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Abstract: In this paper, we study the dynamic meal delivery routing problem (MDRP) with time-
sensitive customers. The multi-objective MDRP optimization model is developed to maximize
customer satisfaction and minimize delay penalty cost and riding cost. To solve the dynamic MDRP, a
novel waiting strategy is proposed to divide the dynamic problem into a series of static subproblems.
This waiting strategy utilizes the decision threshold to determine rerouting points based on the
number of dynamic meal orders. Meanwhile, time-sensitive priority is introduced to accelerate
assignment and routing decisions for orders from customers with high time sensitivity. For each
static subproblem, a hybrid AGA-ALNS algorithm that incorporates the adaptive genetic algorithm
and adaptive large neighborhood search is developed to improve both the global and local search
capabilities of the genetic algorithm. We validate the performance of the proposed waiting strategy
and the AGA-ALNS algorithm through numerical instances. In addition, managerial insights are

obtained from sensitivity analysis experiments.

Keywords: meal delivery routing problem; time-sensitive customer; dynamic routing; waiting
strategy; AGA-ALNS algorithm

1. Introduction

With the continuous expansion of e-commerce, meal delivery has made people’s lives
more convenient. According to a research report issued by CCFA (China Chain Store
and Franchise Association) and NSRC (Ali New Service Research Centre), the Chinese
online instant meal delivery market generated annual revenue of CNY 1003.6 billion (nearly
USD 144 billion) in 2021, which accounted for 21.4% of the total revenue of the Chinese
catering business, with a user base of 544.16 million [1]. In addition, the worldwide online
meal delivery market is expected to reach USD 0.7 trillion in revenue by 2022, and the
number of customers is projected to reach 2644.2 million by 2027 [2]. Numerous platforms,
including Meituan and Eleme in China, as well as global meal delivery platforms like
Uber Eats, Grubhub, and Door Dash, have emerged and rapidly expanded in recent years.
Meituan, one of the largest meal delivery platforms in China, generated more than CNY
76.5 billion (about USD 10.6 billion) in revenue in the third quarter of 2023 [3]. Despite the
considerable profits generated by the rapidly expanding instant meal delivery market, the
increasing integration of meal delivery services into people’s daily lives has led customers
to express higher expectations for delivery services, presenting more substantial operational
challenges for platforms.

It should be noted that different customer groups are heterogeneous in their sensi-
tivities to order delay [4-6]. Customers with high time sensitivity are often willing to
pay additional delivery fees to enjoy their meals faster, whereas those with lower time
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sensitivity may accept longer delivery times for reduced delivery fees. Due to these varying
time sensitivities among customers, platforms such as Uber Eats offer three options (prior-
ity, standard, and no rush) for meal delivery service to customers, as shown in Figure 1.
However, a courier usually needs to perform multiple orders during the delivery process.
Thus, how to generate a reasonable route to accommodate orders from customers with
heterogeneous time sensitivity is a key issue that the platform needs to address.
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Figure 1. Delivery options from Uber Eats.

The meal delivery routing problem (MDRP) is characterized by dynamics and stochas-
ticity, and how to effectively deal with such characteristics of meal orders is another
important issue faced by platforms [7,8]. Customers can place orders via meal-ordering
applications at any time and place throughout the day. These orders typically include
details such as the customer’s order time, meal type, restaurant location for pickup, and
customer location for delivery. Upon receiving orders, platforms must efficiently assign
them to couriers according to customer requirements. However, if couriers still have
unfinished orders from previous periods, platforms need to adjust delivery routes to ac-
commodate new orders. Notably, the number of meal orders varies at different times of the
day. The study [9] points out that delivery demands present a visible tidal effect, with a
sharp increase at 10:00-11:00 and 22:00-24:00 during the day. Therefore, it is another chal-
lenge for platforms to effectively handle dynamic orders during peak meal hours to avoid
order delays.

With the continuous growth of the takeout market, academics are exploring possible
solutions to the meal delivery problem. These studies include, but are not limited to,
problems such as uncertainty in the meal delivery process [10], order assignment and route
planning for couriers [11,12], and dynamic scheduling of meal orders [7]. However, these
studies are based on the assumption that customers are homogeneous. Indeed, as an instant
delivery service, the time-sensitive heterogeneity of customers is a crucial factor that should
be considered in meal delivery. Hence, designing efficient solution strategies to serve such
orders has important research implications.

To address the aforementioned issues, the meal delivery routing problem (MDRP)
is investigated, which is characterized by the time-sensitive heterogeneity of customers
and the dynamics of meal orders. Firstly, considering the time-sensitive heterogeneity of
customers, a multi-objective optimization model is formulated to maximize customer time
satisfaction while minimizing both delay penalty cost and riding cost. Secondly, a novel
waiting strategy with time-sensitive priority is developed to process dynamic meal orders,
which divides the dynamic problem into a series of static subproblems. In this waiting
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strategy, a decision threshold is introduced to determine the rerouting moment for dynamic
orders. And time-sensitive priority is introduced to speed up assignment and rerouting
decisions for orders belonging to customers with high time sensitivity. Finally, to solve each
static subproblem, we develop a hybrid metaheuristic algorithm based on the adaptive
genetic algorithm and adaptive large neighborhood search (AGA-ALNS). In AGA-ALNS,
an enhanced best route with a stochastic insertion crossover (EBRSIC) operator is used to
improve the algorithm’s global search capability. In addition, adaptive large neighborhood
search (ALNS) is used as a mutation operator to improve the algorithm’s local search
capability. Meanwhile, adaptive crossover and mutation probabilities are introduced to
optimize the parameter selection of the algorithm. With dynamic MDRP instances of
different scales, we illustrate the effectiveness of the waiting strategy with time-sensitive
priority and the AGA-ALNS algorithm. Moreover, managerial insights are derived from
sensitivity analysis experiments.

Compared with previous studies, the main contributions of this paper are summarized
in three aspects. (1) We develop a multi-objective optimization model based on time-
sensitive heterogeneous customers to solve the MDRP, which considers both perspectives
of improving customer time satisfaction and reducing delay penalty cost and riding cost.
This study enriches previous works on MDRP [7,8,13]. (2) A novel waiting strategy with
time-sensitive priority is proposed, which further extends the research methods of MDRP
for handling dynamic meal orders. (3) We further develop the AGA-ALNS algorithm
for solving the optimization model and find the near-optimal solution for MDRP. To the
best of our knowledge, this paper is one of the first attempts to solve MDRP using this
hybrid approach.

The remaining structure of this paper is organized as follows. Section 2 reviews exist-
ing studies related to MDRP. Section 3 describes MDRP and defines the mathematical model
of time-sensitive customer satisfaction and the operational costs of the platform. Section 4
presents the solution method of this paper, which incorporates the concepts of the waiting
strategy with time-sensitive priority and the AGA-ALNS algorithm. Section 5 presents the
computational experiments. Section 6 summarizes the conclusions and discusses future
research directions.

