spectroscopy

ATR-FTIR spectra were recorded by a Nicolet iS5 FTIR spectrometer (Thermo Scientific,
Waltham, MA, USA) using the iD5 smart single bounce ZnSe ATR crystal. The spectra were
analyzed using OMNIC spectra software (version 8.2.387).

2.7. Thermal Analysis

Modulated DSC (mDSC) measurements were carried out using a Discovery DSC™ (TA
Instruments, New Castle, DE, USA), equipped with a refrigerated cooling system (RCS90).
TRIOS™ software (version 3.1.5.3696) was used to analyze the DSC data (TA Instruments,
New Castle, DE, USA). Tzero aluminum pans (TA Instruments, New Castle, DE, USA) were
used in all calorimetric studies. The empty pan was used as a reference and the mass of the
reference pan and of the sample pans were taken into account. Dry nitrogen was used as a
purge gas through the DSC cell at 50 mL/min. Indium and n-octadecane standards were
used to calibrate the DSC temperature scale; enthalpic response was calibrated with indium.
Calibration of heat capacity was done using sapphire. Initially, the samples were cooled
from room temperature to 0 ◦C, then kept at 0 ◦C for 5 min and analyzed from 0 to 250 ◦C.
The heating rate was 2 ◦C/min with a 40 s period and 1 ◦C amplitude. Glass transition
temperatures were determined using the reversing heat flow signals. All measurements
were performed in triplicate.

2.8. Study of Model Drug Release

The study of the release of MZ and ACR from tablets based on the IPECs and PhMs
was carried out using the Flow-Through Cell Apparatus on a CE 7 Smart device (Sotax
AG, Aesch, Switzerland), mimicking fasted stomach medium (0.1 M HCl; 37 ± 0.5 ◦C), at a
biorelevant flow rate of 8 mL/min in an open cycle [37] for 6 h. The amount of released
MZ and ACR were estimated by UV spectrophotometer Evolution 220 (Thermo Scientific,
Waltham, MA, USA) at a wavelength of 274 nm (MZ) and 202 nm (ACR), respectively. The
concentration of drugs in the release medium was calculated based on calibration curves.
Release profiles were fitted using Microsoft Excel Office software 2021 MSO (Version
2401 Build 16.0.17231.20236) according to the zero-order, first-order and Peppas–Sahlin
models [45,46].

2.9. Analysis of Bioadhesive Properties

IPEC and PhM adhesion was studied on a TA.XTplus texture analyzer (Stable Micro
Systems, Surrey, UK). Mucin compacts and fragments of the pig stomach mucosa were
used as substrates for adhesion. Mucin compacts were obtained by pressing on a 15-ton
microprocessor-controlled automated hydraulic press for IR spectroscopy (Pike Technolo-
gies, Madison, WI, USA) at a pressure of 2.45 MPa using 13 mm die for IR spectroscopy
(Pike Technologies, Madison, WI, USA). Pig stomach tissue was received from an abattoir
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immediately after animal slaughter and transferred in a polystyrene container with dry ice.
Stomach tissues were defrosted and excised to 3 × 3 cm sections. Bioadhesive properties
on the pig stomach mucosa were studied in the acidic medium (0.1 M HCl). IPEC or PhM
compacts were attached to the probe, while mucin compacts or stomach tissue were placed
on the platform. Carbopol® 2020 (Carbopol) was used as a reference (positive control). The
parameter settings of analysis with mucin compacts were [20]: pre-test speed (0.5 mm/s),
test speed (0.1 mm/sec), post-test speed (0.1 mm/s), applied force (0.1 N), trigger force
(0.1 N), return distance (10 mm). The parameter settings of analysis with pig stomach
tissue were: pre-test speed (1 mm/s), test speed (0.1 mm/sec), post-test speed (0.1 mm/s),
applied force (0.1 N), trigger force (0.1 N), return distance (10 mm). The residence time of
each formulation on the mucin compact and pig stomach mucous membrane was 60 s. The
data were captured through Texture Exponent Software (Version 3.2). The peak force was
used to assess the gastroadhesivity of the matrices. The peak force is the maximum force
required to detach the membrane or the tissue from the matrices [20].

