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Abstract: This paper presents a switchable self-bias polarity on the CMOS complementary cross-
coupled rectifier to improve the rectifier’s power conversion efficiency (PCE) profile across a wide
input power (PIN) dynamic range. This technique achieves this by adaptively switching the polarity
of the bias on the n-MOS to overdrive it during low PIN to improve the sensitivity and underdrive it
during high PIN to suppress the shoot-through loss and the unnecessary discharge of the coupling ca-
pacitor. The popular self-biased p-MOS is also implemented further to reduce the reverse conduction
loss during high PIN. The proposed rectifier is fabricated in a 40 nm CMOS process and operates at
900 MHz with a load of 50 kΩ. The proposed rectifier achieved a peak PCE of 72.1% and maintained
a 0.8xPCEPEAK across a PIN dynamic range of 11.5 dB.

Keywords: cross-coupled; energy harvesting; power conversion efficiency; RF-DC converter; wireless
power transfer

1. Introduction

The adoption of dedicated wireless power transfer (WPT) and energy harvesting (EH)
is important to realize a wireless sensor network (WSN) on a massive scale. It relieves the
reliance on an onboard battery and reduces the node form factor to achieve a reasonable
economy of scale in areas such as structural health monitoring and logistic tracking. The
front-end of the RF energy harvesting (RFEH) system is widely implemented with the
cross-coupled rectifier for having higher power conversion efficiency (PCE) and sensitivity
than the Dickson rectifier [1], as summarized in Figure 1. It is the diode voltage (VDIODE)
drop in the Dickson rectifier in Figure 1a that reduces the maximum output voltage (VOUT)
of the rectifier. As a result, a larger chip area is required to accommodate a greater number
of cascading Dickson rectifiers to achieve the required VOUT. Instead of a diode, a diode-
configured MOS transistor can be utilized to potentially lower the dropout voltage to the
MOS threshold voltage (VTH). Exploitation of the body effect of the MOS was demonstrated
by [2–4] to improve further the sensitivity by reducing the VTH at the expense of higher
losses at high input power (PIN). The cross-coupled rectifier in Figure 1b eliminates the
VDIODE by operating the transistors as switches and having a dropout voltage based on their
on-resistance (rON). It adopts the back-to-back inverter feedback structure similar to the
static random-access memory (SRAM) structure. Inevitably, the cross-coupled rectifier also
inherited some of the drawbacks, such as the shoot-through current (ISHOOT). Currently,
RFEH systems that utilize RF energy as their primary source are plagued by a slew of losses,
such as free-space path loss and obstruction between the line-of-sight when operating at far
field. Even though these losses are of lesser concern when operating in the near field, the
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non-linear rectifier exhibits rapid PCE degradation when high PIN incidence on the rectifier
leads to a limited and narrow PIN dynamic range. The PCE of the rectifier can be calculated
as follows:

PCE =
V2

OUT/RLOAD

PIN
(1)

where RLOAD is the resistive load at the output of the rectifier, and PIN is the input power at
the rectifier.
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Figure 1. Overview of the commonly used rectifiers: (a) the Dickson rectifier and (b) the cross-
coupled rectifier.

Figure 2a shows the block diagram of a typical RFEH system, and Figure 2b shows
the details of the proposed rectifier in this work. The cascading DC–DC boost converter
provides a regulated supply voltage (VSUP) for the sensor node and, most importantly,
functions as a regulated RLOAD to the rectifier to provide optimal PCE performance. A
buck-boost converter operating in the discontinuous current mode (DCM) by [5] was able to
maintain the rectifier PCE above 70% across an RLOAD from 10 Ω to 10 kΩ. It was achieved
by regulating the input impedance of the converter, making it independent of the converter
input voltage (VOUT of the rectifier) while also providing decoupling of the actual RLOAD
from the rectifier. In contrast, the study in [6] proposed using a maximum power point
tracking (MPPT) algorithm to maintain impedance matching at the interface between the
rectifier and DC–DC converter by reconfiguring the number of rectifier stages to achieve
a dynamic range from –20 dBm to 20 dBm. At the same time, in addition to modulating
the input impedance like [5], the study in [7] also changes the matching network at the
input of the rectifier to achieve both input and output matching for its rectifier front-end.
However, in applications without the boost converter, an N-stage cascading rectifier offers
VOUT boosting at a low PIN to meet the minimum VSUP but incurs a higher loss at a high
PIN [8]. Furthermore, to achieve an overall higher system efficiency, the rectifier must also
address the varying PIN.

