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Abstract: Gait analysis plays important roles in various applications such as exercise therapy, biomet-
rics, and robot control. It can also be used to prevent and improve movement disorders and monitor
health conditions. We implemented a wearable module equipped with an MPU-9250 IMU sensor,
and Bluetooth modules were implemented on an Arduino Uno R3 board for gait analysis. Gait cycles
were identified based on roll values measured by the accelerometer embedded in the IMU sensor.
By superimposing the gait cycles that occurred during the walking period, they could be analyzed
using statistical methods. We found that the subjects could be identified using the gait feature points
extracted through the statistical modeling process. To validate the feasibility of feature-based gait
pattern identification, we constructed various machine learning models and compared the accuracy
of their gait pattern identification. Based on this, we also investigated whether there was a significant
difference between the gait patterns of people who used cell phones while walking and those who
did not.

Keywords: IMU (Inertial Measurement Unit); gait analysis; healthcare; internet of things; gait
pattern recognition

1. Introduction

Walking is the most common health activity in daily life and the first activity to be
affected by physical disabilities. Gait analysis is the systematic study of human walking
using detailed observations and measurements of bodily movements, mechanics, and
muscle activity. The purpose of gait analysis is to identify any abnormalities in the way a
person walks, evaluate walking efficiency, and assess the overall biomechanical health of the
individual. Gait analysis can help improve pedestrian safety and security in public spaces,
transportation systems, commercial facilities, and more. Motion detection technology such
as CCTV can be used to identify dangerous situations, and pedestrian identification can be
used in secure systems to prevent unauthorized access. Gait analysis also has applications
in business, such as providing customized products and services by identifying customer
preferences and behaviors through their movements. Currently, it is being commercialized
in the healthcare sector, such as using treadmills to detect gait and provide exercise therapy.

Identifying walking patterns has important applications in many aspects of health,
security, and business. Some studies have suggested a link between walking and brain
health, highlighting that walking can support brain function and improve cognition [1].
Other studies are investigating the interaction between walking and cognition in patients
with geriatric diseases such as Alzheimer’s [2–4]. These studies are expected to help us
understand the impact of walking patterns on cognition and brain health and to aid in
the early detection and management of these conditions. They also show the potential for
innovative uses of walking pattern identification in health and medicine, providing useful
information to monitor and treat patient conditions [5].

Recent research related to gait analysis includes the use of multiple infrared cameras [6–8]
and markers [9] to analyze the movement of markers in an indoor area and the use of
foot pressure sensors [10] and treadmills to analyze plantar pressure distribution [11]. The
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infrared camera method has limitations in terms of location, the inconvenience of wearing
the equipment, and cost, while the pressure sensor method requires the equipment to be
customized to the size of a person’s foot. Treadmills are less useful for the elderly and
patients who have difficulty walking.

Lin, C.-L. et al. [12] implemented deep learning neural network models using pedes-
trian color image sequences as an input and found them to be effective for pedestrian
detection and recognition. They extracted moving silhouette figures from the walking
image sequences and used the correlation between the original and new silhouettes as a
primitive feature of human walking.

Lee et al.’s work [13] describes a sensor compensation algorithm that transforms
an unstable sensor coordinate system into a stable anatomical coordinate system and
enhances the distinction between individual gait patterns through the introduction of 2D
cyclogram features.

Recently, many effective research methods using inertial sensors have been proposed.
T. Gujarathi et al. [14] compared joint angles measured using an inertial sensor and a
3D motion capture system and presented results indicating that the deviation was not
significant. H. Kim et al. [15] showed that the joint movement patterns of the hip and knee
joints during walking can be recognized using an MPU-9150 IMU (Inertial Measurement
Unit). Methods using inertial sensors offer the convenience of wearing equipment, have no
space restrictions, and can be implemented at a low cost. IMUs with built-in inertial sensors
are small, easy to attach to the body, and relatively inexpensive (USD 150 to USD 200).
Furthermore, IMU sensor-based gait analysis does not require additional equipment to be
installed to configure the experimental environment.

