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Abstract: In the digital age, data transmission has become a key component of globalization and
international cooperation. However, it faces several challenges in protecting the privacy and security
of data, such as the risk of information disclosure on third-party platforms. Moreover, there are few
solutions for personal data protection in cross-border transmission scenarios due to the difficulty of
handling sensitive information between different countries and regions. In this paper, we propose
an approach, personal data protection based on homomorphic encryption (PDPHE), to creatively
apply the privacy computing technology homomorphic encryption (HE) to cross-border personal
data protection. Specifically, PDPHE reconstructs the classical full homomorphic encryption (FHE)
algorithm, DGHV, by adding support for multi-bit encryption and security level classification to
ensure consistency with current data protection regulations. Then, PDPHE applies the reconstructed
algorithm to the novel cross-border data protection scenario. To evaluate PDPHE in actual cross-
border data transfer scenarios, we construct a prototype model based on PDPHE and manually
construct a data corpus called PDPBench. Our evaluation results on PDPBench demonstrate that
PDPHE cannot only effectively solve privacy protection issues in cross-border data transmission but
also promote international data exchange and cooperation, bringing significant improvements for
personal data protection during cross-border data sharing.

Keywords: cross-border; homomorphic encryption; privacy protection; data transmission; blockchain

1. Introduction

In the context of economic integration, cross-border data flow has become a key driver
of international business, technological innovation, and global cooperation. With the
development of digitization, data have emerged as new strategic resources in the economy,
inevitably impacting the global economy. However, along with these opportunities come
significant challenges in data privacy and security, especially in the transnational economic
environment, where privacy and security protection during data transmission become
more complex and sensitive.

As the volume of personal data increases and data types become more diverse, safe-
guarding personal privacy while promoting data flow has become a global issue. The
European Union’s General Data Protection Regulation (GDPR) [1] is a response to this
issue, imposing strict requirements on privacy data and emphasizing the protection of
personal data and the compliance of cross-border data transmission. The implementation
of GDPR has not only changed the data governance landscape in Europe but also had

Electronics 2024, 13, 1959. https://doi.org/10.3390/electronics13101959 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101959
https://doi.org/10.3390/electronics13101959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6138-283X
https://doi.org/10.3390/electronics13101959
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101959?type=check_update&version=2


Electronics 2024, 13, 1959 2 of 23

significant implications for businesses handling the data of EU citizens globally, becoming
a consideration for international data exchange and cooperation.

With the continuous improvement of regulations on personal information protection
such as GDPR, entities responsible for data governance face several challenges. Firstly,
according to these regulations, data subjects must take measures to ensure the auditability
of personal data, including patient information entries. For example, GDPR introduces
the right to consent, requiring specific data processors or controllers to obtain consent
before processing data. Secondly, in the fields of health and finance, the innovation and
use of big data technology lead to an inevitable increase in the volume of data collected
by institutions. This not only increases the demand for data but also requires data sharing
while protecting the privacy of data owners, especially among different institutions, posing
new challenges to data security, organization, and technology. Thirdly, under the current
global legal framework, determining data ownership depends on the environment of data
sharing, adding complexity to data governance.

Furthermore, utilizing data for research purposes is a double-edged sword. Many data
owners support using their data for research or improving service quality. However, they
are concerned about the potential infringement of their information privacy or improper
use or processing of data.

With technological advancements, emerging privacy computing technologies such as
homomorphic encryption (HE) [2] and secure multi-party computation (MPC) [3] offer new
possibilities for addressing privacy and security issues in cross-border data transmission [4–6].
These technologies enable data processing and analysis without exposing the original data
content, thereby ensuring data privacy while extracting data value. This is not only a
technological innovation but also an important supplement to existing data governance
models. However, despite the immense potential of these technologies, they still face
many challenges in practical applications. For example, how to effectively utilize these
technologies under different national and regional legal frameworks, how to address the
cost and efficiency of technical implementation, and how to ensure the universality and
scalability of technical solutions are urgent issues that need to be addressed. HE is a form
of encryption that allows computations to be performed on ciphertexts, generating an
encrypted result that, when decrypted, matches the result of operations performed on
the plaintext.

HE is fundamental to PDPHE as it allows the secure processing of personal data across
different jurisdictions without exposing the actual data, maintaining privacy and security.
Cross-border data protection challenges. International regulations variability: Different
countries have varying regulations regarding data privacy (e.g., GDPR in Europe, CCPA
in California), which complicates the management and transfer of personal data across
borders. By using HE, PDPHE aims to mitigate the complexities associated with these
regulations, ensuring that data can be processed in compliance with local laws without
having to be decrypted or exposed. Traditional FHE schemes are often not practical
for large-scale or real-time applications due to their high computational demands. This
paper modifies the FHE algorithm (specifically the DGHV scheme) to support multi-bit
encryption and security level classification, aiming to optimize performance while adhering
to regulatory standards.

1.1. Hypotheses

Feasibility of enhanced FHE for practical use. Hypothesis: By reconstructing the
classical FHE approach to include multi-bit encryption capabilities and classification of
security levels, the PDPHE can be made computationally feasible for real-world applica-
tions, particularly in cross-border scenarios where data security and compliance are critical.
Effectiveness in protecting data privacy. Hypothesis: The application of the modified
FHE algorithm within PDPHE will effectively protect personal data during cross-border
transmission against unauthorized access, thus maintaining confidentiality and integrity
of the data. Impact on international data exchange. Hypothesis: PDPHE will facilitate
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safer and more efficient international data exchanges by providing a secure method to
process and analyze encrypted data across borders, thus promoting global cooperation and
data-driven innovation without compromising data privacy. Adaptability to regulatory
changes. Hypothesis: The flexibility of the PDPHE framework in accommodating different
encryption levels based on the data protection laws of the involved countries will make it
adaptable to ongoing changes and updates in international data protection regulations.

1.2. Contribution

Therefore, the purpose of this paper is to explore in depth how privacy computing
technologies can be used within cross-border data sharing to solve privacy and security
issues in data transmission. We will analyze existing legal frameworks in detail, explore
the principles of privacy computing technologies and their application in cross-border data
transmission, and evaluate the practical effects of these technologies through case studies.
Through this research, this paper aims to provide new perspectives and solutions for
privacy protection and data security in cross-border data transmission. The contributions
of this paper are as follows:

• We propose a novel approach, PDPHE (Personal Data Protection based on
Homomorphic Encryption), to creatively apply the privacy computing technology
Homomorphic Encryption (HE) to cross-border personal data protection.