Figure 3 shows the concept of the multi-path approach demonstrated by [9,10] achieved
an improved PIN dynamic range by dynamically switching between two rectifiers opti-
mized at two targeted PIN. The two rectifiers need not be of the same structure as reported
in [11–13], where the cross-coupled and Dickson rectifiers were used for low and high
PIN, respectively. It allows the effective use of the Dickson rectifier at a higher PIN when
the dropout voltage is of lesser concern. It avoids the drawback of the increased losses in
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the cross-coupled rectifier. However, it is challenging to predetermine the optimal tran-
sition between the two rectifiers, resulting in sub-optimal performance and power loss.
A series-parallel reconfiguring of an N-stage rectifier also demonstrates an improved PIN
dynamic range [14,15]. A 6-stage to 12-stage Dickson rectifier by [14] was able to achieve
a 15 dB dynamic range but suffered from downtime due to the difficulty of the control
circuit to discern the appropriate configuration. An interesting reconfiguring approach was
proposed in [15] by stacking different VTH devices to achieve a dynamic range of 22.8 dB. It
uses native devices for low PIN and sequentially stacks higher VTH devices in series to limit
the losses and obtain an equivalent longer channel length device. It is important to note
that [15] requires extensive and careful optimization due to the use of different devices,
which severely limits its practicality against device variation during mass production.
However, the rectifier input impedance (ZREC) also requires meticulous optimization [16]
or an adaptive matching network [17,18] to address the change in ZREC based on the con-
figuration. Lastly, self-biasing improves the PIN dynamic range by reducing the reverse
conduction loss (PREV) from the p-MOS by limiting the reverse conduction current (IREV)
and improves the sensitivity by increasing the overdrive on the n-MOS [19,20]. However,
this also results in a reduced p-MOS forward conduction current (IFWD) [19] and introduces
a conduction imbalance between the p-MOS and the n-MOS, resulting in the inefficiency of
the voltage boosting introduced by the coupling capacitors. The study in [21], moreover
the study in [22], proposed the underdrive of the n-MOS to mitigate the conduction imbal-
ance at high PIN, which requires extensive optimization to ensure reasonable sensitivity
at low PIN. Furthermore, the diode-configured transistors used to generate the self-bias
voltage are also susceptible to process and temperature variation with minimally accessible
tune options. The studies in [23,24] addressed this issue by tracking VOUT and providing
continuous active compensation on the n-MOS.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 16 
 

 

 
 

(a) (b) 

Figure 2. Block diagram of the (a) RF energy harvesting system and (b) the proposed rectifier. 

Figure 3 shows the concept of the multi-path approach demonstrated by [9,10] 
achieved an improved PIN dynamic range by dynamically switching between two 
rectifiers optimized at two targeted PIN. The two rectifiers need not be of the same 
structure as reported in [11–13], where the cross-coupled and Dickson rectifiers were 
used for low and high PIN, respectively. It allows the effective use of the Dickson rectifier 
at a higher PIN when the dropout voltage is of lesser concern. It avoids the drawback of 
the increased losses in the cross-coupled rectifier. However, it is challenging to 
predetermine the optimal transition between the two rectifiers, resulting in sub-optimal 
performance and power loss. A series-parallel reconfiguring of an N-stage rectifier also 
demonstrates an improved PIN dynamic range [14,15]. A 6-stage to 12-stage Dickson 
rectifier by [14] was able to achieve a 15 dB dynamic range but suffered from downtime 
due to the difficulty of the control circuit to discern the appropriate configuration. An 
interesting reconfiguring approach was proposed in [15] by stacking different VTH 
devices to achieve a dynamic range of 22.8 dB. It uses native devices for low PIN and 
sequentially stacks higher VTH devices in series to limit the losses and obtain an 
equivalent longer channel length device. It is important to note that [15] requires 
extensive and careful optimization due to the use of different devices, which severely 
limits its practicality against device variation during mass production. However, the 
rectifier input impedance (ZREC) also requires meticulous optimization [16] or an 
adaptive matching network [17,18] to address the change in ZREC based on the 
configuration. Lastly, self-biasing improves the PIN dynamic range by reducing the 
reverse conduction loss (PREV) from the p-MOS by limiting the reverse conduction 
current (IREV) and improves the sensitivity by increasing the overdrive on the n-MOS 
[19,20]. However, this also results in a reduced p-MOS forward conduction current (IFWD) 
[19] and introduces a conduction imbalance between the p-MOS and the n-MOS, 
resulting in the inefficiency of the voltage boosting introduced by the coupling 
capacitors. The study in [21], moreover the study in [22], proposed the underdrive of the 
n-MOS to mitigate the conduction imbalance at high PIN, which requires extensive 
optimization to ensure reasonable sensitivity at low PIN. Furthermore, the diode-
configured transistors used to generate the self-bias voltage are also susceptible to 
process and temperature variation with minimally accessible tune options. The studies 
in [23,24] addressed this issue by tracking VOUT and providing continuous active 
compensation on the n-MOS. 