2.10. Statistical Analysis

All experiments were carried out in triplicate. Microsoft Excel Office software
2021 MSO (Version 2401 Build 16.0.17231.20236) was used for statistical analysis.
Mean values ± standard deviations were calculated using one-way analysis of variance
(ANOVA) and t-Test (Two-Sample Assuming Equal Variances), where probability was
p < 0.05 as a significant criterion.

3. Results and Discussion
3.1. Composition Study

Compositional differences of the synthesized IPECs were observed using elemental
analysis (Table 1). The fraction of polycation (EPO) incorporated in the polycomplex
increased as the pH of the reaction medium rose. IPEC 1 (synthesized at pH 6.0) had a
composition close to equimolar (Z = [EPO]/[L100] = 1.02). IPEC 2 (synthesized at pH 6.5)
contained a 1.5-fold excess of EPO (Z = 1.49). Thus, the polycomplexes were enriched with
the less ionized component (EPO) − IPEC 2.

Table 1. Characteristics of IPEC EPO/L100 systems.

Sample Symbol pH at Which IPEC
Was Obtained

IPEC Composition
Tg Value,

◦CZ = [EPO]/[L100] EPO:L100
(mol/mol)

IPEC 1 6.0 1.02 1:0.98 146.6 ± 0.3

IPEC 2 6.5 1.49 1:0.67 117.4 ± 0.2

Eudragit copolymers are amorphous substances and have a characteristic glass transi-
tion temperature (Tg) [21,23]. mDSC was used to confirm the structural differences between
prepared IPECs, as well as to evaluate the chemical homogeneity of the polymer systems
by the absence of microdomains of free copolymers. Both IPECs were characterized by the
presence of one Tg, which was higher than for EPO (52.1 ± 1.3 ◦C) but lower than for L100
(193.3 ± 1.8 ◦C).

3.2. Assessment of the IPEC Behavior in Acidic Medium

Assessment of the behavior of IPEC matrices without drugs in mimicking biological
liquids media is necessary for prediction of the possibility of application of IPEC as carriers
for DDS. The behavior of matrices based on IPEC Eudragit® EPO/L100 in comparison
with matrices based on PhMs was investigated under the conditions mimicking medium of
the fasted stomach (0.1 M HCl). It was noted that matrices based on PhMs dissolved after
2 h in an acidic medium. Matrices based on IPECs retained their shape, increased in size
and transformed into a hydrogel structure that withstood the entire 6 h of the experiment
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(Figure 1). Based on the comparison of swelling profiles (Figure 2), it can be concluded that
matrices of IPEC 2 were characterized by slower increase of the degree of swelling in the
first hours of exposure to the medium. However, the degree of swelling of the matrix based
on IPEC 2 was higher (851.53%) than that of IPEC 1 (481.54%) by the end of the experiment.
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The different behavior of matrices based on PhMs and IPECs is most likely explained
by the structure of IPEC stabilized by intermacromolecular ionic bonds between ionized
dimethylamino groups of EPO and carboxylate groups of L100. The presence of these
bonds has been proven by a new characteristic band at 1560 cm−1 in the FTIR spectrum of
IPECs. The FTIR spectra (Figures 3 and 4) of the obtained IPEC 1 and IPEC 2 show that the
intensity of the characteristic band at 1560 cm−1 decreased with an increasing residence
time of the IPEC matrices in mimicking fasted stomach medium (0.1 M HCl). This fact can
explain slight dissolution of matrices, which led to a decrease in the swelling plot.
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On the other hand, significant peak broadening at approximately 2520–2478 cm−1 can
be assigned to the interpolymer absorption band, which resulted from hydrogen bonding
interaction of the dimethylamino groups or the carbonyl of EPO with the hydroxyls from
the carboxylic groups of L100. Another new wide band between 2350 and 2750 cm−1 in the
IPECs spectrum indicates the occurrence of different dimeric and monomeric forms of the
ammonium cation, which, in turn, may be associated with water molecules. This fact is
consistent with our previous studies [26].