• We reconstruct the classical full homomorphic encryption (FHE) algorithm DGHV
by adding support to multi-bit encryption and security level classification, to ensure
consistency with current data protection regulations (e.g., European Union’s General
Data Protection Regulation, GDPR).

• We construct a prototype model based on PDPHE, and manually construct a data
corpus PDPBench, consisting of three categories, 10 specific types, and 440 cases
of cross-border personal data information. Our evaluation results on PDPBench
demonstrate that PDPHE cannot only effectively solve the privacy protection issues
in cross-border data transmission but also promote international data exchange and
cooperation, and bring great improvements for personal data protection during cross-
border data sharing.

The article is structured as follows: We provide some related work about cross-border
and privacy computing in Section 2, and the challenges of cross-border data sharing are
presented in Section 3. Then propose a new model PDPHE based on HE in Section 4. A
description of our experiment appears in Section 5. Finally, we conclude in Section 6 with a
summary of existing work and a plan for future work.

2. Motivation

We ensure the security and privacy of data as it is shared globally, amidst the explosive
growth of data volumes and the increasing importance of global data governance. This
task is exceptionally complex due to factors such as privacy protection, national security,
and trade secrets. In this context, ensuring that data are secure and private while still fully
leveraging its value becomes a global challenge.

The emerging global trend suggests that data should not leave its local environment,
and while users can utilize the data, they should not have direct access to it. This should
become the fundamental application model for the value sharing of cross-border data.
However, existing security solutions are not yet capable of supporting this goal.

As early as 2019, MIT’s report for the U.S. Department of Health proposed a healthcare
big data security application scheme based on blockchain and homomorphic encryption.
This approach, which has been recognized by U.S. officials [7], suggests a “usable but invis-
ible” model for protecting healthcare big data and outlines a preliminary technical route.

The technology route of making data usable but invisible primarily revolves around
homomorphic encryption. This type of encryption allows for computations to be performed
on encrypted data, with the results, once decrypted, remaining accurate. This effectively
mitigates the variability and uncertainty of upper-level laws and means that data processors
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can analyze and process data without actually “seeing” the data itself, thereby protecting
its privacy. This technology is particularly crucial for cross-border data sharing because it
ensures that even if data are sent to other countries or regions for processing, personal and
sensitive information can remain protected.

Therefore, this article applies homomorphic encryption technology to the scenario of
cross-border data sharing to address the issue of privacy protection for cross-border data.

3. Background and Relate Work
3.1. Data Protection Regulations

Research in the field of cross-border data transmission encompasses multiple aspects,
ranging from legal and regulatory differences to technological challenges, cultural dis-
parities, and geopolitical considerations. These studies are interrelated and collectively
contribute to a comprehensive understanding of the complexity of this field. The starting
point of research is often the differences in legal and regulatory frameworks, as deeply ex-
plored by Kuner [8,9], especially regarding the conflicts in legal systems when dealing with
cross-border data flows. This research emphasizes the importance of understanding the
legal frameworks governing global data flows. However, differences in legal frameworks
are just one part of the many challenges, leading to the crucial issue of data security risks.
Greenleaf (2016) [10] shifted the focus to data security, providing an overview of global
data privacy laws, particularly in the context of security challenges during cross-border
data transfers [11]. This study, starting from a legal perspective, explores the necessity
of data protection but offers less discussion on technological implementation, naturally
leading to issues of data sovereignty and jurisdiction. Millard [12] filled this gap by focus-
ing on the legal frameworks of cloud computing, especially regarding data sovereignty
and jurisdiction [13,14]. This study not only complements the aforementioned legal and
security perspectives but also introduces discussions on technological standards and com-
patibility. On the technological front, Weber (2015) [15] focused on issues of technological
standards and interoperability protocols in the Internet of Things. This research highlights
the technological challenges in cross-border data transmission, particularly the importance
of achieving compatibility between different technological systems and standards. Subse-
quently, Cate and Mayer-Schönberger (2016) [16] expanded the discussion to the impact
of cultural and linguistic differences on data processing. This study, from a sociocultural
perspective, explores the challenges in data interpretation and usage, supplementing the
technological and legal viewpoints [11]. Finally, Cattaruzza [17] extended the perspective
to the geopolitics of data, exploring how international relations and economic policies
influence data flows. This research provides a macroscopic view of the challenges in cross-
border data transmission, emphasizing the significance of political and economic factors in
global data flows [18,19].

While the above research addresses cross-border data-sharing issues through a broad
systemic framework, when focusing on specific technologies, there are various forms
of solutions available, among which multi-party computation (MPC) [20] has become a
research hotspot. MPC is a technology that allows multiple participants to jointly complete
specific computational tasks while maintaining the privacy of their respective input data.
From the current development of technology, MPC has become an important research
direction in the fields of cryptography and data security [21]. It mainly includes three
technologies: homomorphic encryption, zero-knowledge-proof, and secret sharing [22].

3.2. Homomorphic Encryption

Homomorphic encryption technology is a method of encryption that allows computa-
tions to be directly performed on encrypted data, yielding an encrypted result [23]. This
result, when decrypted, is the same as if the same operations had been performed on the
original data. This technology has long been a research hotspot in the fields of cryptography
and data security [24,25].
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The concept of HE was first introduced by Rivest, Adleman, and Dertouzos in 1978. In
their paper, they posed the question: Is it possible to design an encryption system in which
specific arithmetic operations can be carried out on ciphertexts, and the results remain
in an encrypted form [26]? This question marked the beginning of research into HE, but
due to technological limitations at the time, this concept was not immediately realized. It
was not until 1996 that Craig Gentry, a researcher at IBM, proposed the first partial HE
scheme in his doctoral thesis. This scheme supported an unlimited number of additional
operations on encrypted data but was limited to that operation alone [2]. Although this
was a significant advancement, its limitations meant that it did not fully realize the vision
of Rivest and others.

In 2009, Craig Gentry, in his further research at Stanford University, constructed the
first fully homomorphic encryption (FHE) scheme [27]. This scheme supported not only
addition but also multiplication operations, making it possible to perform arbitrary compu-
tations on encrypted data. Gentry’s scheme used “ideal lattices” from lattice cryptography
and introduced a “bootstrapping” technique to maintain the security of the ciphertext. This
groundbreaking work laid the foundation for the development of HE technology.