Figure 2. Block diagram of the (a) RF energy harvesting system and (b) the proposed rectifier.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 3. An illustration of a typical PCE versus PIN for a multi-path rectifier for PIN dynamic range 
improvement. 

This paper proposes a simpler approach suitable for low-cost systems by switching 
the polarity of the self-bias voltage applied to the gate terminal of the n-MOS to achieve 
two different PCEPEAK at two different PIN. The advantage of this approach is that it 
provides two distinct PCE profile transitions with a single rectifier and offers a tuning 
option. Section 2 discusses the operating principle of the rectifier; Section 3 presents the 
measurement results of the rectifier; Section 4 provides the conclusion. 

2. Proposed Rectifier Analysis and Description 
2.1. The Cross-Coupled Rectifier and Its Issues 

The cross-coupled rectifier is fundamentally formed by two inverter structures in 
feedback. When considering half of the period, the differential input VRFP and VRFN is 
rectified by transferring charges from C1 to CL when VOP > VOUT and replenishing the 
charges in C2 from the ground (VSS) when VSS > VON. The sinusoidal VOP or VON results in 
IREV when VOUT > VOP or VON due to the p-MOS bidirectional characteristic. The single-
sided self-bias by [19] reduces IREV by introducing a clamping voltage for the p-MOS at 
the expense of IFWD. The role of the n-MOS is often treated as a means for current 
continuity. However, due to the sinusoidal nature of VOP and VON, the n-MOS also 
experiences a similar issue as the p-MOS. The double-sided self-bias in [19] positively 
bias the n-MOS to lower the overdrive to improve the sensitivity. However, this resulted 
in severe PCE degradation at high PIN due to the timing mismatch between the p-MOS 
and n-MOS. Figure 4a shows half of the cross-coupled rectifier, along with Figure 4b 
illustrates the timing mismatch between M1 and M3. The charges are transferred by 
IFWD,M1 from C1 to CL through M1 when VOP > kVOUT. As VOP transit, M1 discharges CL when 
kVOUT > VOP and until M1 turns off when kVOUT – VON < |VTHP| shown in IREV,M1. At the 
same time, M3 also turns on when VON – VSS > VTHN resulting in an IREV,M3 discharging C1. 
M3 is only able to replenish the charges in C1 with IFWD,M3 when VSS > VOP and VON – VOP > 
VTHN. The key observations are: (1) an overlap of IREV provides a conduction path from 
VOUT to VSS, resulting in ISHOOT, and (2) if IREV for M3 is longer than M1, it reduces of 
number of charges stored in C1 and degrades the effectiveness of the voltage boosting 
provided by the coupling capacitor. This can be expressed as follows: 𝑉 = 12 𝑘𝑉  𝜂  𝑉  (2) 

𝜂 = 𝐶𝐶 𝐶  (3) 

where k factors the deviation from the analytical result of ½ [25], and ηCOUPLING is the 
coupling efficiency between C1 and the parasitic capacitance (CPARASITIC) on node VOP in 
Equation (3). The equivalent CPARASITIC is the sum of the gate-drain overlap capacitance, 

Figure 3. An illustration of a typical PCE versus PIN for a multi-path rectifier for PIN dynamic
range improvement.

This paper proposes a simpler approach suitable for low-cost systems by switching
the polarity of the self-bias voltage applied to the gate terminal of the n-MOS to achieve
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two different PCEPEAK at two different PIN. The advantage of this approach is that it
provides two distinct PCE profile transitions with a single rectifier and offers a tuning
option. Section 2 discusses the operating principle of the rectifier; Section 3 presents the
measurement results of the rectifier; Section 4 provides the conclusion.