2. Literature Review

In this section, we present a literature review of MDRP. MDRP is characterized by
dynamically arriving orders, sharing similarities with the dynamic pickup and delivery
problem (DPDP). Additionally, as an extended case of the vehicle routing pickup and
delivery problem with time window (VRPPDTW), MDRP strictly regulates the order of
pickup and delivery. Each order must be transported from a specific pickup location to the
corresponding delivery location within a specified time interval, increasing the complexity
of solving the problem. As a result, our review focuses on MDRP, DPDP, and solution
methods for VRPPDTW.

2.1. Meal Delivery Routing Problem

Among the numerous relevant studies, Reyes et al. [14] first proposed the MDRP and
developed a rolling-horizon repeated matching approach to solve large-scale dynamic
MDREP. Yildiz and Savelsbergh [8] conducted a further investigation based on the study
of Reyes et al. [14]. In contrast to Reyes et al. [14], they designed a simultaneous column-
and row-generation algorithm to solve the MDRP and assumed perfect information about
the order arrival. In order to avoid order delays caused by uncertain information during
dynamic delivery, Ulmer et al. [7] proposed an anticipatory customer assignment (ACA)
policy, which introduced a postponement to improve the flexibility of order assignment and
a time buffer to reduce decisions that may cause delays. Wang and Jiang [13] developed
a two-stage optimization algorithm to study customer satisfaction with time-sensitive
heterogeneity. They found that considering time-sensitive heterogeneity was effective
in improving customer time satisfaction. Xue et al. [10] investigated the meal delivery
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service with uncertain cooking time and travel time. They proposed a solution method
that incorporates the island harmony search algorithm and scenario-based simulation.
Bi et al. [11] established a multi-objective mathematical model to minimize customer
dissatisfaction and the delivery cost for MDRP under the shared logistics services. In
order to solve the proposed model, an improved ant lion optimizer (IALO) is developed.
Liao et al. [15] designed a two-stage optimization algorithm for a green meal delivery
routing problem to achieve objectives that maximize customer time satisfaction, courier
balance utilization, and minimize carbon footprint. Wang [16] investigated three types
of logistics services for multi-trip meal delivery routing problems, i.e., exclusive service
and two sharing services. Through simulation analysis of real-world instances, the author
found that two sharing services generated lower costs compared to the exclusive service.
Tu et al. [17] studied an MDRP with dynamic arrivals for both crowdsourced couriers
and meal orders. With the optimization objective of minimizing the delivery cost, a
hybrid metaheuristic algorithm combining adaptive large neighborhood search (ALNS)
and tabu search (TS) was proposed to solve the problem. Chen et al. [18] investigated
the dynamic scheduling problem of instant delivery and proposed an online delivery
scheduling algorithm with the optimization objective of minimizing the return time of the
courier as well as the travel distance. Simoni and Winkenbach [12] studied the meal order
assignment and route optimization problem under crowdsourcing delivery and proposed
an order batching and assignment algorithm to solve the problem. Hu et al. [19] investigated
the recovery management of meal delivery routes under four types of disruption events:
vehicle breakdown, traffic jams, service time variation at restaurant locations, and service
time variation at customer locations.

Unlike previous works such as [7,8,11,12,14], which assumed customers” homogeneous
demands, we consider the time-sensitive heterogeneity of customers when performing
meal delivery routes, and develop a multi-objective optimization model for improving
customer time satisfaction and reducing delay penalty cost and riding cost. Particularly,
while Wang and Jiang [13] explored the MDRP considering the time-sensitive heterogeneity
of customers, their study only analyzed the delivery problem for meal orders in a static
scenario. In contrast, we extend their work to investigate a dynamic scenario where orders
are generated dynamically.

2.2. Dynamic Pickup and Delivery Problem

In DPDPs, not all demand information can be known before the planning horizon
begins, and future demand exists under a certain probability distribution. Such DPDPs
are called dynamic and stochastic pickup and delivery problems [20,21]. Over the past
two decades, scholars have strived to explore dynamic strategies for solving the DPDP
under unknown demand information. Numerous approaches have been developed, such
as the multiple scenario approach [22,23], and the waiting strategy. The waiting strat-
egy is considered an effective method to reduce operational costs and improve service
quality [24,25].

In previous studies, various waiting strategies have been explored, all focusing on
deferring real-time demands and devising more efficient routes. Mitrovi¢-Mini¢ and La-
porte [21] proposed four waiting strategies and evaluated their benefits in the dynamic
pickup and delivery problem with time windows (DPDPTW). They found that the waiting
strategy was effective in reducing detours and fleet size. Wong et al. [26] investigated
the demand responsive transport problem in partially dynamic environments using wait-
ing strategies. In this problem, they examined the impact on the system’s operational
efficiency when the rate of dynamic demand changes. To solve the DPDP, Vonolfen and
Affenzeller [25] proposed a waiting strategy that utilized historical demand information
based on intensity measurement without further processing data. In a recent study, Park
et al. [24] introduced a waiting strategy based on a rerouting indicator for addressing the
vehicle routing problem with simultaneous pickup and delivery (VRPSPD). They argued
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that it is better for new demands to wait until reaching a strategically determined rerouting
point, rather than be served immediately upon their arrival.

Similar to Park et al. [24], we develop a novel waiting strategy to solve the dynamic
MDREP. Different from their study without time window constraints, the meal orders in this
paper need to be delivered within a 40 min time window. Furthermore, our study explores
the influence of customer time-sensitive heterogeneity on the waiting strategy, which is a
more realistic consideration.

2.3. Solution Methods Associated with the VRPPDTW

VRPPDTW), as a variant of the vehicle routing problem (VRP) with additional con-
straints, is classified as an NP-hard problem. Current solution approaches for VRPPDTW
primarily involve exact and metaheuristic algorithms. Exact algorithms, such as the branch-
and-price algorithm [27] and the branch-and-cut algorithm [28], can achieve high-quality
solutions to small-sized problems. However, as the scale of the problem increases, these
exact algorithms are subjected to a sharp decrease in solution speed. Compared to exact
algorithms, metaheuristic algorithms can find an approximate optimal solution within a
reasonable time and are widely acknowledged as an efficient solution method.