Despite the revolutionary theoretical significance of Gentry’s FHE scheme, its effi-
ciency and computational cost were major obstacles in practical applications. To address
this issue, researchers began exploring more efficient algorithms. For example, an IBM
research team proposed an improved algorithm based on Gentry’s scheme, significantly
enhancing computational efficiency [28]. Additionally, HE technology began to be applied
in explorations in fields such as cloud computing, data security, and medical privacy pro-
tection. For instance, Microsoft Research developed a library called “SEAL”, supporting
machine learning and statistical analysis on encrypted data [29].

HE is categorized into three main types: Partial homomorphic encryption (PHE), some-
what homomorphic encryption (SHE), and fully homomorphic encryption (FHE) [30].

PHE is the earliest form of HE, supporting one type of arithmetic operation on en-
crypted data, either addition or multiplication. Notable examples include the RSA encryp-
tion algorithm and the ElGamal encryption algorithm. RSA encryption, proposed by Rivest,
Shamir, and Adleman in 1978, is a multiplication HE algorithm [31]. ElGamal encryption,
introduced by Taher Elgamal in 1985, is an addition HE algorithm based on the discrete
logarithm problem [32]. Although these early HE schemes were theoretically significant,
their limited functionality restricted their application scope.

SHE represents a significant advancement in HE technology, supporting a limited
number of addition and multiplication operations on encrypted data. This category of
encryption technology has an advantage over PHE in handling more complex data opera-
tions. In 2009, Craig Gentry proposed somewhat of a HE scheme based on ideal lattices [2].
This scheme can be seen as an important step toward FHE.

FHE is the ultimate goal of HE technology, supporting an unlimited number of ad-
dition and multiplication operations on encrypted data. The proposal of FHE marked a
significant breakthrough in HE technology. In 2009, Gentry presented the first FHE scheme
in his doctoral thesis [27]. This scheme used lattice cryptography and introduced the
“bootstrapping” technique, and while it had limitations in efficiency, it theoretically proved
the possibility of FHE.

Although FHE has been theoretically proven feasible, it faces significant challenges in
efficiency and computational cost in practical applications. In recent years, researchers have
been striving to improve the efficiency of FHE, for example, through algorithm optimization
and hardware acceleration [33].

In terms of algorithms, HE technology, as a method that allows computations on
encrypted data, has made significant progress over the past decade. Lattice-based cryptog-
raphy is an important approach to implementing HE. The security of lattice cryptography
is based on mathematical lattice problems, which are considered strong candidates against
quantum computer attacks. Regev introduced the learning with errors (LWE) problem in
2005, which has become the core of many HE schemes [34]. Over time, the Bootstrapping
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technique has emerged as a key technology in HE, allowing encryption schemes to maintain
data security after multiple operations, a crucial step in achieving FHE, first introduced
by Gentry in his 2009 doctoral thesis [2]. Although HE technology is theoretically rev-
olutionary, its practical application is limited by efficiency and computational costs. In
recent years, researchers have been working to improve the efficiency of HE algorithms.
Researchers have optimized algorithms to enhance the efficiency of HE. For example, Chen
et al. proposed an optimized HE scheme in 2018, which significantly improved compu-
tational efficiency while maintaining security [29]. Besides software-level optimization,
hardware acceleration is also an important direction for enhancing the efficiency of HE. For
example, using specially designed hardware to accelerate HE computations [35]. In 2023,
Zainab H. Mahmood and others proposed a new symmetric fully homomorphic encryption
scheme that can perform operations on integers without the need for binary conversion. It
encrypts messages using prime secret keys. Compared to the DGHV system, this system
has made significant improvements. The scheme notably reduces the ciphertext size and
execution time compared to the DGHV system. It is approximately 23.8 times faster than
DGHV, and generates a single ciphertext for the entire message, unlike traditional schemes
which create a ciphertext for each bit of the message [36]. As HE technology develops, its
standardization efforts are also gradually advancing. Standardization is crucial for the
widespread application and acceptance of HE technology, with influential organizations
like HomomorphicEncryption, a group dedicated to the standardization of HE, aiming to
promote the development and application of the technology [37,38].

3.3. Zero-Knowledge Proof

ZKP is a cryptographic method that allows one to prove the truth of a statement with-
out revealing any useful information. Since its introduction in the early 1980s, ZKP has be-
come an important research direction in the fields of cryptography and information security.

In 1985, Goldwasser, Micali, and Rackoff introduced the concept of ZKP. Their work
provided a rigorous definition of ZKP and demonstrated how to construct such proof
systems theoretically [39]. In the 1990s, ZKP began to be applied in various cryptographic
protocols, such as identity verification and secure computation [40]. With the improvement
in computational capabilities and algorithm optimization, ZKP started to be used in a
broader range of fields in the 2000s. For instance, electronic voting systems utilized ZKP
technology to ensure the anonymity and untraceability of votes while verifying their
validity [41]. In the field of cryptocurrencies, ZKP has been used to create more privacy-
preserving transaction systems. For example, Zcash is a cryptocurrency that uses ZKP
to protect transaction privacy. Over time, the drawbacks of ZKP became apparent; early
systems were often inefficient and not suited for large-scale or real-time applications. The
growing demand for applications led to challenges in designing scalable zero-knowledge-
proof systems and efficient, secure protocols. It was not until the 2010s that Ben-Sasson,
E., et al. designed a lightweight model called zk-SNARKs, a small, non-interactive ZKP
technology widely applied in blockchain and cryptocurrency [42]. They later improved
upon zk-SNARKs, naming the advancement zk-STARKs, which offered stronger security
and better scalability [43]. By 2020, significant progress in the practicality of ZKP was made
by Chiesa, A., et al [6]. In recent years, the development of artificial intelligence has further
advanced ZKP. In interdisciplinary fields, Weng, J., et al. utilized ZKP in their research on
machine learning and data analysis [44].

3.4. Secret Sharing

Secret sharing is a method of distributing secret information among multiple par-
ticipants, ensuring that the secret can only be recovered when a sufficient number of
participants collaborate.