An IMU consists of a gyroscope, an accelerometer, and a geomagnetic sensor. An
accelerometer is a sensor that measures the acceleration of an object, while a gyroscope
measures the rotational speed and angular velocity (rad/s) of an object. A magnetometer is
a sensor that detects the magnetic field of an object. In the previous studies using IMUs,
about 70% of the experiments were conducted by attaching them to the shanks or ankles of
the subjects [16–21]. These studies mainly focused on extracting gait parameters such as
gait speed, gait cycle, cadence, stance time, and swing time.

In this study, a wearable module with an IMU [14,15,22] was used for gait analysis on
flat ground. Unlike treadmill walking, people walk at different speeds and move their feet
at different angles on flat ground. A person’s gait parameters are variable depending on
their physical condition, gender, and age. By superimposing gait cycles over a period of
walking, it may be possible to extract significant gait parameters using statistical methods.
If statistically significant discrete gait features can be extracted from continuous gait data,
it will be possible to identify gait patterns using these gait features.

Our proposed method to eliminate the uncertainty brought by highly variable gait
data involves superimposing gait cycles. The advantage of superimposing gait cycles is
that it can eliminate outliers and identify statistically significant features.

The three feature points extracted in our proposed method varied depending on the
collected data. However, the superimposed gait cycles were not expected to have large
statistical deviations, and we confirmed through experiments that the gait cycles converged
to a constant value after preprocessing. This means that the gait cycles stabilized as walking
continued. This was also the purpose behind our attempt at superimposing gait cycles.

This paper is organized as follows. Section 2 describes a wearable module with an
embedded IMU sensor and a method of gait cycle recognition used in this study. Section 3
discusses the relationship between left and right foot walking. Section 4 proposes a method
of gait pattern identification using gait features. Section 5 applies the proposed method to
a real application model. Section 6 concludes this work.

2. Gait Cycle Recognition Using IMU Sensors

On a flat surface, a person’s gait pattern (walking speed, steps per minute, etc.) is not
constant, but they repeat a regular gait cycle. The gait cycle consists of eight gait phases
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from Heel Strike to Terminal Swing. In this study, we built a wearable module using
the MPU9250 IMU sensor (by InvenSense Inc., San Hose, CA, USA) for the experiment.
Although the IMU sensor consisted of nine-axis sensors, the gait parameters (roll, pitch,
and yaw) extracted from the three-axis acceleration sensor were mainly utilized for gait
parameter analysis. For this paper, we focused on the roll value, which could track changes
in leg movement. By repeatedly superimposing roll data with the periodicity in the gait
cycle for a certain walking time, statistically significant gait parameters could be extracted.
We extracted three statistically significant features from the superimposed graphs and used
them for statistical modeling.

2.1. Gait Cycle

The gait cycle is divided into a stance phase and a swing phase, as shown in Figure 1 [23].
The stance phase, which accounts for 60% of the total gait, is when the sole of the foot is in
contact with the ground and supports the body’s weight. The swing phase, which accounts
for the remaining 40% of the gait, is when the foot is in the air. The gait cycle can be further
broken down into eight patterned gait phases. The stance phase can be divided into five
phases, from Heel Strike (HS) to Pre-Swing (PS), and the swing phase can be divided into
three phases, from Toe-Off (TO) to Terminal Swing (TS). The main characteristics of each
part of the gait cycle are as follows:

• Heel Strike (HS): Gait begins in the Heel Strike phase, which is the moment when the
heel touches the ground. At this point, the foot is placed on the ground and the leg
movement begins.

• Loading Response: In this phase, weight is placed on the legs and the body is lifted
upward. This process propels the pedestrian’s body further forward.