We applied mDSC to analyze the behavior of IPEC matrices while passing them
through a fasted-stomach-mimicking medium. Immersion of the IPEC 1 matrices up to 6 h
led to a sharp increase of the Tg from 117.4 ± 0.2 to 170.6 ± 0.1 ◦C. Moreover, all mDSC
thermograms showed only one Tg, which indicates that both IPECs were not disintegrated
to individual copolymers due to the absence of microdomains of them.

Possible compositional changes of the synthesized IPECs were found using elemental
analysis. Table 2 illustrates that the sample containing an excess of EPO (IPEC 2, Z = 1.49)
lost a significant amount of polycation that caused compositional changes in the poly-
complex. Thus, during testing, only one-third of the EPO was retained relative to L100
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(Z = 0.5). In case of the equimolar sample (IPEC 1), there were similar compositional and
structural changes, but with less leaching of EPO from the polycomplex matrix. Compara-
tive analysis of the Tg values indicated that the process of EPO leaching during residence
in the mimicking fasted stomach medium correlated with the compositional changes of
the tested polycomplex system and concurred with previously published results [26].
Thermograms are presented on Figures S1–S6.

Table 2. Results of the thermal and elemental analysis for IPEC samples after swelling in mimicking
fasted stomach medium (0.1 M HCl) (n = 3, mean ± SD).

Glass Transition, ◦C Elemental Analysis

Tg
Composition

Z = EPO:L100 (mol/mol) N, %

IPEC 1–2 h 165.8 ± 0.1 1:1.17 2.84 ± 0.16

IPEC 1–4 h 170.7 ± 0.1 1:1.11 2.91 ± 0.26

IPEC 1–6 h 170.6 ± 0.1 1:1.08 3.11 ± 0.10

IPEC 2–2 h 169.5 ± 0.1 1:1.22 2.78 ± 0.11

IPEC 2–4 h 172.3 ± 0.5 1:1.47 2.54 ± 0.12

IPEC 2–6 h 173.9 ± 0.3 1:1.27 2.75 ± 0.31

According to the received swelling assessment results, such intrastructural processes
that occur with IPEC matrices were not a limiting factor and allowed the matrices to stay
in an acidic mimicking fasted stomach medium for 6 h. It may indicate the prospects for
further studies of IPEC data as carriers for GRDDS.

3.3. Analysis of Bioadhesive Properties

There are two stages in the adhesion process: contact and consolidation. In the first
stage, contact between tablet and mucosa happens and the polymer swells and melts. There
is a bond formation between the polymer and mucin in the second stage [20,47].

In the bioadhesive properties study, there was a difference in mucoadhesion using
mucin compacts and mucosa tissue. Mucin compacts can be used for checking the ability
to adhere on the mucosa but they do not imitate a real tissue properly, as we proved.
The contact of the tablet and mucin compact is tight, and there is a high experimental
reproducibility. Adhesion of Carbopol (positive control) was found not to be significantly
different from IPECs and PhMs. Results of studying peak positive force of tablets on mucin
compacts are shown on Figure 5.
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We proved that PhMs and IPECs have high mucoadhesive properties as Carbopol. We
repeated the adhesion test using pig stomach tissue. Figure 6 shows peak positive force
results on pig stomach mucosa. The adhesion on the mucosa tissue depends on different
factors: contact surface, hydration, part of the stomach, etc. Carbopol had a better adhesion
on stomach mucosa than IPECs and PhMs. But in case of excessive adhesive properties
of gastroretentive systems, they can be adhesive to the throat or esophagus and cause
damage [47].
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3.4. Study of Drug Release

MZ and ACR are both characterized by high solubility in bioliquids of gastrointestinal
tract. MZ is a class I type of drug according to the biopharmaceutical classification system
(BCS) [48,49]. ACR is a class III type drug of BCS [50,51].