In 1979, Adi Shamir and George Blakley independently but almost simultaneously pro-
posed the concept of secret sharing. Shamir’s scheme (Shamir’s secret sharing) is based on
polynomial interpolation, while Blakley’s scheme relies on geometric properties [45,46]. By
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the 1980s, researchers began exploring different types of secret-sharing schemes, including
threshold-based schemes and access structure-based schemes. Threshold-based schemes
allow secrets to be shared among a certain number of participants, with the secret only
recoverable when enough participants cooperate. Access structure-based schemes are more
flexible, allowing for the definition of more complex combinations of participants to recover
the secret [47]. In the 1990s, the application of secret sharing expanded, particularly in MPC
and distributed systems [48]. With the rise of cloud computing and big data in the 2000s,
secret sharing’s application in data storage and management gained attention, being used
to protect sensitive data stored in the cloud, ensuring data privacy and security. However,
large-scale applications brought challenges, such as how to flexibly adjust participants and
access rights. To address this issue, in recent years, Boneh, D., and others proposed schemes
combining HE with secret sharing, achieving more secure and efficient data processing [49].
Subsequently, Yang combined secret sharing with blockchain, enhancing the privacy and
security of transactions [50].

4. Materials and Methods
Overview

In response to the challenges faced by society today, as discussed in the previous
chapter, we propose a privacy data protection model based on HE technology, as illustrated
in Figure 1. This model includes the following participants:

Data owner: Authorizes the use of their private data.
Provider: Holds the private data of the data owner, including personal information

such as patient details.
User: A participant who utilizes the private data of the data owner.
Blockchain-based evidence system (BES): Used for storing the hash values of en-

crypted data, ensuring the integrity and correctness of the data.
Trusted computing platform (TCP): The most crucial aspect of this platform is its

trustworthiness, where encrypted data are processed.
Now, consider a data owner who has lived in Country A for a while and then moves

to Country B. They wish to transfer their previous personal information to Country B. This
is to ensure that Country B can quickly understand their background, ensuring that they
can enjoy the full citizen rights offered by Country B, while also guaranteeing that their
privacy is not compromised.

Figure 1. Proposal model.
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Firstly, the data provider sends a data computation request to the TCP. This request
includes the computation function f (m1, . . . mi), the data provider’s identifier IDprovider,
and the public and private keys (PKuser and SKuser) generated by the data user using the
RSA asymmetric encryption algorithm. Upon receiving the request, the TCP initiates an
authorization request to the data provider based on their identifier. After verifying the
correctness of the authorization request, the provider seeks data authorization from the Data
Owner. Subsequently, the provider generates a public key PKprovider for HE and encrypts the
data. The encrypted data are hashed to generate a hash value, denoted as hash(ciphertext),
and this value is stored in the BES for future verification. The data provider sends the
encrypted data Encrypt

(
PKprovider, m1

)
to the TCP and also sends the data provider’s

public key encrypted with the data user’s public keyEncrypt
(

PKprovider, m1

)
to the data

user. Upon receiving the encrypted key Encrypt
(

PKuser, PKprovider

)
, the data user decrypts

it using their private key SKuser to obtain the data provider’s public key PKprovider. The

data user then encrypts data Encrypt
(

PKprovider, m2

)
with PKprovider and sends it to the

TCP. The TCP, after receiving the ciphertext, sends an integrity verification request to
the blockchain evidence platform to ensure the integrity of the data. It then performs
homomorphic encrypted computation. After the computation is completed, the result is
sent to the data user, who decrypts it to obtain the actual data computation result and
associates it with the data owner, as shown in Algorithm 1.

Algorithm 1 PDPHE model algorithm

1: Initialization: f (m1, . . . mi), PKuser, SKuser

2: User


f (m1, . . . m)
IDprovider

PKuser

→ TCP

3: TCP
{

authorization
PKuser

→ Provider

4: Providerauthorization → Owner
5: PKprovider = KeyGen(λ)
6: C1 = Encrypt(PKprovider, m1)
7: hash(ciphertext) → BES

8:

(
Resultauth

Encrypt
(

PK provider , m1

) )→ TCP

9: Encrypt(PKuser, PKprovider) → User
10: Decrypt(SKuser, PKprovider)
11: C2 = Encrypt(PKprovider, m2)
12: if BES.hash(C1) = TCP.hash(C1) && BES.hash(C2) = TCP.hash(C2) then
13: C = f (C1, C2)
14: else
15: Noti f y(provider, user)
16: end if
17: TCP.C → User
18: User.bind(Owner)

In this paper, the HE algorithm is a key factor affecting the efficiency of data sharing.
Considering the computational overhead, we adopt the FHE algorithm, DGHV [51].

In designing the PDPHE fully homomorphic encryption scheme, the decision to
base improvements on the DGHV scheme rather than other schemes was guided by the
following considerations:

Simplicity and accessibility: The DGHV scheme’s relatively simple structure and
conceptual clarity provide an easy-to-modify platform. This simplicity serves as a solid
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starting point for gradual improvements and allows for the transparent integration of
new ideas.

Space for improvement: Although other schemes have been extensively refined,
DGHV presents untapped opportunities for optimization. Once the efficiency issues within
its structural framework are resolved, there can be significant performance gains.

Advantages in cross-border scenarios: PDPHE addresses the unique challenges
of cross-border data transmission. The simplicity and clarity of DGHV better suit the
characteristics of small volumes of private data typically involved in cross-border transfers,
complementing each other effectively.

The HE technology can be represented by the following formula:

f (m1, . . . mi) = D( f (E(m1), E(m2), E(m3), . . . E(mi))) (1)

E(m) and D( f (E(m1), E(m2), E(m3), . . . E(mi))) represent the encryption and decryption
functions, respectively. An encryption algorithm that supports effective addition and
multiplication operations is referred to as supporting fully HE. DGHV is a FHE method
that is simpler and easier to understand compared to traditional algorithms. Although its
public key size is relatively large, it can be reduced by sacrificing the noise resistance of the
original algorithm. The key generation method is defined as follows:

KeyGen(λ) (2)

Based on the security parameter λ, a large odd number P key is generated, with η
being the number of bits in the generated key P.