• Mid-Stance: In this phase, the body weight is fully supported on one foot and the legs
are straight. The body stabilizes in the Mid-Stance phase.

• Terminal Stance: In this phase, the legs are responsible for moving the body forward.
The knees should be kept pinned and the weight should be shifted forward.

• Pre-Swing (PS): In this phase, the sole of the foot begins to push off the ground. This
acts as a springboard for the next gait cycle.

• Toe-Off (TO): This is the moment when the sole of the foot leaves the ground, preparing
for the next gait cycle.

• Mid-Swing (MS): The Mid-Swing phase is entered with the legs crossed in midair. This
is when knee extension is maximized to prepare for the next phase, the Heel Strike.

• Terminal Swing (TS): In this phase, the gait cycle is completed as the legs prepare to
return to the ground from the air.
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2.2. IMU Sensor

IMU sensors are used to simplify gait analysis without any restrictions on the configu-
ration of the experimental environment. An IMU sensor basically consists of a three-axis
gyroscope, a three-axis accelerometer, and a three-axis magnetic sensor. An accelerometer
is a sensor that measures the acceleration of an object on the x-, y-, and z-axes. It is used to
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measure the acceleration of an object or to detect shocks, tilt, etc. A gyroscope measures
the rotational speed and angular velocity (rad/s) of an object along the x-, y-, and z-axes.
The values measured by a gyroscope are used to calculate the pitch value. A magnetometer
is a sensor that measures the azimuth angle and magnetic field of an object on the x-, y-,
and z-axes. IMU sensors are categorized into six-axis and nine-axis sensors depending on
whether they have a magnetometer, with six-axis IMU sensors being more common. It is
also possible to use two IMU sensors instead of one.

The locations where IMU sensors are mounted on the body are mainly concentrated
on the lower body, such as the top of the foot, the back of the foot, the thigh, and the shank.
This representative study of gait analysis using IMU sensors attempted to distinguish the
Heel Strike (HS) point and the Toe-Off (TO) point in the gait cycle by attaching six-axis
IMU sensors (accelerometers and gyroscopes) to both shanks. Using the raw data acquired
from the IMU sensors, the research objective was to distinguish the stance phase from the
swing phase in the gait cycle.

The MPU 9250 IMU sensor is a nine-axis IMU sensor. It consists of three accelerometer
axes, three gyroscope axes, three magnetometer axes, and one temperature axis. The
coordinate system of a three-axis sensor is shown in Figure 2.
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the right shank.

Roll, pitch, and yaw can be calculated from the raw data measured by the MPU-9250’s
built-in sensors. The radius of rotation indicated by roll, pitch, and yaw when the sensor
is attached to the ankle is shown in Figure 2. The yaw value can be calculated from the
raw data measured by the magnetic sensor. The rotation speeds in the x, y, and z axis
directions are used to determine the rotation of an object. The pitch and yaw values are
used to determine movement, such as the direction of rotation of the ankle during walking.
However, since the object of analysis in this paper was straight walking on a flat surface,
the pitch and yaw values were not processed.

The roll value is the angle of the knee, and it can be used to determine how much
the knee extends and flexes. The roll value was obtained using data measured by the
accelerometer. The acceleration of the accelerometer in the x, y, and z axis directions was
related to the tilt of the object and could be calculated based on that. The roll value was
found using Equation (1). Notice that Ax, Ay, and Az represent the acceleration values of
the x-axis, y-axis, and z-axis, respectively.

ψ = atan

 AY√
A2

X + A2
Z

 (1)

2.3. Configuration of a Wearable Module

Since an IMU sensor is worn on the body to collect data, we chose the MPU-9250 for
its small size. The Arduino Uno R3 model was used as an embedded board for a wearable
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module. Although the Arduino Nano model has an advantage in terms of size and ease
of mounting on the body, we chose the Uno R3 model to utilize the HC-05 and HC-06
Bluetooth modules instead of the Nano’s built-in Bluetooth module. The HC-05 and HC-06
modules are devices that transmit and receive data via Bluetooth wireless communication
and are mainly used in embedded systems such as Arduino or Raspberry Pi boards. By
adding ankle pads to the embedded board, we built a wearable module that could be
attached to the body.