Since the 21st century, many scholars have used some classical metaheuristic al-
gorithms to solve the VRPPDTW, such as the particle swarm optimization (PSO) algo-
rithm [29], variable neighborhood search (VNS) algorithm [30], and so on. In addition,
some novel metaheuristics developed in recent years have also been demonstrated to be
efficient methods for solving the VRP. For example, Lu et al. [31] developed a hybrid beetle
swarm optimization algorithm (HBSO) to solve the 4PL routing problem. The HBSO algo-
rithm is proposed based on the beetle antenna search (BAS) algorithm. A population search
mechanism is introduced into the HBSO algorithm to improve search efficiency by turning
one beetle into multiple beetles. In addition, the Dijkstra algorithm is introduced to initial-
ize the population of the HBSO algorithm. Among numerous metaheuristic algorithms,
the genetic algorithm (GA) has gained widespread application in solving the VRPPDTW
due to its straightforward operation and global search capabilities. Wang and Chen [32]
developed a co-evolution GA with the cheapest insertion method to solve the VRPPDTW,
which generated better solutions within a reasonable time interval than the traditional
GA. To solve the VRPPDTW with multi-depot, Dubey and Tanksale [33] proposed an elite
GA and employed the 3-opt heuristic to further enhance the local search capability of the
algorithm. One of the most important characteristics of metaheuristic algorithms is the
ability to improve search performance by combining different algorithms [34]. Bi et al. [35]
proposed a GA to solve an NP-hard problem with continuous domain, in which double-
point crossover and non-uniform mutation operators were introduced to enhance the global
and local search capabilities of the GA. To further improve the solution quality of the GA,
some scholars have attempted to combine the GA with other metaheuristic algorithms.
Wang et al. [36] introduced a two-stage algorithm for solving the VRPPDTW with multiple
centers. In the first stage, they utilized the 3D k means algorithm to cluster the customer
nodes. Subsequently, a hybrid GA-PSO algorithm is proposed to determine the routes.
This hybrid approach aimed to enhance algorithm diversity and solution efficiency by
employing coordinated operators between the GA and PSO. Zarouk et al. [34] developed a
hybrid metaheuristic algorithm named MOGASA, which is based on the combination of
GA and simulated annealing (SA). This hybrid approach harnesses the global and local
search capabilities of both metaheuristic algorithms. Ren et al. [37] hybridized the fast
elitist non-dominated sorting genetic algorithm (NSGA-II) with VNS for improving the
search efficiency of the multi-objective GA.

Previous studies have continuously pursued the improvement of traditional GA to
efficiently solve the VRPPDTW [34,36]. In this paper, we introduce a hybrid AGA-ALNS
algorithm to solve the MDRP. Based on the framework of traditional GA, we enhance the
algorithm’s global and local search capabilities by refining the crossover and mutation
operators. In addition, adaptive crossover and mutation probabilities are introduced
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to avoid solution quality degradation caused by improper probability value setting. To
the best of our knowledge, none of the studies have employed this hybrid AGA-ALNS
algorithm to solve the MDRP.

With the above literature review, we compare this study with previous works in terms
of the studied problem, objectives, problem characteristics, and solution methods. The
summarized information is presented in Table 1. Our study stands out by integrating
various factors such as time-sensitive heterogeneity of customers, dynamic demands, time
window, pick and delivery, multiple objectives, and waiting strategy into the MDRP. None
of the previous studies included all of these factors simultaneously. In summary, this
study first investigates the time-sensitive heterogeneity of customers and develops a multi-
objective model from the perspectives of customer time satisfaction as well as delay penalty
cost and riding cost. Secondly, a novel waiting strategy is proposed to handle dynamic meal
orders. The concept of time-sensitive priority is introduced to optimize order assignment
and rerouting decisions for customers with time-sensitive heterogeneity. Finally, a hybrid
AGA-ALNS algorithm is proposed to optimize the delivery routes for couriers.

Table 1. Comparison of this study with related literature.

Objectives Problem Characteristics Solution Methods
Reference Problem
(&) DP RC THC DD ™™ PD MO DDP Algorithm
Ulmer et al. [7] MDRP v v v v MDP Heuristic
Yildiz and Savels-bergh [8] MDRP v v v Exact
Bietal. [11] MDRP v v v v v IALO
Simoni and Winken-bach [12] MDRP v v v v v RH Heuristic
Wang and Jiang [13] MDRP v v v v GA
Reyes et al. [14] MDRP v v v v RH Heuristic
Mitrovi¢-Mini¢ and Laporte [21] DPDP v v v v WS TS
Park et al. [24] DPDP v v v v WS GA
Vonolfen and Affen-zeller [25] DPDP v v v v WS Heuristic
Dubey and Tanksale [33] VRPPDTW v v v v GA
Wang et al. [36] VRPPDTW v v v v v GA-PSO
Zarouk et al. [34] VRPPDTW v v v v v v MOGASA
This work MDRP v v v v v v v v WSTP AGA-ALNS

Note: CS: Customer satisfaction; DP: Delay penalty cost; RD: Riding cost; THC: Time-sensitive heterogeneity of
customers; DD: Dynamic demands; TW: Time window; PD: Pickup and delivery; MO: Multiple objectives; DDP:
Dynamic demand process method; RH: Rolling horizon method; MDP: Markov decision process; WS: Waiting
strategy; WSTP: Waiting strategy with time-sensitive priority.

3. Problem Statement and Modelling

In this section, we first give a detailed problem statement of the MDRP and then
present the relevant settings for the dynamic problem. Afterward, the mathematical
formulation of the static subproblem is presented in detail.

3.1. Problem Statement

In this paper, we study the dynamic MDRP with time-sensitive customers. We consider
three types of customers with high, medium, and low time sensitivity. The higher the
time sensitivity of customers, the lower their tolerance for order delay. Meal orders are
dynamically generated over time, and each meal order contains information about the type
of customer’s time sensitivity, the ordering time, the restaurant location for pickup, the
customer’s location for delivery, and the delivery time window. This information becomes
known to the platform only after the customer has placed the order. There is no fixed
distribution center in the delivery area. Each courier starts at their initial location at the
beginning of the decision period and performs a route including multiple orders. Couriers
pick up meals from the restaurant and deliver them to the designated customer locations.

In order to effectively respond to real-time meal orders from customers with time-
sensitive heterogeneity, the entire dynamic MDRP is divided into a series of static subprob-
lems (details about the dynamic setting are presented in Section 3.2). Each subproblem
aims to efficiently reoptimize delivery routes for couriers by integrating the time-sensitive
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heterogeneity of customers, the generated new orders, and the current routes being per-
formed by couriers. To achieve this goal, a multi-objective function that maximizes cus-
tomer time satisfaction and minimizes delay penalty cost and riding cost is proposed for
each subproblem.

One of the challenging issues in formulating the model and developing the solution
strategy is how to reorganize delivery routes for couriers based on the time-sensitive
heterogeneity of the customers and the dynamic characteristics of meal orders. Here, we
present an explanation of the investigated problem through the example in Figure 2. In the
case presented in Figure 2a, the courier needs to provide delivery service for orders 1, 2,
and 3 in the initial state. These orders correspond to customers with high, medium, and low
time sensitivities, respectively. In the dynamic update phase shown in Figure 2b, the courier
has completed the delivery of orders 1 and 2 and has arrived at the restaurant location of
order 3 for pickup. The newly generated order 4 needs to be dynamically inserted into
the current route to reorganize the courier’s delivery scheme. Figure 2c illustrates the
reorganized courier route. Based on the customer’s time sensitivity while ensuring that
the time window constraint is not violated, the courier first visits the pickup and delivery
locations of order 4, and then travels to the delivery location of order 3.
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Figure 2. Illustration of the dynamic routing in MDRP.