Encrypt(PK, m) is the encryption process, where pk is the public key, and m is the
plaintext. According to the paper [52], the following is stipulated:

m ∈ {0, 1} (3)

This means that m can represent a bit. r and q are both positive random numbers, with
lengths of ρ bits and γ bits, respectively. Therefore, the entire process can be represented
as follows:

Encrypt(pk, m) : c = m + 2r + pq (4)

Decrypt(sk, c) represents the decryption process, where sk is the private key, and c is
the ciphertext. The decryption process can be represented as follows:

Decrypt(sk, c) : m = (c mod p) mod 2 (5)

Since this paper uses symmetric keys, the public key and private key are the same at
this time. The homomorphic property of this method is proven as follows, assuming the
key is p, and the 1-bit plaintexts are m1 and m2, then we have the following:

Encrypt(sk, m1) = c1 = m1 + 2r1 + pq1 (6)

Encrypt(sk, m2) = c2 = m2 + 2r2 + pq2 (7)

Direct computation of ciphertexts yields the following:

c1 + c2 = (m1 + m2) + 2(r1 + r2) + p(q1 + q2) (8)

c1c2 = (m1 + 2r1 + pq1)(m2 + 2r2 + pq2)

= m1m2 + 2(m1r2 + m2r1 + 2r1r2) + p(m1q2 +m2q1 + 2r1q2 + 2r2q1 + pq1q2)
(9)

Under the condition that 2(m1r2 +m2r1 + 2r1r2) < p or r <
√

p
2 , we have the following:

Decrypt (sk, c1 + c2) = ((c1 + c2) mod p) mod 2 = (m1 + m2) mod 2 (10)
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Decrypt (sk, c1c2) = ((c1c2) mod p) mod 2 = m1m2 (11)

The above encryption and decryption processes rely on the generation of random num-
bers. Traditional random number generation processes are easily attacked. Considering
both security and efficiency, this paper chooses a method combining a linear congruential
generator with the keccak256 function. This method is suitable for generating integer
random numbers, requires little computational power, and ensures unpredictability as
long as appropriate parameters and random number seeds are selected. The generation
formula is as follows: {

Xn+1 = (aXn + c) mod m, n ≥ 0
Rn+1 = keccak256(Xn+1) mod k

(12)

Here, X0 is the random number seed.
In reference [51], since the plaintext is {0, 1}, which aligns with the false and true

values in Boolean operations, this paper utilizes Boolean HE for computation and stipulates
the following:

G(m) =

{
false, if m = 0
true, if m = 1

G−1(F) =
{

0, if F = false
1, if F = true

(13)

The above formula facilitates the conversion from a 1-bit certificate to Boolean val-
ues. Common Boolean operations include AND, NAND, and OR, with other operations
derivable through combinations of these three. DGHV supports homomorphic addition
and multiplication. This paper presents a comparison of homomorphic addition and XOR
operations, as shown in Tables 1 and 2.

Table 1. Comparison between the homomorphic addition and XOR operations.

m1(G(m1)) m2(G(m2)) m1 + m2 F1 ⊕ F2

1 (true) 0 (false) 1 true
1 (true) 1 (true) 0 false
0 (false) 0 (false) 0 false
0 (false) 1 (true) 1 true

Table 2. Comparison of Homomorphic Multiplication and AND Operations.

m1(G(m1)) m2(G(m2)) m1 × m2 F1 ∧ F2

1 (true) 0 (false) 0 false
1 (true) 1 (true) 1 true
0 (false) 0 (false) 0 false
0 (false) 1 (true) 0 false

From the table, it can be concluded that the HE computation for a single bit can achieve
a homomorphic logical XOR computation. Homomorphic multiplication can implement
homomorphic logical AND operations. Since OR operations have an identity property,
homomorphic OR operations can also be realized.

F1 ∨ F2 ≡ F1 ⊕ F2 ⊕ (F1 ∧ F2) (14)

Assuming there are two Boolean values F1 and F2, whose corresponding integer
plaintexts are m1 and m2, these are then encrypted to obtain the following ciphertexts:

Encrypt(pk, m1) = c1 = m1 + 2r1 + pq1

Encrypt(pk, m2) = c2 = m2 + 2r2 + pq2
(15)
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Calculate c based on the Formula (14), where c is the ciphertext of the correspond-
ing integers:

c = F1 ∨ F2 = c1 + c2 + c1c2

F1 ∨ F2 = G(Decrypt(sk, c3))
(16)

The logical NOT operation is a unary operation. Firstly, it can be established that 1
itself can act as the ciphertext of 1, because

Decrypt(sk, 1) = (1 mod p) mod 2 = 1, p ≥ 2 (17)

Since the value of p is always greater than 2, we can define a constant const1 = 1 to
represent the ciphertext of 1. Similarly, it can be deduced that the constant const0 = 0 can
represent the ciphertext of 0. Therefore, the logical NOT operation can be represented
as follows:

m1 = G−1(F1)

¬F1 = G(Decrypt(sk, c1 + const1))
(18)

After mapping OR and NOT logic to HE, other logical operations can be obtained
through combinations of these three operations.

The above describes the HE process for a single bit. Following computer logic opera-
tions, all data are composed of a bitstream of {0, 1}. Therefore, we extend the single-bit
approach to multiple bits to implement HE for all data. Compared to single-bit operations,
long integers require consideration of carry-over in calculations.

This paper first utilizes Boolean operations to compare two positive integers. Table 3
shows the comparison results for a single bit.

Table 3. Single-bit integer comparison.

m1(G(m1)) m2(G(m2)) m1 > m2 m1 < m2 m1 = m2

0 (false) 0 (false) false false true
0 (false) 1 (true) false true false
1 (true) 0 (false) true false false
1 (true) 1 (true) false false true

This can be summarized as follows:

m1 > m2 ≡ G(m1) ∧ (G(m1)⊕ G(m2))

m1 < m2 ≡ G(m2) ∧ (G(m1)⊕ G(m2))

m1 = m2 ≡ ¬(G(m1)⊕ G(m2))

(19)

Assuming the key is pk, the plaintexts are m1 and m2, and the ciphertexts are c1 and
c2, then the homomorphic computation method is as follows:

m1 > m2 ≡ G(Decrypt(sk, c1(c1 + c2)))
m1 < m2 ≡ G(Decrypt(sk, c2(c1 + c2)))
m1 = m2 ≡ G(Decrypt(sk, c1 + c2 + 1))

(20)

Extending to multi-bit computation, assume there are two positive integers x and y.
After converting to binary, x and y can be represented as follows:

x : xnxn−1 . . . x1

y : ynyn−1 . . . y1
(21)

where xi, yi ∈ 0, 1. When x > y, the comparison process between x and y can be simplified
as follows: if the highest bit xn > yn, then it is directly determined that x > y; otherwise, if
x(n−1) . . . x1 > y(n−1) . . . y1, then it is determined that x > y. This process is repeated until
the lowest bit.
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Throughout this process, we define a variable z(i+1):

zi+1 =

{
1, xixi−1 . . . x1 > yiyi−1 . . . y1

0, xixi−1 . . . x1 ≤ yiyi−1 . . . y1
(22)

This can be summarized as z(i+1) = 1, meaning that (xi > yi) or (xi = yi and zi = 1).
This summary is equivalent to the Boolean operation diagram shown in Figure 2.