2. Proposed Rectifier Analysis and Description
2.1. The Cross-Coupled Rectifier and Its Issues

The cross-coupled rectifier is fundamentally formed by two inverter structures in
feedback. When considering half of the period, the differential input VRFP and VRFN is
rectified by transferring charges from C1 to CL when VOP > VOUT and replenishing the
charges in C2 from the ground (VSS) when VSS > VON. The sinusoidal VOP or VON results
in IREV when VOUT > VOP or VON due to the p-MOS bidirectional characteristic. The single-
sided self-bias by [19] reduces IREV by introducing a clamping voltage for the p-MOS at the
expense of IFWD. The role of the n-MOS is often treated as a means for current continuity.
However, due to the sinusoidal nature of VOP and VON, the n-MOS also experiences a
similar issue as the p-MOS. The double-sided self-bias in [19] positively bias the n-MOS
to lower the overdrive to improve the sensitivity. However, this resulted in severe PCE
degradation at high PIN due to the timing mismatch between the p-MOS and n-MOS.
Figure 4a shows half of the cross-coupled rectifier, along with Figure 4b illustrates the
timing mismatch between M1 and M3. The charges are transferred by IFWD,M1 from C1 to CL
through M1 when VOP > kVOUT. As VOP transit, M1 discharges CL when kVOUT > VOP and
until M1 turns off when kVOUT − VON < |VTHP| shown in IREV,M1. At the same time, M3
also turns on when VON − VSS > VTHN resulting in an IREV,M3 discharging C1. M3 is only
able to replenish the charges in C1 with IFWD,M3 when VSS > VOP and VON − VOP > VTHN.
The key observations are: (1) an overlap of IREV provides a conduction path from VOUT to
VSS, resulting in ISHOOT, and (2) if IREV for M3 is longer than M1, it reduces of number of
charges stored in C1 and degrades the effectiveness of the voltage boosting provided by the
coupling capacitor. This can be expressed as follows:

VOP =
1
2

kVOUT + ηCOUPLING VRFP (2)

ηCOUPLING =
C1

C1 + CPARASITIC
(3)

where k factors the deviation from the analytical result of ½ [25], and ηCOUPLING is the
coupling efficiency between C1 and the parasitic capacitance (CPARASITIC) on node VOP in
Equation (3). The equivalent CPARASITIC is the sum of the gate-drain overlap capacitance,
gate-source overlap capacitance and gate-body oxide capacitance contributed by the p-MOS
and n-MOS [25]. Under a steady-state operation, the variation in VOUT is minimal with a
suitable CL and can be regarded as an ac virtual ground.
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2.2. Description of the Proposed Rectifier

Figure 5 shows the schematic of the proposed rectifier with a switchable self-bias
polarity. The main cross-coupled rectifier is formed by M1–M4 and C1–C2 similar to
Figure 1b. The low VTH (LVT) core devices are used for M1–M4 to achieve better sensitivity.
On the other hand, metal-insulator-metal (MIM) capacitors are used for C1–C2 to minimize
the amount of bottom plate parasitic capacitors while maximizing the amount of capacitance
per unit area. Unlike Figure 1b, the gate terminal of M1–M4 is not connected to VOP and
VON, but instead, the VRFP and VRFN are coupled through C3–C6. It allows the voltage
stored in C3–C6 to assist or restrict the overdrive to turn on M1–M4. The p-MOS positive
self-bias voltage is generated using the diode-configured M5–M6 and C3–C4. In this diode
configuration, M5–M6 provide a unidirectional conducting path to charge and store the
charges in C3–C4. It only happens when VOUT is sufficiently large to forward bias M5–M6.
M5–M6 are implemented with high VTH (HVT) core devices to prevent degrading the IFWD
at low PIN due to the generated p-MOS self-bias voltage. The p-MOS positive self-bias
voltage is crucial during high PIN to limit IREV. The n-MOS positive and negative self-bias
voltage is generated with LVT M7–M10, R1–R2 and C5–C6. The performance at low PIN
is improved using a positive n-MOS self-bias voltage similar to [19]. This is performed
by turning off M9–M10 and allowing R1–R2 to provide a dc-short between the gate-source
terminal of M7–M8. The conducting path of the diode-configured M7–M8 allows charges to
flow from VSS to C5–C6. The positive n-MOS self-bias voltage makes it easier to turn on
M3–M4 even with a smaller VRFP and VRFN. However, an n-MOS positive self-bias voltage
introduces conduction mismatch during high PIN, as illustrated in Figure 4. As such, a
negative n-MOS self-bias is generated by turning on M9–M10 to address the conduction
mismatch. It reconfigures M7–M8 by providing a dc-short between the gate-drain terminal
to change the conducting path from C5–C6 to VSS. This operation depletes the charges
stored in C5–C6, resulting in a negative self-bias voltage. The rON of M9–M10 is much
smaller than R1–R2.
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Figure 5. Schematic of the proposed rectifier with switchable self-bias polarity on n-MOS.