From the above analysis, we have considered the following assumptions based on the
characteristics of MDRP and realistic settings:

(1) Meal orders are completed when the courier arrives at the restaurant;

(2) The vehicle travels at a constant speed;

(3) Each customer’s meal order can only be served by one courier;

(4) The number of meals a courier can perform at one time cannot exceed the vehicle’s
maximum capacity;

(5) Each customer is limited to placing one order at a time. The number of meals in each
order can vary, but it does not exceed a maximum of five.

3.2. Dynamic MDRP Setting

Not all orders can become known at the initial modelling period; they are dynamically
generated over time. Therefore, we cannot directly generate delivery routes for all orders
at the initial stage. To address this problem, we use the waiting strategy introduced
in Section 4 to divide the dynamic MDRP into a series of static subproblems. Figure 3
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visualizes the timeline for solving the dynamic MDRP. In each decision period, the system
first collects dynamic orders from customers with heterogeneous time sensitivity. Then,
the rerouting decision is implemented through order insertion at the beginning of the next
period. Finally, the courier delivers meal orders according to the updated route.

(2)Rerouting (2)Rerouting (2)Rerouting (2)Rerouting
ﬁi% (3)Updated route ‘ (3)Updated route | (3)Updated route ‘

| | € I < I L | »
I Id% ﬁg I
| | | | | coecee
by yuel boby WAL be by
] : ] ] ] >
! | : : ! Time

(1)Order (1)Order BN P (1)Order (1)Order cosees

collection | collection | collection | collection |

Customer with high Customer with medium Customer with low
time sensitivity time sensitivity time sensitivity

Figure 3. Dynamic optimization timeline for solving the MDRP.

In each subproblem, two types of meal orders exist within the system. The first type
comprises new orders generated in the last period, which can be inserted anywhere in
the routes if the capacity constraint is not violated. The second type of orders are those
that have already been assigned to couriers. These orders cannot be transferred to another
courier since the delivery route has already been generated. At the beginning of the current
period, the system gathers newly generated orders from the last decision period and adds
them to set N. Additionally, we define set U to indicate orders that have been assigned to
couriers in previous periods but have not been completed, which includes orders for which
pickups have been completed but have not yet been delivered as well as orders for which
neither pickups nor deliveries have been completed.

At the beginning of each decision period, it is crucial to identify couriers’ start locations.
We consider three possible scenarios: (a) Courier k has completed delivery service at location
m but has not yet departed. We assume that courier k’s start location is m; (b) Courier
k has already left location m and is on the way to location n. Then, we define courier
k’s start location as 1, and the available time for delivery in this period is the time after
completing the service at location #; (c) Courier k has delivered all orders and is waiting
for the next assignment. For simplicity, we assume that these couriers stay at their last
customer location, which is also the start location where they can participate in the current
decision period.

3.3. Mathematical Model for the Static Meal Delivery Routing Subproblem

In this section, we present the mathematical model of the static meal delivery routing
subproblem with time-sensitive customers. The problem we studied in this paper can be
defined as an undirected graph G = (V, A). As described in Section 3.2, there are two sets,
namely N and U, in the subproblem, where set N contains new orders not yet assigned
and set U includes orders that have already been assigned to couriers but have not been
completed. In order to distinguish the visit locations of orders with different types in
the model, we further define the set W = {i™,i"|i € N} to indicate the restaurant and
customer locations of the orders in the set N. In addition, the set M = {iT,i"|i € U} is
used to represent the restaurant and customer locations of all orders contained in the set U.
m € M also includes information about the matched couriers k(m) for each order. We use
set Cyon to store the start locations of the couriers at the beginning of each decision period.
cx € Chow indicates courier ks start location. The notions of sets, parameters, and variables
related to the model are shown in Table 2.
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Table 2. Notions used in the model.

Notion Description
Set
14 Set of all locations on the route network
A Set of all arcs on the route network
N Set of new orders waiting for assignment
u Set of orders that have been assigned but not yet completed
w Set that includes all restaurant and customer locations in N
M Set that includes all restaurant and customer locations in U
i Meal order i
it Restaurant location for order i
i Customer location for order i
K Set of available couriers
Crow Set of all couriers’ start locations for the current decision period
Parameter
S; Time satisfaction of customer i
NO Total number of meal orders for sets N and U in the current decision period
k(m) Matched courier k for m € M before any new meal orders are inserted into route
Ck Courier k’s start location at the beginning of the current decision period
v Travel speed of the courier’s vehicle
Q The maximum capacity of the vehicle
qi Number of meals in order i
dyn Euclidian distance from location m to n
Tk Arrive time at m € M before new meal orders are inserted into courier k’s route
Smk The service time of courier k at location m
ton The travel time from location m to n
E; The earliest delivery time of order i
F; The latest delivery time of order i
L; The acceptable delayed delivery time of order i
A The riding cost per kilometer of the vehicle
o The time-sensitive coefficient
B1 Delay penalty cost per minute for customers with low time sensitivity
B2 Delay penalty cost per minute for customers with medium time sensitivity
B3 Delay penalty cost per minute for customers with high time sensitivity
Decision Variable
T4,k The arrival time of courier k at location m
Tk The current number of meals that courier k is carrying when leaving location m
Xynk Binary decision variable that takes the value of 1 if courier k travels from location m to 1, otherwise 0

3.3.1. Customer Satisfaction with Heterogeneous Time Sensitivity

In the MDRP, a critical aspect of maximizing customer time satisfaction is ensuring
that meal orders are delivered within the estimated time window [13]. In order to evaluate
whether an order is delivered at the appropriate time, we employ the fuzzy membership
function to formulate the customer satisfaction model. In addition, we introduce a time-
sensitive coefficient « into the model to indicate the different tolerance for order delay by
time-sensitive heterogeneous customers. The customer satisfaction with heterogeneous
time sensitivity is represented by Equation (1).

1, Ei S Tﬂifk S Fi

Li—Ta,, \*
Si=1 (M5F)  R< Ty <L (1)
0, Taj->1L;

In Equation (1), Ta;- is the time for courier k to arrive at the customer location of
order i. If it is within the desired delivery time window [E;, F], there is no impact on
the customer’s experience, and customer satisfaction is 1. A delivery delay occurs when
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Ta;— exceeds F;. Particularly, if Ta;- exceeds the acceptable delayed delivery time L;, the
customer satisfaction is 0. Otherwise, the customer satisfaction changes with the arrival
time of the courier when Ta;—, is between F; and L;. We introduce a time-sensitive coefficient
« to simulate the tolerance of delivery delay by customers with time-sensitive heterogeneity.
When 0 < a < 1, the customer has a low time sensitivity. « = 1 indicates that the customer
has a medium time sensitivity and customer satisfaction decreases linearly with delay time.
« > 1 represents that the customer has a high time sensitivity. Delivery delays will have a
significant impact on customer satisfaction. In this paper, we take the values of « as 0.5, 1,
and 1.5 to indicate that customers’ time sensitivity is low, medium, and high, respectively.