AND

XNOR

AND

OR~

x𝑖𝑖
𝑦𝑦𝑖𝑖

x𝑖𝑖
𝑦𝑦𝑖𝑖
𝑧𝑧𝑖𝑖

𝑧𝑧𝑖𝑖+1

Figure 2. Boolean logic circuit.

Therefore, for positive integers x and y, by serially connecting the n of these Boolean
operations as shown in Figure 3, a complete numerical comparison using HE can be formed,
where z1 = 0 and achieves multi-bit HE computation.

For the homomorphic computation of long integers, an adder is required. Considering
the clear advantages of the multi-bit DGHV algorithm in computing positive integers, this
paper only involves computations within the domain of positive integers. This computation
is accomplished by simulating the principles of the binary complement. Table 4 is a binary
addition table, where the result of adding a pair of binary numbers has two digits: one is
the sum digit, and the other is the carry digit. Therefore, we can derive the logic table for
the sum digit in Table 5, the logic table for the OR gate in Table 6, and the logic table for the
NAND gate in Table 7. Based on these, a full adder logic diagram can be constructed, as
shown in Figure 4.

Table 4. Binary addition table.

+ 0 1

0 0 1

1 1 10

Table 5. Logic table for the sum digit.

+ 0 1

0 0 1

1 1 0

Table 6. Logic table for the OR gate.

OR 0 1

0 0 1

1 1 1
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Table 7. Logic table for the NAND gate.

NAND 0 1

0 1 1

1 1 0

AND

XNOR

AND

OR~

x𝑛𝑛
𝑦𝑦𝑛𝑛

x𝑛𝑛
𝑦𝑦𝑛𝑛

𝑧𝑧𝑛𝑛+1

AND

XNOR

AND

OR~

x𝑛𝑛−1
𝑦𝑦𝑛𝑛−1

x𝑛𝑛−1
𝑦𝑦𝑛𝑛−1

𝑧𝑧𝑛𝑛

……
xi
𝑦𝑦𝑖𝑖

AND

XNOR

AND

OR~

x1

𝑦𝑦1

x1
𝑦𝑦1

𝑧𝑧2

z1

𝑧𝑧𝑖𝑖

Figure 3. N-bit Boolean logic circuit.

NAND

IN_A

IN_B
XOR

Sum output

Carry output

NAND

XOR

NOR

CarryIN

Figure 4. Full adder.
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The full adder is composed of two half adders whose logic diagram is shown in
Figure 4. Similarly, referring to a one-bit full adder, X and Y are the addends, Elow repre-
sents the carry-in from the lower bit, Ehigh represents the carry-out to the higher bit, and R
is the sum.

R = X ⊕ Y ⊕ Elow

Ehigh = XElowVYElowVXY
(23)

Constructing a homomorphic one-bit full adder:

R = Decrypt(sk, c1 + c2 + Elow)
Ehigh = Decrypt(sk, c1Elow + c2Elow + c1c2)

(24)

By chaining one-bit full adders, a multi-bit homomorphic encrypted adder can be obtained.
In the operation of Ehigh, two multiplications are required, and the error mainly accumulates
during multiplication. Therefore, each time a full adder is chained, the error is magnified
once. Thus, the main limitation of this method’s error is the number of chained adders,
i.e., the number of bits in X and Y.

The implementation of homomorphic multiplication relies on the principle of large-
number multiplication. For example, considering two ten-digit binary numbers, X and Y,
the following is assumed:

Y = 29y9 + 28y8 + 27y7 + 26y6 + 25y5 + 24y4 + 23y3 + 22y2

+21y1 + 20y0 =
9

∑
i0

2iyi
(25)

Therefore, we have the following:

X × Y = X
9

∑
i=0

2iyi =
9

∑
i=0

2iXy4
i (26)

Thus, large-number multiplication can be performed by first multiplying the large
number X with each digit yi, and then shifting and adding them together. We know that in
binary multiplication, we have the following:

(21 − 1)× (21 − 1) < 21 (27)

Therefore, the multiplication of two one-digit binary numbers does not produce a
carry, which means the following:

n × m = (n × m)mod2, ∀n, m ∈ {0, 1} (28)

Xyi = yi

9

∑
j=0

2jxj =
9

∑
j=0

2jxjyi =
9

∑
j=0

2j(xjyi
)
mod2 (29)

The problem of calculating Xyi is simplified to multiplying single digits and then
shifting. This solves the problem of homomorphic multiplication for large integers:

We compute all xjyi, where i ∈ {0, nx − 1}, j ∈ {0, ny − 1}, nx and ny are the number
of bits in the large integers X and Y, respectively, and xjyi is the ciphertext of each bit.

We compute all Xyj, where j ∈ {0, ny − 1}, using the following formula:

Xyj =
nX−1

∑
i=0

2ixiyj =
nX−1

∑
i=0

2ici,j

= {cna−1,jcna−2,j · · · c1,jc0,j}
(30)
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{· · · } represents an n-bit integer. Then, we compute XY by appending j 0 at the end
of Xyj, equivalent to a left shift by j bits, and then perform the large integer addition to
obtain C = XY, where C is the ciphertext.

Finally, we decrypt each bit of C, computing mk = Decrypt(sk, ck), where k ∈ {0, nx +
nb − 1}. The final result {mkm(k − 1) . . . m1m0} is the plaintext of the product.

This paper conducts experimental tests on the DGHV algorithm in the context of
single-bit operations. From the described single-bit encryption process, it is understood that
keyGen(λ) generates a large odd number p as the secret key based on the security parameter
λ, where η(bit) represents the bit length of the generated secret key p. Considering that the
value of p needs to be large to ensure the stability of the system, we tested the impact of the
value of η on stability.

5. Results
5.1. Research Question

Our experiments aim to answer the following research questions:
RQ1: How effective is PDPHE in protecting personal data during cross-border data

transmission?
RQ2: What is the efficiency of PDPHE in the process of trans-border data transmission?
RQ3: What are the influencing factors of PDPHE in the process of cross-border data

transmission?

5.2. Dataset

The dataset is categorized by industry into research data, medical data, and financial
data. Within each industry, the data can be further detailed into the following categories:
personal name, identity card number, phone number, deposit, weight, age, blood sugar,
loan, etc. The specific details are shown in Table 8.