2.3. Operation of the Proposed Rectifier

The symmetry of the rectifier simplifies the analysis by considering VRFP > VRFN in
Figure 6a,c; as such, only M1 and M4 are involved in the main rectifying path (red path).
The p-MOS bias is generated with M5 and stored in C4 (blue path). Figure 6a does not
indicate the blue path due to the use of high VTH (HVT) M5 that prevents generating a
bias voltage for p-MOS M1. Different sets of devices are involved in generating the n-MOS
bias at different PIN modes. M7, M9, C6 and R1 are involved during low PIN, while M8,
M10, C5 and R2 are involved during high PIN. In Figure 6a, M9 is disabled and allows R1
to diode-configured M7 to provide a conducting path (green path) to charge C6 at a low
PIN. Figure 6c shows a different conducting path (green path) when M10 is enabled. It
reconfigures M8 to provide a discharging path for C5 at high PIN. Similar analysis can be
performed when VRFP < VRFN in Figure 6b,d. The body-terminal of all p-MOS and n-MOS
have been connected to VOUT and VSS (ground), respectively. For the following analysis,
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the voltages are mentioned in the format of VX,Y,P where X indicates the voltage type,
Y represents the device when applicable, and P indicates the phase as ϕ1: VRFP > VRFN and
ϕ2: VRFP < VRFN when applicable.
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During low PIN operation (mode = 0), the diode-configured M5 inhibits the conduction
path from VOUT due to the high VTH (HVT) device where VOUT − VPA,ϕ1 < |VTHP,M5| and
as such, VPA,ϕ1 ≈ VRFN,ϕ1. The reverse overdrive of M1 VSG-REV,M1,ϕ1 = VOUT − VPA,ϕ1 due
to the bidirectional conduction characteristics of the device (VOUT > VOP,ϕ1). The reverse
conduction current (IREV) is still manageable due to a small VSG-REV,M1,ϕ1 at low PIN. It
favors maintaining a larger forward conduction current (IFWD). IFWD occurs only when
VOP,ϕ1 > VOUT; where the forward overdrive of M1 VDG-FWD,M1,ϕ1 = VOP,ϕ1 − VPA,ϕ1 =
(½VOUT + VRFP,ϕ1) − VRFN,ϕ1. As for M4, the study in [19] demonstrated an improved
sensitivity by providing a positive bias onto the gate terminal of M4 to lower the overdrive
VGSN required to turn M4 on. The proposed rectifier adopted a similar configuration using
M8 and R2. The bias is generated with R2 providing a dc-short between the gate terminal
and the source terminal of M8 and stored in C5 as VC5,ϕ2 = VSS − VTHN,M8 − VRFP,ϕ2 during
ϕ2. At ϕ1, VGSN,M4,ϕ1 = VRFP,ϕ1 + VC5,ϕ2 − VSS. It can be observed in Figure 7a that VC5
increases with PIN. Despite the improved sensitivity at low PIN, it is irrefutable that the
assistance in the overdrive also leads to difficulty in turning off M4. Consequentially, it
results in a rapid PCE degradation due to a conduction mismatch between the p-MOS and
n-MOS, resulting in the unnecessary discharge of C1 and C2 and reduced efficiency of the
voltage doubling functionality. This effect can be observed in Figure 7b for mode = 0 with
the rapid decrease in ½k = VC1/VOUT with increasing PIN.