3.3.2. Delay Penalty Cost

The delay penalty cost evaluates the impact of order delays on meal delivery from
the perspective of the platform’s operational cost. It is determined by the delay penalty
per time unit and the duration of order delays. When an order is delivered beyond its
estimated arrival time, a delay penalty cost occurs. Moreover, the longer the delay, the
greater the penalty cost. To compute the penalty cost of meal orders from time-sensitive
heterogeneous customers, we assign different values to the delay penalty cost per time unit
B to reflect the distinct types of time sensitivity among customers. The mathematical model
of delay penalty cost is as follows.

B1 Y ¥ max{(Ta;— — F;),0}, if customer with low time sensitivity

ieNUU keK
mind B2 ]\; UkZK max{(Ta;- — F;),0}, if customer with medium time sensitivity ()
1eNUU ke
B3 I; UkZK max{(Ta;-, — F;),0}, if customer with high time sensitivity
1eNUU ke

In Equation (2), B1, B2, and 3 represent the delay penalty cost per time unit when the
time sensitivity of the customer is low, medium, and high, respectively. And 8; < B2 < Bs.
Specifically, customers with low time sensitivity have a relatively large tolerance for order
delays. An appropriate reduction in delay penalties for these orders can alleviate couriers’
pressure to perform urgent orders. Thus, we set 51 to be the smallest delay penalty cost
per time unit. Moreover, orders from customers with medium time sensitivity are more
urgent than those with low time sensitivity; thus, f; < B2. Furthermore, order delays
significantly impact customers with high time sensitivity, requiring higher penalties to
enhance satisfaction. Therefore, B3 is set as the highest delay penalty cost per time unit.

3.3.3. Riding Cost

Another major operational cost in meal delivery is the riding cost. The riding cost is
mainly due to vehicle consumption during the delivery process, which is proportional to
the mileage travelled by the courier. In this paper, the riding cost is calculated as shown in
Equation (3).

min Z 2 /\dmn Xmnk (3)
mneWUMUC,,0 k€K

3.3.4. Model Formulation

This section describes the multi-objective optimization model for the static meal
delivery routing subproblem. Taking into account customers’ time-sensitive heterogeneity,
the model aims to maximize customer time satisfaction and minimize operational costs
of the platform, including delay penalty cost and riding cost. The relevant mathematical

model is as follows: 1
max F; = — Z S; 4)
NO ieNUU l
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B1 Y ¥ max{(Ta;-y — F;),0}, if customer with low time sensitivity

ieNUU kekK
minF, = 'Bz‘elx;uleZK max{(Ta;-, — F;),0}, if customer with medium time sensitivity (5)
i €
B3 %UUkZK max{(Ta;-x — F;),0}, if customer with high time sensitivity
i€ €
mink3 = Z Z Ad’mnxmnk (6)
m,n€WUMUCypow k€K
Subject to
1/ Ei < Tui*k < Fi
Li—Ta;  \“
Si= (#) b <Taj— < L )
0, Tai*k > L;
Z Z Xitmk = 1,Vie N (8)
keK meWUM
Y Xk — Y, X =0,Vk € K,Yn e WUM ©9)
meWUMUCpow heWuM
Y ximi— Y Xk =0Vk€KVie NUU (10)
meWUM meWUM
Y Xk = 1, Vm e M (11)
neWUM
(Tbw < Thue,,,)) = Tam = Thy, Vi € M (12)
(Th, > Tbmk(n)) A (e = 1) = Tay = Tay + S + tmn, Vk € K,Ym € WU MU Cpop, Vi € M (13)
(T < Tby) A (k(m) =k(n)) = Taym < Tay,Vm,n € M (14)
(Xpnk = 1) = Tap, = Tayg + Sk + tun, ¥k € K,Vm € WU MU Cyow, Y1 € W (15)
(xi"'mk = 1) = Tbck < Ta;+ < Tai_,Vk € K,Vi € N, Ve, € Chow (16)

Xk = DA (n=1i") = qux = gk +9;, Yk € K,Vi € NUU,Vm,n € WUM (17)
Xk =D A(m=1")=quk = qux — 9, Vk € K,¥i e NUU,Vm,n € WUM (18)
Gk < Q¥ € WU MU Cpow, k € K (19)

Xk = {0,1},Vk € K,Vm,n € WU MU Cpow (20)

The objective function (4) is used to maximize the average time satisfaction for all time-
sensitive customers. The objective (5) represents minimizing the delay penalty cost of meal
orders while the objective function (6) represents minimization of the riding cost. Constraint
(7) is the fuzzy membership function for customer satisfaction with heterogeneous time
sensitivity. Constraint (8) ensures that each new order can only be served by one courier.
Constraint (9) indicates flow conservation, which states that, when a courier enters a
location, he or she must move from this location to the next. Constraint (10) ensures that
the restaurant and customer location for the same meal order must be visited by the same
courier. Constraint (11) represents that orders assigned in previous periods cannot be
transferred to other couriers. Constraints (12)—(14) indicate that the sequence of visited
locations already determined in previous decision periods cannot be changed after the new
order is inserted. Constraints (15) and (16) ensure that new orders can only be inserted
after the courier k’s current position. Constraints (17)-(19) illustrate the capacity constraints
of the courier’s vehicle. Constraints (20) is the value ranges of the binary decision variable.

4. Solution Method

This section introduces the hybrid method proposed for solving the MDRP, which
includes a dynamic order processing approach and a route optimization algorithm. Firstly,
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to efficiently handle dynamically generated meal orders and consider customers’ time-
sensitive heterogeneity, a waiting strategy with time-sensitive priority is proposed to
determine rerouting timing and divide the dynamic MDRP into several static subproblems.
Secondly, to generate efficient delivery routes for couriers, the hybrid metaheuristic algo-
rithm of AGA-ALNS is proposed to solve the subproblem. The flowchart of the solution
method in this paper is shown in Figure 4.

Waiting strategy with time-sensitive priority AGA-ALNS algorithm

ﬁ Population initialization ‘

Calculate fitness value

__| Collect new order (NO(1)) at moment ¢ and add (customer time satisfaction, delay penalty cost [«—

[P
them to the set N and riding cost)
Identify the tlme-S;,IE;lthe priority (7P) of Select n chromosomes using the tournament
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[1=1+1]
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}
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'
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operators of ALNS
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‘ Update delivery routes }d—v—‘—
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Yes
v
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Figure 4. Flowchart of the solution method for the dynamic meal delivery routing problem.