Table 8. Dataset.

Sector Type Format Requirements Quantity/Items

Research Data Personal Name Measured in units 50
Phone Number Measured in units 50
School Measured in units 50
Email Measured in units 50

Medical Data Weight Measured in kg 50
Age Measured in years 50
Blood Sugar Measured in mg/dL 50

Financial Data Loan Measured in ten thousands 50
Deposit Measured in ten-thousands 50
Salary Measured in thousands 50

Total 500

5.3. Implementation

We implemented the PDPHE model using Go1.14.3 on equipment from Google, lo-
cated in Mountain View, United States with computational resources of 28 G CPU memory,
and the system environment is Ubuntu 20.04 LTS. In validating the homomorphic en-
cryption’s capability to protect data privacy while enabling computation on encrypted
data, this study employs a manually generated small-scale dataset comprising integers,
floating-point numbers, or boolean values. Basic homomorphic encryption schemes are im-
plemented using a homomorphic encryption library. Various operations including addition,
subtraction, multiplication, and division are performed on different types of encrypted
data. The primary focus of this paper is to measure the time overhead of encryption and
decryption operations, as well as ensure the correctness of the computed results.
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5.4. Result Analysis
5.4.1. PDPHE Effectiveness (Rq1)

Considering the lower computational performance of the machine and the large size
of the dataset, this paper, in order to reduce the proportion of repetitive work and server
pressure, only conducted experiments on single-bit HE. The single-bit encryption process
keyGen(λ) generates a large odd number p as the secret key based on the security parameter
λ, where η is the bit length of the generated secret key p. Considering that the value of p
needs to be large to ensure the stability of the system, we tested the impact of the value of
η on the effectiveness of the model.

In the case of PDPHE, within our tested range [2, 11], the results were 100% successful
in completing the encryption and decryption process without errors. However, in the case
of homomorphic multiplication, within our tested range, when η ∈ [3, 8], the model is un-
stable. But when η > 8, the process of encryption and decryption stabilizes and can achieve
100% success in Table 9. This is due to the noise inherent in multiplicative homomorphism,
which is within the normal and acceptable range. Considering key security, the value of η
can be appropriately increased within the range allowed by the performance.

Table 9. Effective for homomorphic multiplication in PDPHE.

Type Accuracy

Method η = 2 η = 3 η = 4 η = 5 η = 6 η = 7 η = 8 η = 9 η = 10 η = 11

Name 100% 55.08% 57.29% 55.26% 59.48% 62.86% 78.86% 100% 100% 100%
Phone 100% 59.77% 57.56% 56.36% 48.03% 62.70% 78.70% 100% 100% 100%
School 100% 58.96% 49.13% 53.89% 63.28% 62.53% 78.53% 100% 100% 100%
Email 100% 52.50% 50.75% 55.80% 54.22% 52.63% 68.63% 100% 100% 100%

Weight 100% 58.77% 58.37% 58.87% 62.82% 58.12% 74.12% 100% 100% 100%
Age 100% 47.79% 56.97% 54.66% 51.07% 59.08% 75.08% 100% 100% 100%

Blood Sugar 100% 56.16% 57.13% 58.86% 51.28% 46.72% 62.72% 100% 100% 100%
Loan 100% 52.33% 46.11% 54.49% 45.10% 45.02% 61.02% 100% 100% 100%

Deposit 100% 55.11% 54.96% 53.56% 58.15% 53.52% 69.52% 100% 100% 100%
Salary 100% 59.20% 53.17% 57.14% 58.47% 59.96% 75.96% 100% 100% 100%

5.4.2. PDPHE Efficiency (Rq2)

In the PDPHE model, symmetric key encryption is used to reduce the computation
time of HE. Asymmetric key encryption is employed to encrypt the symmetric key, prevent-
ing the leakage of the symmetric key which could lead to the decryption of computation
results. In this paper, the symmetric key algorithm is compared with traditional symmetric
encryption algorithms such as DES and AES. Additionally, in the realm of asymmetric
encryption algorithms, RSA and ECC are compared to select the most suitable key type for
this model.

Currently, encryption algorithms can be divided into two types: asymmetric encryp-
tion and symmetric encryption. Both of these can serve as implementations for DGHV
homomorphic encryption. However, due to the cross-border nature of this scenario and
the requirement for high computational efficiency, the decision has been made to employ
symmetric encryption, which is computationally efficient, for encrypting data. However,
the drawback of symmetric encryption is that the encryption and decryption share the
same key, making it susceptible to key leakage during transmission. To address this issue of
key leakage, asymmetric encryption is used in this document to encrypt the symmetric key.
The rationale behind this approach is that while using asymmetric encryption to encrypt
data would require decryption every time, which could significantly impact transmission
speed and computational efficiency due to the low decryption efficiency of asymmetric
keys, encrypting the key with asymmetric encryption avoids the need for decryption every
time, thus ensuring data security while improving computational efficiency.

To ensure the fairness of the tests, this paper uses a 100-character text as plaintext,
with the value of η set to 9. We conducted 10 tests, timing from the generation of the
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key to its encryption, and the results are shown in Figure 5. From the figure, we can see
that the overall duration of DES is significantly higher than that of AES and PDPHE, with
the duration of PDPHE being slightly less than that of the AES algorithm. This is mainly
because we chose a smaller η. If η > 20, then PDPHE would be significantly higher than
AES, but with a noticeable improvement in security.

For the asymmetric encryption of the public key, we compared the advantages and
disadvantages of ECC and RSA, as shown in Table 10, and conducted tests under the
PDPHE model, the result is shown in Figure 6. Compared to RSA, ECC has absolute
advantages in many aspects. In this model, its consumption time is also significantly less
than that of RSA, so this paper selects the ECC algorithm as the asymmetric encryption
algorithm for PDPHE.
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Figure 5. PDPHE, AES, DES algorithm comparison.

Table 10. Comparison between ECC and RSA Encryption.

Comparison Item ECC Encryption RSA Encryption

Key Length 256-bit 2048-bit

CPU Usage Low High

memory usage Low High

Bandwidth Low High

Implementation Complexity Simple Complex

Calculation Speed Fast Slow

Security Level High High

In this section, a comparison is made with other schemes in terms of security, execution
time, and ciphertext size. Table 11 provides a comparison between this work and existing
works, where reference [36] represents the currently more efficient encryption method. As
can be seen from the table, the encryption efficiency of the method proposed in this work
is not far from that method. When the text is small, the encryption time of this method
is shorter, but as the text size increases, this method shows disadvantages compared to
ref. [36], making this work more suitable for the encryption of small texts. Considering
user privacy data, which is not large in volume, the PDPHE method is more practical in
cross-border scenarios.
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Figure 6. Performance comparison of RSA and ECC.