The wearable module implemented for use in gait experiments is shown in Figure 3.
The MPU-9250 was mounted on the Uno R3 board and connected to the HC-05. The board
was bonded to the ankle pads. HC-05 operated in master mode, whereas HC-06 operated
in slave mode. The raw data measured by the MPU-9250 sensor were received by the
HC-05, which transmitted them to the HC-06. The HC-06 transmitted the data to the server
via Bluetooth.
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2.4. Roll Data-Based Gait Cycle Recognition

The raw data measured by the accelerometer were converted into analyzable roll data
through preprocessing and data refinement such as outlier removal and filtering. Figure 4a
shows the preprocessing of raw data with a Kalman filter, and Figure 4b shows the results
after removing outliers. Figure 4b shows a graph of gait cycles that were extracted and
continuously superimposed, with the red lines being the outlier gait cycles.
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The beginning stage of the gait cycle, “Foot-Flat”, is the state when the foot is flat
on the ground while the person is standing. However, this cannot be used as a starting
point because each subject has a different Foot-Flat state point. In order to classify the
gait cycle with certainty, we identified the gait cycle as the Toe-Off (TS) point (marked
with a blue dot), corresponding to the minimum roll value, and the Heel Strike (HS) point
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(marked with a red dot), corresponding to the maximum roll value, as shown on the left
side of Figure 5. The TS point and HS point correspond to the beginning and end of the
gait cycle, respectively. The gait cycle can be identified based on these two points, and thus
gait parameters can be extracted based on the gait cycle.
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We split the roll data into sub-graphs for each gait cycle and then overlaid each sub-
graph by aligning it with the beginning of the gait cycle. The right side of Figure 5 shows
the superimposed graph for subject 5. The graph generated by overlaying gait cycles
describes the gait characteristics of subject 5. By overlaying gait cycles, we can identify the
statistical characteristics of the gait cycles.

2.5. Experimental Conditions and Subject Information

The subjects’ natural walking was measured in a 15-meter-long flat area. To induce
normal walking, the subjects went through two practice walks before starting the gait
measurement. Fourteen volunteers (six men and eight women) with no physical disabil-
ities participated in this experiment. The average age of the participants was 24 years
(23 to 29 years), and the average height was 167 cm (156 cm to 190 cm). They were fully
informed of the purpose and procedures of this experiment and gave their consent to
participate in it.

3. Relationship between Left and Right Foot Walking Based on Gait Parameters

Although the left and right feet perform similar functions in walking, their use, effi-
ciency, and roles in movement can vary due to a wide range of factors. In a healthy and
typical gait, there is an expectation of symmetry between the left and right feet in terms of
timing, force distribution, and range of motion. Symmetry is often an indicator of efficiency
and normal gait patterns. The fundamental biomechanical processes that govern walking
apply to both feet, which go through similar gait phases, such as the stance and swing
phases, regardless of being the left or right foot.

Although perfect symmetry is rare, a functionally symmetric gait is often the goal
of rehabilitation. Small differences are normal, but significant asymmetries may indicate
underlying issues. Through biomechanical and kinematic analysis, we can quantitatively
evaluate the similarities and differences between left and right foot walking. For this, gait
parameters such as stride length, cadence, and the stance/swing time ratio are compared.
In this study, we analyzed the differences between left and right foot walking using TO
and HS.

The subjects wore the wearable modules attached to the knee protector pads on both
shanks. The first step was to start with the left foot. Each subject was asked to walk a total
of 10 times. As shown in Table 1, the average values of the gait time (unit: 1/100 s) of the
right foot stabilized as the experiment was repeated. Therefore, the number of footsteps
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after preprocessing also converged to a certain value. However, the standard deviation
(SD) of the gait time of the right foot was larger than that of the left foot.