4.1. Waiting Strategy with Time-Sensitive Priority

In the context of the MDRP, meal orders arrive dynamically, and order information is
only available when the customer places the order. To address this issue, it is essential to
transform the dynamic MDRP into a series of static subproblems and reoptimize courier
routes by accounting for the new orders generated in each period. Previous studies often
involved splitting the overall dynamic problem into multiple time periods of fixed length
and rerouting for each subperiod [14,38,39]. However, this approach faces two significant
challenges. Firstly, the inherent randomness of dynamic meal orders presents a challenge in
devising optimal assignment strategies, particularly when the density of orders fluctuates
across decision periods and exceeds the available delivery capacity. Additionally, this
method lacks efficiency to handle urgent orders. Customers with high time sensitivity have
low tolerance for order delays, necessitating quick system responses for order assignment
and routing decisions.

To tackle the challenges mentioned above, we propose a waiting strategy with time-
sensitive priority to address the dynamic MDRP. The waiting strategy determines whether
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the route needs re-optimization based on the cumulative number of orders. It makes order
assignment and rerouting decisions considering the number of couriers in the current deliv-
ery system. This provides better adaptability to the stochastic characteristics of meal orders.
This strategy also incorporates a time-sensitive priority to address customer heterogeneity.
In cases of increased urgent orders from customers with high time sensitivity, the strategy
shortens the decision period to serve these orders as early as possible. Conversely, for
orders from customers with low time sensitivity, it is suitable to extend the decision period,
allowing for more orders to be processed in a single decision period and thereby reducing
rerouting costs. The pseudocode of the waiting strategy with time-sensitive priority is
shown in Algorithm 1.

Algorithm 1: The pseudocode of the waiting strategy with time-sensitive priority

Begin

1:  New order set N < @

2:  Sum of new order SN < 0

30 t«1

4:  Rerouting counts p < 0

5: While t < tmax do

6: NO(t) < New customer demand generated at moment ¢
7: N+ NUNO(t)

8: fori € NO(t) do

9: if customer with high time sensitivity then

10: Time — sensitive priority TP ¢ 2

11: else if customer with medium time sensitivity then
12: TP+ 1.5

13: else

14: TP+ 1

15: end if

16: SN < SN +order(i) * TP

17:  end for

18:  if SN > DT then

19: Identify couriers” unfinished routes and now order set N
20: Perform rerouting decision by AGA-ALNS algorithm
21: N+

22: SN+ 0

23: p<p+1

24:  endif

25:  t+t+1

26: end while

End

Note: N represents the new order set; SN represents the sum of new orders; p is the rerouting
count; NO(t) represents the set of new orders generated at moment ; TP is the time-sensitive
priority; DT is the decision threshold.

The key idea of the waiting strategy is to divide the entire dynamic decision period
into multiple static subproblems. It is assumed that the entire time horizon consists of
n continuous time points. At each time point, the system generates multiple stochastic
meal orders. When orders arrive in the system, the waiting strategy first recognizes the
time-sensitive characteristics of the orders and then accumulates the generated new orders
and adds them to the set N (Algorithm 1, lines 6-17). If the number of accumulated orders
reaches the decision threshold (DT), the system takes this moment as a decision point. We
take the time passed from the last decision point to the current decision point as a decision
period. At the beginning of each decision period, the strategy identifies the couriers’ current
locations and the orders on their routes that have not been completed. It re-optimizes the
couriers’ delivery routes by inserting the orders in the set N into the existing routes using
the AGA-ALNS algorithm in Section 4.2 (Algorithm 1, lines 18-24).
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4.1.1. Decision Threshold

The decision threshold (DT) in the waiting strategy is used to determine the time
needed to reoptimize the delivery route. Upon the arrival of an order, the waiting strategy
accumulates the order without immediately executing assignment or rerouting decisions.
Instead, it compares the cumulative number of orders with the DT. When the accumulated
orders reach the DT, orders are assigned to couriers, and delivery routes are reoptimized.
A larger DT means that, the more orders are accumulated by the system, the fewer counts
the system has to reorganize the routes. However, when the value of the DT is too high, it
increases the risk of order delays. In particular, meal orders are limited by the time window.
If the arrival time of cumulative orders exceeds the latest delivery time allowed by the
customer, customer satisfaction will decrease. Therefore, the reasonable setting of the DT is
a key factor affecting the waiting strategy’s performance.

4.1.2. Time-Sensitive Priority

To enhance the satisfaction of customers with heterogeneous time sensitivities, we
introduce the concept of time-sensitive priority in the waiting strategy. For customers with
high time sensitivity, the system needs to schedule delivery routes for their orders as early
as possible because their tolerance for order delays is low. Conversely, for customers with
low time sensitivity, the decision time can be extended relatively, so that as many orders
as possible can be assigned to couriers in one decision period. Therefore, we assign a
time-sensitive priority to different time-sensitive customers in the waiting strategy, and
the higher the time sensitivity of the customer, the higher the value of the time-sensitive
priority. In this paper, we set priority levels as 1, 1.5, and 2, representing customers with
low, medium, and high time sensitivities, respectively. According to this setting, if the
current decision period has a high percentage of orders from customers with high time
sensitivity, the system will shorten the order accumulation time and expedite the rerouting
decision for these orders.

4.2. AGA-ALNS Algorithm

In this section, we present a hybrid metaheuristic algorithm known as adaptive
genetic algorithm and adaptive large neighborhood search (AGA-ALNS) to solve the static
meal delivery routing subproblem. The AGA-ALNS algorithm is designed within the
framework of the genetic algorithm (GA). The GA, rooted in natural evolution theory,
exhibits exceptional robustness and flexibility, rendering it a valuable approach to address
NP-hard problems. On the one hand, GA stands out as a population-based metaheuristic
algorithm with excellent global search capabilities. On the other hand, it boasts strong
extensibility, facilitating easy hybridization with other heuristic or metaheuristic algorithms
to enhance its capacity for solving complex optimization problems.