Table 11. Execution time for different plaintext lengths.

Plaintext
Length This Work Ref. [36] DGHV-FHE SDC-FHE SAM-FHE

12 bytes 4.32 ms 4.69 ms 1118 ms 1180 ms 1007 ms
1.4 Kbytes 23.47 ms 20.93 ms 124,182 ms 1,283,068 ms 20,818 ms
2.8 Kbytes 32.48 ms 27.003 ms 6,715,148 ms 4,425,899 ms 72,901 ms

In PDPHE, the robustness of security depends on choosing a large prime number as
the secret key over any number by selecting the appropriate parameters for the scheme,
and it has been proven to resist brute force attacks for at least 2λ times and other types of
attacks. This can be explained by the cost of the prime number to the third party, where it
is first important to verify that the number is prime, and then the prime number should
be checked against the encryption equation, requiring multiple attempts to crack the code.
Furthermore, the prime number offers a unique probability for decrypting the ciphertext.

5.4.3. Impact Factor for PDPHE (Rq3)

In the PDPHE model, the lengths of various integers are controlled by parameters
γ, η, and ρ, which depend on the security parameter λ. When the security parameter
is small, the encryption can be broken through extensive computation. However, if λ is
large, solving an equation that requires exponential time in polynomial terms is impractical.
As theoretically discussed in the previous sections of this paper, the model achieves the
highest security rate and can realize 100% accuracy in encryption and decryption when
r ≈ 2

√
η and q ≈ 2(η

3). Therefore, we tested the impact of different r and q values on the
PDPHE model.

Since r and q are positive random numbers, we generated their values through exten-
sive experimentation. The security parameter λ is determined by η, with the value range of
η being [0, 63). Meanwhile, when the range of η is within [9, 60], we define the security
parameter levels of η to ensure the security level of encryption. These are categorized into
minimal security parameter, small security parameter, medium security parameter, and
large security parameter, as shown in Table 12.
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Table 12. Security level.

Security Level r η p Size of q/Byte

Minimal [9, 20) [8, 20) [256, 524,288) [220, 2077)

Small [20, 30) [20, 39) [524,288, 536,870,912) [2077, 7388)

Medium [30, 45) [39, 97) [536,870,912, 17,592,186,044,416) [7388, 25,807)

Large [45, 60] [97, 212] [17,592,186,044,416, 1,152,921,504,606,846,976) [25,807, 65,443]

It can be seen from Figure 7 that when the value of r is within the range set by η, the
processing results for all types of data are correct. When η = 9, the corresponding range
of r is [8, 20), and the accuracy rate of the processed data is 100%. However, when r is not
within the range set by η, problems occur in data processing. Overall, the further r deviates
from the set range, the lower the accuracy rate of the processing results. When r is taken as
[97, 212], the accuracy rate of data processing is already around 50%.

Considering the limitations of computational resources, this paper selects η = 10 to
adjust the r and p parameters, in order to verify the optimal solution for r and p, as shown
in Figure 7.
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Figure 7. The effect of r on the accuracy for η = 9.

Due to the large values of q, this paper uses the size of the bytes occupied by q as
the standard for testing, as shown in Figure 8. Similar to r, if the value of q exceeds the
mapping range of q corresponding to η, the uncertainty in data processing will become
apparent. As can be seen from Figure 8, when the value of q is changed, the accuracy
rate of data processing fluctuates significantly. Since the value of q is large, its impact is
also greater, and the randomness of the curve increases. When q exceeds the set range,
it is impossible to distinguish the impact of the size of q on the results. After numerous
experiments, it can be concluded that when r ≈ 2

√
η , q ≈ 2η3

, the system exhibits better
stability and the encryption effect is also optimal.
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Figure 8. The effect of Byte(q) on the accuracy for η = 9.

6. Conclusions

This paper presents the personal data protection homomorphic encryption (PDPHE)
model, a novel approach designed to safeguard personal privacy in the context of cross-
border data transmission.

The core innovation of the PDPHE model lies in its utilization of HE techniques,
enabling computations on encrypted data without requiring access to the private key.
This feature is particularly crucial in scenarios where sensitive data needs to be processed
across different jurisdictions, ensuring that the confidentiality of personal information is
maintained while still allowing for necessary data manipulations. A significant focus of
this research is on optimizing the encryption and decryption processes to enhance system
stability and performance. Through extensive experimentation, it was determined that
the system stability and encryption effectiveness are optimal when the parameters r and
q are set to r ≈ 2

√
η , q ≈ 2η3

, respectively. The PDPHE model stands out for its potential
to revolutionize the way personal data are protected during cross-border transfers. Its
implications extend beyond technical realms, offering a framework that could be adopted
by policymakers and international data protection bodies to establish more secure and
efficient data transfer protocols. However, our work still needs to progress further. Cross-
border scenarios are complex and diverse, and many challenges remain:

• Most of the experiments in this paper were conducted in a single-bit environment. For
multi-bit experiments, the requirements for bandwidth and server performance are
quite stringent. How to enhance the security of HE while reducing computational
overhead is a key focus for future research.

• Homomorphic encryption works well for small amounts of data, but in cross-border
data transmission, the demand for large-scale data sharing is increasing. We need
to use more universal methods to address this issue, among which secret sharing
schemes are a direction of our research.

• The development of artificial intelligence increasingly demands distributed federated
learning. However, some data in the federated learning process may be at risk of
leakage. Ensuring data privacy during the federated learning process is also a problem
we need to solve in the future.

• In the motivation section, we describe how privacy-preserving computation can
mitigate differences in upper-level policies to ensure the normal flow of data. PDPHE
can encrypt small amounts of data, such as personal privacy data, but its current
encryption efficiency still cannot meet the demands of encrypting large batches of
data. This is also a challenge in the practical application of the PDPHE algorithm.
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Therefore, in the future, we will propose the concept of a trans-border trusted data
space (TTDS) (the paper on this topic has been submitted and is still under review, so it
is not cited). Within this data space, we will classify data, allowing most data, which do
not require encryption, to flow freely. However, data defined as requiring encryption
will be encrypted using the PDPHE method, thus enabling efficient circulation of
all data.
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