Table 1. Comparison of left and right foot gait characteristics after preprocessing.

Trial

Left Foot Right Foot

Mean
(1/100 s)

SD
(1/100 s)

Gait
Numbers

Mean
(1/100 s)

SD
(1/100 s)

Gait
Numbers

1st 54.39 8.71 23 51.35 17.37 20
2nd 54.91 11.46 23 56.94 19.95 26
3rd 53.96 9.73 23 54.68 20.86 22
4th 54.48 16.13 23 54.09 16.77 22
5th 53.77 13.95 22 54.23 22.05 22
6th 54.39 17.29 23 60.94 14.27 16
7th 51.91 18.22 23 53.86 24.11 22
8th 54.57 21.04 23 53.54 14.78 24
9th 52.83 11.16 23 52.75 16.53 20
10th 54.35 19.58 23 53.04 15.57 23

Avg. 53.96 14.73 22.9 54.54 18.23 21.7

As shown in Table 1, the gait numbers of the left and right feet did not match, which
caused a discrepancy in the gait cycles of the left and right feet. Thus, a direct comparison
of the gait cycles based on the gait number was not feasible due to the lack of matching
gait cycles between the two feet. Without overlapping gait numbers, we could not directly
compare the same gait events across the left and right feet. Therefore, we performed
separate analyses for each foot regarding HS and TO to understand the gait characteristics
of each foot.

The visualizations shown in Figure 6 provide insights into the distributions of the HS
and TO values and the relationships between them for both the left and right feet. The HS
distribution indicates that both feet showed a range of HS values, and the distributions
indicate variability in Heel Strike positions and intensities across different gait cycles.
Similarly, the TO values for both feet display variability, reflecting differences in the Toe-Off
phase of the gait cycle. The scatter plots in Figure 6 reveal the relationships between the HS
and TO values for each foot, highlighting how these two parameters vary together across
different gait cycles.
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These visual comparisons allow us to observe that while there may be similarities in
the distribution of gait parameters between the left and right feet, each foot exhibits unique
characteristics. Figure 7 shows boxplots to compare the ranges and central tendencies of the
HS and TO values. Figure 7 provides insights into the ranges, medians, and variability of
these gait parameters for both feet. The boxplot of the HS values helps clarify how the Heel
Strike phase might differ between the two feet in terms of intensity or position. Similarly,
the boxplot of the TO values compares the distributions between the left and right feet,
highlighting differences in the Toe-Off phase’s timing and intensity.
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4. Gait Pattern Recognition Based on Gait Feature Points

We proposed a method for identifying individuals by analyzing walking patterns
using gait feature points. First, we examined whether there were significant differences in
the gait parameters extracted from the subjects. Then, the gait cycles were superimposed
into a single graph to identify the statistical characteristics of the gait parameters. Three
feature points that can identify walking patterns were extracted. We checked whether
individuals could be identified using these gait features. Finally, we analyzed the accuracy
of individual identification by building several machine learning models with these feature
points as a dataset.

4.1. Extraction of Gait Parameters

Gait parameters were extracted from the data obtained from the subjects, and they are
summarized in Table 2. The extracted gait parameters include the stance time, swing time,
gait time, and cadence. The unit of all gait parameters except cadence is seconds. In Table 2,
all gait parameter values except cadence are average values. The gait cycle is a duration,
as it is the time between taking a left footstep (or right footstep) and taking the next left
footstep (or right footstep). The gait cycle is the sum of the stance time and swing time.

Table 2. Summary of the gait parameters extracted from the subjects.