According to the received results (Figure 7), release profiles of MZ had similar charac-
teristics for all samples, with the total amount of released drug more than 49.62 ± 6.20% for
matrices based on IPEC 1 and 87.69 ± 5.15% for matrices based on IPEC 2. The amount of
released MZ from both PhMs was around 50%. These results are consistent with previously
published data regarding theophylline, which has good solubility in biological fluids of
the GIT and belongs to the I class of BCS [26]. The release rate of MZ increased with the
increasing degree of swelling. The slightly different shape of the IPEC 2 curve is associated
with the disintegration of the matrix that occurred during the experiment.

Matrices based on PhMs provided 20% lower release of ACR to the acidic medium after
6 h (Figure 8). Total amount of released ACR from IPEC 1 was 25.76 ± 5.67% and from IPEC
2 was 21.48 ± 5.00%. Despite the close values of the ACR concentration in the dissolution
medium to the end of the experiment, the profiles were different for matrices based on
IPEC 1 and IPEC 2. IPEC 2 provided fast release of ACR for 1 h, with the subsequent drug
concentration reaching the plateau. Release profile of ACR from IPEC 1 matrices can be
characterized as prolonged with gradual drug release over 6 h.



Sci. Pharm. 2024, 92, 14 10 of 16

Sci. Pharm. 2024, 92, x FOR PEER REVIEW 10 of 17 
 

 

fluids of the GIT and belongs to the I class of BCS [26]. The release rate of MZ increased 
with the increasing degree of swelling. The slightly different shape of the IPEC 2 curve is 
associated with the disintegration of the matrix that occurred during the experiment. 

 
Figure 7. Release profiles of metronidazole from IPEC and PhM matrices in mimicking fasted stom-
ach medium (0.1 M HCl) (n = 3, mean ± SD). 

Matrices based on PhMs provided 20% lower release of ACR to the acidic medium 
after 6 h (Figure 8). Total amount of released ACR from IPEC 1 was 25.76 ± 5.67% and 
from IPEC 2 was 21.48 ± 5.00%. Despite the close values of the ACR concentration in the 
dissolution medium to the end of the experiment, the profiles were different for matrices 
based on IPEC 1 and IPEC 2. IPEC 2 provided fast release of ACR for 1 h, with the subse-
quent drug concentration reaching the plateau. Release profile of ACR from IPEC 1 ma-
trices can be characterized as prolonged with gradual drug release over 6 h. 

 
Figure 8. Release profiles of acyclovir from IPEC and PhM matrices in mimicking fasted stomach 
medium (0.1 M HCl) (n = 3, mean ± SD). 

Figure 7. Release profiles of metronidazole from IPEC and PhM matrices in mimicking fasted stomach
medium (0.1 M HCl) (n = 3, mean ± SD).

Sci. Pharm. 2024, 92, x FOR PEER REVIEW 10 of 17 
 

 

fluids of the GIT and belongs to the I class of BCS [26]. The release rate of MZ increased 
with the increasing degree of swelling. The slightly different shape of the IPEC 2 curve is 
associated with the disintegration of the matrix that occurred during the experiment. 

 
Figure 7. Release profiles of metronidazole from IPEC and PhM matrices in mimicking fasted stom-
ach medium (0.1 M HCl) (n = 3, mean ± SD). 

Matrices based on PhMs provided 20% lower release of ACR to the acidic medium 
after 6 h (Figure 8). Total amount of released ACR from IPEC 1 was 25.76 ± 5.67% and 
from IPEC 2 was 21.48 ± 5.00%. Despite the close values of the ACR concentration in the 
dissolution medium to the end of the experiment, the profiles were different for matrices 
based on IPEC 1 and IPEC 2. IPEC 2 provided fast release of ACR for 1 h, with the subse-
quent drug concentration reaching the plateau. Release profile of ACR from IPEC 1 ma-
trices can be characterized as prolonged with gradual drug release over 6 h. 

 
Figure 8. Release profiles of acyclovir from IPEC and PhM matrices in mimicking fasted stomach 
medium (0.1 M HCl) (n = 3, mean ± SD). 
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medium (0.1 M HCl) (n = 3, mean ± SD).