During high PIN operation (mode = 1), M1 is self-biased with M5 as VPA,ϕ1 is sufficient to
forward bias and turn on M5 to charge C4 to generate VC4,ϕ1 = VOUT – |VTHP,M5| − VRFN,ϕ1
when VOUT − VPA,ϕ1 > |VTHP,M5|. The bias reduces IREV by limiting VSG-REV,M1,ϕ1 = VOUT
− VPA,ϕ1 = |VTHP,M5|. The reduced IREV comes at the expense of IFWD when the charges in
C1 are transferred to the output. IFWD occurs when VOP,ϕ1 > VOUT with VDG-FWD,M1,ϕ1 =
VOP,ϕ1 − VPA,ϕ1 = (½VOUT + VRFP,ϕ1) − (VC4,ϕ1 + VRFN,ϕ1) = VRFP,ϕ1 − ½VOUT + |VTHP,M5|.
As for M4, to address the concern in the previous mode = 0, M10 is introduced as a switch
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to reconfigure the conduction direction of M8 to limit the VGSN permissible to VGSN,M4,ϕ1 =
VDS,M10 + VTHN,M8. It is equivalent to providing a negative bias to reduce VGSN,M4,ϕ1 by
depleting charges in C5, thereby generating a negative bias VC5,ϕ1 = −(VRFP,ϕ1 − VSS −
VTHN,M8) with a negative charge pump. The rON of M10 is designed to be much smaller
than R2. It can be observed in Figure 7a that a negative bias VC5 is generated. Subsequently,
it is clamped and reversed due to the presence of the body diode in the CMOS transistor.
Unlike the low PIN condition, ½k remains relatively stable at ½ and does not exhibit rapid
reduction with increasing PIN in Figure 7b. In this mode, a higher VOUT is generated at a
lower PIN due to an increased PCE. As such, an excessively high PIN must not be applied
to the rectifier to prevent overvoltage beyond the rated |VDS| across M2 and M3 in the off
state. The transient simulation in Figure 8 further shows a reduced +IDN,M3. It indicates the
reduction in unnecessary discharge of C1. However, there is a reduced |−IDN,M3| from
454 µA to 78 µA, which hinders the ability to replenish C1 with M3. Therefore, during
the design of the proposed rectifier, the net flow of charges to C1 and C2 ∆Q = QN-MOS −
QP-MOS ≥ 0 C is considered to ensure the effectiveness of M3 and M4 and prevent excessive
negative bias.
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2.4. Description of the Common-Gate Comparator

The common-gate comparator in Figure 9 is used to switch between the low and
high PIN and has a similar implementation as [9] using HVT devices. It operates at the
subthreshold region to minimize the power consumption of the comparator. A hysteresis is
provided by M15 and M16 in positive feedback when VMODE = 0 V. It ensures the comparator
initializes with VMODE = 0 V and requires VOUT to be sufficiently high to overcome the
hysteresis to trigger a change in VMODE. The comparator must configure the rectifier in
the low-power mode (mode = 0) during the power-up sequence. The high-power mode
(mode = 1) reduces the rectifier sensitivity due to a reduced n-MOS overdrive voltage and
potentially prevents sufficient VOUT from being generated in a low PIN condition. During
system initialization, the equivalent RLOAD at the rectifier is high, with most of the system
in either the standby or sleep mode. In the low-power mode, the rate of VOUT versus PIN
profile is gentler than in the high-power mode, which prevents a rapid VOUT build-up at
high PIN. The functional comparison is performed by Kirchoff’s voltage loop between M11
and M12 as follows:

VREF − VOUT = (∆VM11 + VTHP,M11)− (∆VM12 + VTHP,M12) (4)

∆VMX = nVTln
ID,MX

ID0
W
L MX

(
1 − e−

VSD,MX
VT

) (5)

where ID0 is the characteristic current of the transistor, W/L is the aspect ratio of the tran-
sistor, VT is the thermal voltage, n is the subthreshold slope factor, λ is the channel length
modulation coefficient, and ∆V can be determined from Equation (5) for the overdrive volt-
age. ∆VM11 contributes to the offset voltage (VOS) as ID,M11 ̸= 0, while ∆VM12 is negligible
due to ID,M12 ≈ 0 when VREF > VOUT. Assuming that VOS is compensated with VREF, the
effect of VOS can be neglected for simplicity. The output of the comparator (VMODE) tracks
VOUT when VOUT > VREF, as shown in Figure 10.
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Figure 11a shows the total current (ITOTAL) consumption from both VREF and VOUT
of the comparator by varying VREF at the typical process corner. The various process
corners are simulated, and the upper and lower bound of the total current consumption
having ITOTAL < 6 nA with the worst corner at the ff corner due to a lowering of both
p-MOS and n-MOS VTH. Figure 11b shows the impact of the comparator on the PCE of
the proposed rectifier by examining the current ratio between the comparator and the
IOUT. The comparator contributes less than 0.1% of IOUT, making it suitable for the rectifier
operating at low PIN in a harvesting application.
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3. Measurement Results