ID Sex Age Height
(cm)

Stance
Time/Swing
Time Ratio

Gait Time
(s) Cadence

1 F 23 163 1.46 9.99 128
2 F 24 159 2.33 14.74 112
3 F 23 158 2.18 10.06 127
4 F 23 159 1.83 10.93 109
5 F 23 162 2.51 11.48 114
6 F 23 157 2.3 11.4 130
7. F 23 156 1.97 9.84 129
8. F 23 159 1.73 10.21 130

Avg. (female) 2.04 11.08 122.38
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Table 2. Cont.

ID Sex Age Height
(cm)

Stance
Time/Swing
Time Ratio

Gait Time
(s) Cadence

9 M 25 173 2.36 10.97 106
10 M 26 173 2.43 9.59 112
11 M 23 179 2.22 8.84 115
12 M 23 190 2.29 9.6 114
13 M 25 172 2.3 11.4 130
14 M 29 182 2.28 11.46 101

Avg. (male) 2.31 10.31 113

Overall Avg. 2.16 10.75 118.36

As can be seen in Table 2, the average gait time of the male subjects was shorter than
that of the female subjects. We expected that the difference in the gait cycles between the
men and women would also affect the cadence values. We also predicted that there would
be differences in gait time, even within the same gender or age group. There were clear
differences in the gait parameters among the subjects, and based on this, we proposed a
method for extracting feature points that can distinguish individual gait characteristics
from the gait cycle.

4.2. Extraction of Gait Features from Superimposed Gait Cycles

The proportion of the stance phase in the gait cycle was measured to be 70%. In
addition, the swing phase, which corresponded to 30% of the gait cycle, showed little
variation compared to the other gait-related parameters, with the largest standard deviation
being only 0.17 in each gait cycle. Therefore, we focused on the inflection point of the gait
cycle curve in the section corresponding to the stance phase.

As shown in Figure 8, we can extract two points (GP1 and GP3) with the maximum and
minimum values in the stance phase interval. In addition, we can identify the inflection
point (GP2) in the interval (GP1, GP3). Gait feature points GP1, GP2, and GP3 can be
associated with the points where Heel Strike, Mid-Stance, and Toe-Off occur in the gait
segment. GP1 (Heel Strike) and GP3 (Toe-Off) are the points where the knee angle (roll
value) shows its maximum and minimum values, respectively. The closed interval (GP1,
GP3) corresponds to the start and end of the stance phase. Gait feature point GP2 is the
point where inflection occurs and corresponds to Mid-Stance in the gait cycle. GP2 is also
the point with the greatest variation between subjects. Table 3 shows the gait features
extracted from the subjects.
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Table 3. The gait feature points of the subjects.

ID
Left Foot Right Foot

GP1 GP2 GP3 GP1 GP2 GP3

1 23.69 −2.43 −56.27 19.17 −3.98 −48.7
2 22.14 −11.07 −48.61 19.41 −13.17 −50.88
3 18.37 −8.88 −46.8 12.84 −9.19 −40.05
4 20.13 −10.34 −56.40 16.59 −14.77 −37.35
5 24.95 −4.73 −45.01 23.25 −6.23 −49.10
6 25.42 −2.97 −51.07 25.59 −6.15 −48.93
7 28.14 −5.84 −43.90 26.60 −3.31 −61.64
8 22.41 −4.30 −54.15 18.30 −7.07 −55.38

Avg.
(female) 23.16 −6.32 −50.28 20.22 −7.98 −49.0

9 27.94 −2.88 −58.91 25.50 −4.86 −56.16
10 32.51 0.72 −44.11 35.24 2.47 −51.70
11 37.60 −1.90 −44.17 30.60 −3.81 −49.51
12 26.11 −5.04 −43.08 25.50 −4.86 −56.16
13 31.85 −4.39 −50.24 25.65 −7.40 −41.92
14 31.85 −2.43 −56.27 28.17 −1.60 −43.67

Avg.
(male) 31.31 −1.84 −49.46 27.08 −3.34 −49.85

Avg 26.65 −4.75 −49.93 23.74 −6.00 −49.34

4.3. Identification of Individual Gait Patterns Based on Feature Points

Figure 9 presents a 3D scatter plot showing the relationship between the values
across GP1, GP2, and GP3 for each individual. In this visualization, the x, y, and z axes
represent the GP1, GP2, and GP3 values, respectively, with the color intensity reflecting the
normalized GP3 values.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 9. A 3D scatter plot showing the relationship between the values across GP1, GP2, and GP3. 