Release data were fitted according to the zero-order, first-order and Peppas–Sahlin
equations to understand the mechanisms underlying the release of the MZ and ACR from
polycomplex matrix systems. Data are presented in Tables 3 and 4.
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Table 3. Results obtained from fitting experimental MZ release data.

Sample Model R2

IPEC 1

Zero-order 0.5952

First-order 0.8459

Peppas–Sahlin 0.9762

Table 4. Results obtained from fitting experimental ACR release data.

Sample Model R2

IPEC 1

Zero-order −17.3238

First-order 0.9935

Peppas–Sahlin 0.9813

IPEC 2

Zero-order −17.3238

First-order −15.0387

Peppas–Sahlin 0.9892

According to the received results using a zero-order model is not suitable for describing
the mechanism of MZ and ACR release from polycomplex matrix systems. Only release of
ACR from IPEC 1 matrices can be correctly described according to the first-order model,
whereas, according the received values of R2, the Peppas–Sahlin equation could be used
for understanding the mechanisms of model drug release from the investigated samples.

The Peppas–Sahlin Equation (2) takes into account the interrelated effects of Fickian
diffusion and Case II transport.

Q = K1·tm + K2·t2m (2)

where Q is the fraction of the drug released at time t, K1 and K2 are kinetic constants, m is
diffusional exponent.

The K1 value demonstrates the contribution of Fickian diffusion, while the K2 value is
related with both dissolution and relaxation of polymers chains [52].

Tables 5 and 6 and Figures 9 and 10 show the Peppas–Sahlin model experimental data
analysis. Release of MZ from IPEC 2 exceeded 60% after the first hour; therefore, data are
not provided.

Table 5. Results obtained from fitting experimental MZ release data to the Peppas–Sahlin model.

Parameters IPEC 1

m 0.2681

K1 0.1000

K2 2.3675

R2 0.9762

Table 6. Results obtained from fitting experimental ACR release data to the Peppas–Sahlin model.

Parameters IPEC 1 IPEC 2

m 0.2681 0.0605

K1 0.1000 0.1675

K2 2.3676 10.5505

R2 0.9813 0.9892
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According to the value of R2, the Peppas–Sahlin model may be taken into consideration
for explanation of the drug release mechanism.

Relaxation contribution/Fickian contribution (R/F) ratio was calculated by using the
received parameters (Figures 11 and 12). R/F > 1 for both complexes with MZ and ACR,
which showed that the erosion dominates during the process of both drug releases. The
drug releases for MZ and ACR are controlled by relaxation of polymeric chains in matrices.
That is, increasing R/F ratio values for release MZ in ACR from IPEC 1 matrices with time
indicates the increasing relaxational contribution [53].
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4. Conclusions

Received results showed the potential of IPEC Eudragit® EPO/L100 as a controlled
release carrier for gastroretentive delivery, due to comparable swelling properties in acidic
medium mimicking fasted stomach and suitable bioadhesive properties. The assessment
of possible structural and compositional differences in the formulation of polycomplexes
during their stay in the tested media indicates that the analyzed samples are self-healing
systems. Intrastructural processes that occurred with IPEC matrices were not a limiting
factor and allowed the matrices to stay in an acidic medium.

The release rate of MZ (class I BCS) from IPEC matrices increased with the increasing
degree of swelling. IPEC 1 provided prolonged release of MZ in mimicking fasted stomach
medium (0.1 M HCl). Matrices based on both IPECs provided slow release of ACR (class
III BCS) in acidic medium, with total amount of released drug less than 30% for the 6 h of
the experiment. Release of both drugs was controlled by relaxation of polymeric chains in
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matrices according to the Peppas–Sahlin model. In vitro swelling and release experiments
for prepared IPECs

It can be concluded that investigated polycomplexes are prospects for further evalua-
tion as carriers for gastroretentive bioadhesive systems.

Supplementary Materials: It can be downloaded at: https://www.mdpi.com/article/10.3390/
scipharm92010014/s1.figure.
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