To achieve an efficient solution to the meal delivery routing subproblem, the AGA-
ALNS algorithm is developed within the traditional GA framework, thus improving its
performance in three aspects: (1) To effectively improve the global search capability of
the GA and reduce computational complexity, an enhanced best route with a stochastic
insertion crossover (EBRSIC) operator is introduced. (2) In order to enhance the local search
ability and population diversity of the algorithm, the neighborhood search mechanism
of ALNS is embedded as a mutation operator within the GA. (3) Adaptive crossover
and mutation probabilities are incorporated into the algorithm to prevent degradation in
individual quality due to improper operator probability settings. The pseudocode for the
AGA-ALNS algorithm is shown in Algorithm 2.
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Algorithm 2: The pseudocode of AGA-ALNS algorithm

Begin

1 P < Initialize population with population size Py;,,

2 gen <1

3 while gen < gen_max do

4: Calculate the fitness value

5: P(g) + Tournament selection (P)

6: for individuals S;, S;11 € P(g) do/Perform crossover operation based on EBRSIC/
7 Pc < Calculate crossover probability based on Equation (24)
8 rn <— Random generate from [0, 1]

9: if rn < Pc then

10: (C1,Cy) + Crossover (S;,S;11)

11: (Si,Siv1) < (C1, &)

12: end if

13: end for

14: P'(g) + update P(g) after crossover operation

15: for each individual S € P/(g) do/Perform mutation operation based on ALNS/
16: Pm <— Calculate mutation probability based on Equation (25)
17: rn <— Random generate from [0, 1]

18: if rn < Pm then

19: S* <~ ALNS(S)

20: end if

21: if 0bj(S*) < 0bj(S) then

22: S+« S*

23: end if

24: end for

25: P (g) + update P’'(g) after mutation operation

26: P + Update population according to P” (g) and P

27: Update weights of removal and insertion operators of ALNS

28: gen < gen+1

29:  end while

End

Note: Pg;,, represents the population size; gen represents the current iteration number of
AGA-ALNS; gen_max denotes the maximum iteration number of the algorithm; P indicates the
population containing all individuals; P(g) represents the offspring population after tournament
selection; P’(g) represents the offspring population after crossover operation; P” (g) represents
the offspring population after mutation operation; Pc is the adaptive crossover probability
calculated by Equation (24); Pm is the adaptive mutation probability calculated by Equation (25);
rn is a random number within the interval [0, 1]; (Cy, C;) represents individuals after crossover
operation; S is the individual selected for the mutation operation; S* is the individual after the
mutation operation.

The most significant modification in AGA-ALNS involves integrating the neigh-
borhood search mechanism of ALNS into the traditional GA. A notable challenge in
hybridizing ALNS with GA is that it adds to the computational complexity since ALNS
itself requires several iterations of a single solution to generate an improved solution. To
address this issue, in the mutation operator of AGA-ALNS, we conduct the neighborhood
search operation in ALNS only once for each solution, retaining the new solution if it has a
better objective value than the current solution to prevent degradation in solution quality
(Algorithm 2, lines 18-23). Furthermore, in standard ALNS, the weights of the neighbor-
hood search operator need to be updated using an adaptive adjustment mechanism. In this
paper, we record operator scores based on the search performance of the operators for the
offspring population in the current iteration and conduct this updating process at the end
of each iteration in AGA-ALNS (Algorithm 2, line 27).
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4.2.1. Chromosome Representation

In the GA, encoding and decoding mechanisms facilitate the transformation between
a chromosome and delivery routes. The natural number-encoding method is employed
to represent all nodes involved in the MDRP studied in this paper. Additionally, when
dealing with different orders generated at the same restaurant, it is possible that one or
more couriers may need to visit the location multiple times. To handle this situation, for
multiple orders generated at the same restaurant, we replicate the restaurant nodes based
on the number of orders by adding dummy location nodes.

Assuming that the number of orders is n, we use P = {1,3,...,2n — 1} to indicate
the set of restaurant nodes and D = {2,4,...,2n} to indicate the set of customer nodes.
(2n — 1,2n) represents the restaurant and customer nodes for the same meal order. Figure 5
illustrates the chromosome consisting of four orders and three couriers, and the delivery
route after the decoding operation. In this example, 0 indicates the split node for different
couriers’ routes. At the beginning, each courier departs from their initial locations and then
travels to the restaurant corresponding to the order for pickup and the customer location
for delivery. If orders from the same courier will not be delayed in a short time period, it
is unnecessary for the courier to immediately deliver to the customer after the pickup is
completed, which may cause higher delivery costs. For example, the most efficient route
for courier 2 is to visit nodes 3 and 7 (pickup locations for order 2 and order 4) and then
nodes 8 and 4 (customer locations for order 4 and order 2). The final delivery route for
courier 2 is 3-7-8-4.

Route 1 Route 2 Route 3

[ [=2] [z

s[¢] [=]¢]

Order1  Order2 Order3 Order4

[ [z][=]«][s]e][~]#]

Delivery routes
Decode 9 0 with 4 meal orders
_ and 3 couriers
Encode Route2 [8]
Route 1
([ e]7]e]« W0 =]¢]
. Route 3
Chromosome representation

A Couriersposition . Restaurant node . Customer node

Figure 5. The method of chromosome encoding and decoding.

4.2.2. Population Initialization

In this paper, the initial population of the AGA-ALNS algorithm is generated using
the random insertion method. As outlined in Section 4.1, the waiting strategy transforms
the dynamic MDRP into multiple static subproblems. At the beginning of each decision
period, the system must identify the set N comprising new orders and ascertain the status
of all couriers in the current delivery scenario. In the case of a courier’s route that has yet
to be completed, it needs to be reorganized by inserting orders from set N into feasible
positions. Assuming the set of courier routes is denoted as R, it encompasses routes of
couriers with unfinished orders as well as those who have completed all delivery orders
from previous periods and are awaiting assignment of new orders. The procedure for
generating the initial solution of the AGA-ALNS is outlined below:

1.  Copy the set N and R as N" and R’;

2. Selectan orderi € N’ and a route r € R’ randomly;

3. Insert the restaurant location and customer location of order i into the route r and
ensure that the restaurant location precedes the customer location;

4. When order i is inserted, check the capacity constraints of the route r, and if the
capacity constraints are violated, reselect the insertion location or another route;

5. Remove the order i in set N” and update the route r in set R’;

6. Repeat step 2-5 until set N’ is empty;
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7. Transform the route scheme in the set R” into a chromosome with the encoding method
of Section 4.2.1.

The above process is repeated until P;;,, chromosomes are generated as the initial
population.

4.2.3. Fitness Calculation

In Section 3, we introduce customer satisfaction with heterogeneous time sensitivity,
delay penalty cost, and riding cost as optimization objectives for the MDRP. In order
to comprehensively consider the above optimization objectives, we use Equation (21) to
transform the multi-objective problem into a single objective.

F. = —kiF + kF + k3F} (21)

where F) is customer satisfaction with heterogeneous time sensitivity, I’ and F’3 indicate
the normalization of delay penalty cost and riding cost, respectively; k1, k2, and k3 are
corresponding weights, and k; 4 k, 4 k3 = 1. Then, the fitness function in the AGA-ALNS
algorithm is represented by Equation (22).

f== (22)

It is critical to note that the solution is deemed infeasible if the route scheme violates
the capacity limit specified in constraint (19). For such generated infeasible solutions, a
substantial penalty is imposed on the objective function to significantly reduce the fitness
value associated with this chromosome.