The proposed rectifier is implemented in a 40 nm low-power CMOS node. It occu-
pies an area of 125 µm × 140 µm, as shown in Figure 12. The rectifier is optimized at
PIN = −16 dBm, and the device parameters are tabulated in Table 1. The measurement
setup in Figure 13a consists of a vector network analyzer (VNA) (Agilent E5061B), a digital
multimeter (Agilent 34461A) and a test fixture with the rectifier in QFN40. VOUT and S11 are
recorded while sweeping the VNA output port power. S11 is determined by de-embedding
the test fixture and setting the reference plane at the pads of the package. The rectifier’s
effective PIN is determined as follows:

PIN = PSOURCE − LINSERT + 10log
(

1 − |S11|2
)

[dBm] [dBm] [dB] [dB]
(6)

where PSOURCE is the output power of the VNA port, and LINSERT is the insertion loss due
to the test fixture.
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Table 1. Device parameters of the switchable polarity bias rectifier.

Device Type Width/Length

M1–M2 LVT 24 µm/40 nm
M3–M4 LVT 4 µm/40 nm
M5–M6 HVT 0.2 µm/2 µm
M7–M8 LVT 0.2 µm/2 µm
M9–M10 LVT 2 µm/100 nm
R1–R2 Poly 4 MΩ
C1–C6 MIM 630 fF

M11–M12 LVT 600 nm/2 µm
M13–M14 2.5V GP 1 500 nm/4 µm
M15–M16 2.5V GP 1 3 µm/2 µm

Inverter p-MOS 2.5V GP 1 600 nm/2 µm
Inverter n-MOS 2.5V GP 1 3 µm/2 µm

1 GP is the general-purpose device with higher VTH than HVT.
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Figure 13. Measurement (a) setup and (b) configuration for the rectifier in comparator-track (CT).

The rectifier is measured with different configurations to determine its performance
through the MODE pin, as shown in Figure 13b. The low-power (LP) mode with VMODE = VSS
and the high-power (HP) mode with VMODE = 1.1 V are characterized to determine the two
PCEPEAK. The comparator-track (CT) mode switches between the two PCEPEAK with an
external VREF for the measurement; VREF is available from the PMU. The measured PCE ver-
sus PIN is shown in Figures 14a, 15a and 16a for different RLOAD. Figures 14b, 15b and 16b
show VOUT versus PIN for different RLOAD. The measurement is performed at 900 MHz
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with a RLOAD of 50 kΩ and a CL of 10 pF. The proposed rectifier in the LP mode has a
PCEPEAK = 69% at a PIN = −21 dBm; while operating in the HP mode, it has a PCEPEAK = 75%
at a PIN = −17.5 dBm. During the CT mode, it exhibited an improved PIN dynamic range
performance of 11.5 dB across a 0.8 × PCEPEAK with an externally provided reference
voltage (VREF) of 0.6 V. The CT has a sensitivity of −20.8 dBm to achieve a VOUT of 1 V for
an RLOAD of 1 MΩ.
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Figure 17 shows the PCEPEAK versus RLOAD. The proposed rectifier has the optimal
performance at RLOAD = 50 kΩ. However, with an increasing RLOAD, the internal losses
in the rectifier dominate over POUT, resulting in PCE degradation. Furthermore, a higher
VOUT is generated at a much lower PIN, which prematurely switches the polarity of the n-
MOS bias and shifts the operating conditions between the p-MOS and n-MOS, resulting in
a degraded ½k when the proposed rectifier is operating in the CT mode. On the other hand,
PCE also degrades with further reducing RLOAD as RIN/RLOAD reduces the VOUT/2|VRFP|
despite an increase to IOUT/IINTERNAL; RIN is the inverse of the real admittance of the rectifier
and IINTERNAL is the internal current of the rectifier [26]. This trend was also reported in
the analytical studies by [25]. The PCE profile can be tuned by varying VREF, as shown in
Figure 18.
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Table 2 compares the proposed rectifier with that of other rectifiers employing similar
strategies to achieve PIN dynamic range improvement. The proposed switchable polarity bias
can provide a PIN dynamic range of 11.5 dB and 17 dB to maintain a PCE > 0.8xPCEPEAK (PR1)
and PCE > 20% (PR2) at a RLOAD of 50 kΩ, respectively. The sensitivity of the proposed rectifier
characterized at 100 kΩ is comparable to other work, but it fares 2 dB higher than [19,27]
due to an increase in the parasitic loading on the n-MOS. Under the VOUT = 1 V condition
for sensitivity characterization, the proposed rectifier is operating in high PIN with negative
polarity bias at the gate terminal of the n-MOS which degrades the sensitivity. Despite this
trade-off, the proposed rectifier achieved a better PR1 and PR2 than [19,27]. Wider PR2
was achieved by improving the low PIN performance with the use of native devices with
three configuration modes for [15], while dynamic body bias was implemented on top of
self-biasing for [20]. On the other hand, the study in [12] uses a Dickson rectifier in the last
stage of a 3-stage rectifier to minimize IREV at high PIN, thereby changing the PCE degradation
characteristic and achieving an additional PIN dynamic range.