This 3D perspective provides a comprehensive view of how these three dimensions 
correlate for each person. With only these three feature points, it is possible to distinguish 
each subject’s walking pattern. 

4.4. MLP Model for Gait Pattern Identification 
We showed that the gait features extracted through statistical modeling can be used 

to identify the walking patterns of the subjects. We built several machine learning models 
using the gait-related data as a training dataset and analyzed their classification perfor-
mance. 

As summarized in Table 2, the gait intervals varied from subject to subject. Since da-
tasets for training a machine learning model must be the same size, we needed to unify 
the gait cycles of the different intervals. To make the different lengths of the gait cycles 
equal, we normalized them based on the gait cycle with the maximum period. Although 
the gait cycles varied between the subjects, their differences were relatively small. Thus, it 
was necessary to reduce the variation by minimizing the standard deviation of the gait 
cycles. In these experiments, we obtained an average of 10 ± 2 gait cycles. Therefore, to 
reduce the variation in the gait cycles (average) for each subject, we collected 100 ± 20 data 
by running the experiment 10 times. 

The classification accuracy of each of the four machine learning models is summa-
rized in Table 4. The classification accuracy of most models ranged from 95 to 97%. The 
evaluation using eXtreme gradient boosting showed a strong performance with an accu-
racy of 0.97, a precision of 0.97, a recall of 0.97, and an F1-Score of 0.97. This demonstrated 
that the gait feature-based model can be used to identify individuals. 

Table 4. Classification accuracy of each model. 

Model Accuracy Precision Recall F1-Score 
Multi-Layer  

Perceptron (MLP) 
0.95 0.95 0.95 0.95 

Random Forest 0.95 0.95 0.95 0.95 
Support Vector Ma-

chine (SVM) 0.95 0.95 0.94 0.94 

eXtreme Gradient 
Boosting 0.97 0.97 0.97 0.97 

  

Figure 9. A 3D scatter plot showing the relationship between the values across GP1, GP2, and GP3.

This 3D perspective provides a comprehensive view of how these three dimensions
correlate for each person. With only these three feature points, it is possible to distinguish
each subject’s walking pattern.
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4.4. MLP Model for Gait Pattern Identification

We showed that the gait features extracted through statistical modeling can be used to
identify the walking patterns of the subjects. We built several machine learning models us-
ing the gait-related data as a training dataset and analyzed their classification performance.

As summarized in Table 2, the gait intervals varied from subject to subject. Since
datasets for training a machine learning model must be the same size, we needed to unify
the gait cycles of the different intervals. To make the different lengths of the gait cycles
equal, we normalized them based on the gait cycle with the maximum period. Although
the gait cycles varied between the subjects, their differences were relatively small. Thus,
it was necessary to reduce the variation by minimizing the standard deviation of the gait
cycles. In these experiments, we obtained an average of 10 ± 2 gait cycles. Therefore, to
reduce the variation in the gait cycles (average) for each subject, we collected 100 ± 20 data
by running the experiment 10 times.

The classification accuracy of each of the four machine learning models is summarized
in Table 4. The classification accuracy of most models ranged from 95 to 97%. The evaluation
using eXtreme gradient boosting showed a strong performance with an accuracy of 0.97, a
precision of 0.97, a recall of 0.97, and an F1-Score of 0.97. This demonstrated that the gait
feature-based model can be used to identify individuals.

Table 4. Classification accuracy of each model.

Model Accuracy Precision Recall F1-Score

Multi-Layer
Perceptron (MLP) 0.95 0.95 0.95 0.95

Random Forest 0.95 0.95 0.95 0.95
Support Vector Machine (SVM) 0.95 0.95 0.94 0.94

eXtreme Gradient Boosting 0.97 0.97 0.97 0.97

5. Determining Whether to Use a Mobile Phone Based on Walking Pattern

To demonstrate the usability of the gait pattern identification using gait features, we
applied it to a real application. We conducted an experiment to determine whether there
was a significant difference between the walking patterns of those who used a mobile
phone while walking and those who did not. There were a total of seven subjects (16 years
old—four persons (three males and one female), 23 years old—one person (female), 26 years
old—one person (male), and 29 years old—one person (male)). They walked a total of
15 m in a straight line while using their mobile phones, then walked on the same line again
without using their phones. The subjects were asked to walk as normal as possible. This
experiment was repeated five times.

Walking begins at the heel strike (HS) stage, the moment the heel touches the ground.
At this time, the foot is placed on the ground and the leg starts to move. The toe-off (TO)
stage is the moment when the sole of the foot is lifted off the ground, preparing for the next
gait cycle. Among the subject’s gait parameters, the HS and the TO values were visualized
as a scatter plot in Figure 10. In Figure 10, the HS and the TO values when a mobile phone
was not used and when used are indicated by red and blue circles, respectively. The TO
average was higher in the case of not using a mobile phone than in the case of using a
mobile phone. There is a clear difference in the scatter plot, enough to distinguish whether
or not a mobile phone was used for most of the subjects (5 out of 7).
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In Figure 11, shows the averages of 10 footsteps using a bar graph. The right and left
bars for each subject represent the number of steps (average) when a mobile phone was
or was not used, respectively. It can be seen that the number of steps taken when using a
mobile phone was higher than the number of steps taken when not using a mobile phone.
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Through the analysis of gait parameters, it was confirmed that mobile phone usage
had a significant impact on walking patterns. The classification performance was evaluated
using machine learning modeling (logistic regression and random forest) using six gait
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parameters (HS, TO, PTP (peak-to-peak), gait cycle, gait number, and gait time) as a dataset.
Note that HS and TO corresponded to the feature points GP1 and GP3, respectively. Even
though the dataset was not large enough, the classification accuracy for both methods on
the test set was 86%. The precision, recall, and F1-Score of the logistic regression model were
0.92, 0.85, and 0.88, respectively, while the precision, recall, and F1-Score of the random
forest model were 1.00, 0.75, and 0.86, respectively.

6. Conclusions

In this study, we built a wearable module with an MPU-9250 IMU sensor for gait
analysis. The gait cycle could be determined using roll data measured by the accelerometer
built into the IMU sensor. By superimposing the gait cycles determined during the walking
period, gait-related parameters could be extracted using statistical techniques. We proposed
a method for identifying individuals by analyzing their walking patterns using gait feature
points. We extracted two points, GP1 and GP3, with the maximum and minimum values
in the stance phase interval. In addition, we could identify the point GP2, where the
inflection point occurred in the interval (GP1, GP3). GP1, GP2, and GP3 could be associated
with the points where Heel Strike, Mid-Stance, and Toe-Off occurred in the gait segment.
Three feature points that could identify walking patterns were extracted.

To verify the feasibility of feature-based gait pattern recognition, we analyzed the
accuracy of individual identification by building several machine learning models using
these feature points as a dataset. The classification accuracy of most models ranged from
95 to 97%. To demonstrate the usability of the gait pattern identification using gait features,
we conducted an experiment to determine whether there was a significant difference
between the walking patterns of those who used a mobile phone while walking and those
who did not. The classification performance was evaluated using two machine learning
models and a dataset that included two gait features (HS and TO). Although the number of
subjects was limited to seven, the classification accuracy of the machine learning models
reached 92–100%.
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