Table 2. Performance comparison of proposed rectifier with reported state-of-the-art rectifier.

This Work TVLSI 2023
[15]

TCAS II 2023
[12]

T-MTT 2020
[20] # *

T-MTT 2018
[19]

MWCL 2016
[27]

Technology 40 nm 0.13 µm 65 nm 65 nm 0.18 µm 0.18 µm

Frequency 900 MHz 900 MHz 900 MHz 900 MHz 900 MHz 1 GHz

Technique Switchable bias Reconfigurable
stack

Topology
amalgamation

Dual-mode
nested Double-sided bias Self-adapting

feedback bias

Matching
Network No No No No No No

No. of Stages, N 1 3 2+1 1 1 1

Load, RLOAD 50 kΩ 100 kΩ 100 kΩ 100 kΩ 100 kΩ 100 kΩ

PCEPEAK (%)
@ PIN (dBm)

72.1%
@ −18 dBm

47.91%
@ −14 dBm

79.8%
@ −17.5 dBm

80%
@ −25 dBm a

66%
@ −18.8 dBm a

65%
@ −20.9 dBm a

Sensitivity (dBm)
@ RLOAD (kΩ)
for VOUT = 1 V

−14.9 @ 50 kΩ
−16.3 @100 kΩ
−20.8 @ 1 MΩ

−14 @ 50 kΩ
−16 @ 100 kΩ
−21 @ 1 MΩ

−15.5 @ 100 kΩ −14.9 @ 100 kΩ −16.2 @ 50 kΩ a

−18.2 @ 100 kΩ −18 @ 100 kΩ

PIN Range (dB),
PR1

@ PCE >
0.8xPCEPEAK

11.5 12 a 7 a 6.5 7 a 9.5 a

PIN Range (dB),
PR2

@ PCE > 20%
17 22.8 21 Not

reported 14.5 a 17 a

Area (mm2) 0.0175 0.18 0.023 0.00648 0.0088 0.105
a Estimated from publication’s figures. # Simulation results. * Measurement was performed at 433 MHz.

4. Conclusions

This paper presents a switchable polarity bias scheme that enhanced the PIN dynamic
range of a differential CMOS rectifier. It achieves a PCEPEAK of 72.1% and a PIN dynamic
range of 11.5 dB for PCE > 0.8xPCEPEAK for RLOAD = 50 kΩ. The PIN dynamic range
enhancement is achieved by producing different polarity biasing to adapt the overdrive
voltage at the n-MOS: positive during low PIN and negative during high PIN. The switching
of the polarity changes the optimal operating condition of the rectifier, thereby resulting
in two distinct PCE peaks. Having two PCE peaks from a single rectifier is desirable as
multiple rectifiers are commonly used in literature to address the different PIN domains.
The switchover is performed with an auxiliary low-power comparator to monitor the
VOUT and compare it with a VREF to trigger a VMODE signal. The control signal VMODE is
simple compared to other similar adaptive bias which requires extensive control circuits to
generate a continuous analog bias on the gate terminal of the n-MOS. The mode pin allows
trimming to be performed externally or adjusted by the control of the cascading DC–DC
boost converter in an IoT application. The p-MOS is also biased positively during high PIN
to reduce the reverse conduction loss. The proposed rectifier is implemented in a 40 nm
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process node operating at 900 MHz. The proposed rectifier has an improved dynamic range
PR1 of 11.5 dB while maintaining a PCE above 80% of its PCEPEAK despite having a simpler
implementation compared with other state-of-the-art rectifiers.
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