4.2.4. Selection Operation

The binary tournament selection strategy is employed to select excellent chromosomes
from the parent population to generate an offspring population for subsequent genetic
operations. The core method of this selection strategy is to randomly choose two chro-
mosomes from the parent population and remain the individual with the superior fitness
value for inclusion in the offspring population. This process is iteratively repeated to form
a subset of chromosomes until the number of selected individuals meets the population
requirement, and any duplicate chromosomes are removed from this subset.

4.2.5. Crossover Operation

The crossover operation is crucial to ensure the global search capability of the AGA-
ALNS algorithm. However, classical crossover operations such as single-point crossover
and multi-point crossover do not consider the vehicles” routes which are not applicable
to solve the VRP. With the intensive research, a series of crossover operations were devel-
oped for solving the VRP, such as best cost route crossover (BCRC) [40], best route with
stochastic insertion crossover (BRSIC) [41], and so on. Among them, the BRSIC operation
can effectively reduce computational complexity while guaranteeing solution quality by
randomly removing and inserting orders in consecutive positions several times. However,
BRSIC cannot be directly used to solve the static meal delivery routing subproblem. Firstly,
in the subproblem, only the insertion positions of new orders in set N can be optimized.
Delivery sequences determined in previous periods cannot be changed. Moreover, there
are both restaurant and delivery locations for each meal order, and the sequence of visits to
these locations is strictly limited. Therefore, we propose an enhanced BRSIC (EBRSIC) to
solve meal delivery routing subproblems.

Figures 6 and 7 illustrate our EBRSIC operator through an example. In this example,
three courier routes are included. The orders (5, 6) and (7, 8) that have been assigned but
not yet completed in the previous periods belong to courier 1 and courier 2, respectively.
new,—new, are the new orders from set N. As shown in Figure 6, EBRSIC first selects two
parent chromosomes. Subsequently, it randomly selects n new orders from the set N in each
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parent chromosome (1 = 2 in this example) and removes the restaurant location new™ and
the customer location new™ of the chosen new order from another chromosome. Figure 7
illustrates the chromosome repair process, where k random reinsertions are performed for
each removed order (k = 3 in this example). The optimal insertion solution is chosen from
the k results based on the fitness value. In addition, the reinsertion of an order needs to
ensure that the restaurant location and the customer location are on the same route, and the
restaurant location precedes the customer location. Figure 7a,b demonstrate this process.
As shown in Figure 7c, when all removed orders are inserted into the chromosomes, new
offspring chromosomes are finally generated. In this paper, we set the values of n and k are
2 and 10, respectively.

Parent chromosomes

Select

P1 ‘ 5 new,*| 6 new,’| 0 |news'|new,| 7 | 8 |news newz’| 0 |new, |new, New order 1 andZ‘
Select

P2 ‘ 5 | 6 | 0 |new |news” new1'| T |news| 8 | 0 (new,'|new, |news*|news New order 3 and4‘
Remove

P1 ‘ 5 new,+| 6 new,’| 0 | new,’| 7 | 8 | new,| 0 | | HNew order 3 and4‘
Remove

P2 ‘ 5 | 6 | 0 | new," | 7 |news-| 8 | 0 | | new," new;-}‘—{ Neworderlandz‘

Figure 6. Select and remove new orders from parent chromosomes.
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(a) Stochastic insertion of the first new order.
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(b) Stochastic insertion of the second new order.
Offspring chromosomes
o1 5 |new!| 6 |[new;-| 0 |new,'| T |news| 8 |news|newy,-| 0 |news'|news-
02 5 6 0 |new,'|new*| 7T |new,-|new,-| 8 0 |new,'|news |news-|new,

(c) New offspring.

Figure 7. Crossover operator.
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4.2.6. Mutation Operation Based on ALNS

The mutation operation in AGA-ALNS aims to enhance the local search capability
and increase population diversity. The ALNS algorithm uses various operators to remove
certain orders from the current route, reinserting them into appropriate locations. This
process effectively enhances the neighborhood search capability. Additionally, an adaptive
adjustment mechanism updates the weights of the removal and insertion operators based
on the operators’ performance, further augmenting the search capability for high-quality
solutions. Consequently, ALNS is introduced into the AGA-ALNS algorithm as a mutation
operator, and certain mechanisms are adjusted to enhance the hybridization of ALNS with
population-based metaheuristic algorithms. The searching method of ALNS for a single
solution is shown in Algorithm 3.

Algorithm 3: The pseudocode of ALNS

Begin
S + Current solution
Identify new orders in S and add them to set 0,
RO < Select the removal operator according to the roulette wheel method and operator
weights
(5*,0r) < RO(S,04) /Remove k orders from S that belong to 0,/
IO < Select the insertion operator according to the roulette wheel method and operator
weights
5** < 10(S*, o) /Reinsert the removed k orders into 5*/
if 0bj(5**) < obj(S) do
S« S5
: TTRO < TTRO + 01, TT[0 < M0 + 01
10:  else
11: TTRO 4— TIRO + 02, [0 < TTj0 + 02
12:  end if
End

1
2
3
4
5:
6
7
8
9

Note: S represents the current solution; 0,, denotes the temporary set for storing new orders; RO
represents the removal operator after roulette wheel method; (5%, 0;) denotes the order set oy
removed from the current solution, and the solution S* after the removal operation; IO represents
the insertion operator after roulette wheel method; S** indicates the solution after insertion
operation; 7tro is the score of removal operator; 77jo is the score of insertion operator; oy and 0,
indicates the score increment parameters.

In ALNS, the algorithm first identifies the orders belonging to the set N in the current
solution, since the neighborhood search operator can only be performed on these orders
in the subproblem. In addition, the neighborhood solution is generated by selecting the
removal and insertion operators based on the weights and roulette wheel method. Finally,
the algorithm determines whether to accept a neighborhood solution based on the objective
value and updates the operator score. As mentioned before, to reduce computational
complexity, we perform only one neighborhood search for each solution in the population,
and to ensure solution quality, we only accept the solution with a better objective value.
Therefore, we modify the score update mechanism for the neighborhood search operator.
o1 > 0 are two operator score increment parameters. When the objective value of the
neighborhood solution surpasses that of the current solution, the operator score increment
parameter is 0q; otherwise, it is 0, (Algorithm 3, line 7-12).

(1) Neighborhood search operators

Removal and insertion operators are pivotal to ensuring neighborhood search quality
in ALNS. In this paper, the removal and insertion operators are as follows:

Random removal operator: this operator randomly selects multiple orders that belong
to set N and removes them from the current solution.
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Worst removal operator: the operator initially computes the change in objective
value after removing order i € N, based on cost(i, Scurrent) = f(Scurrent) — f—i(Scurrent)-
Subsequently, it removes the portion of orders with the most significant change in objective
value from the current solution.

Random insertion operator: similar to the random removal operator, the random
insertion operator randomly inserts the removed orders into solution S, while ensuring
capacity constraints.

Greedy insertion operator: the method of the greedy insertion operator is to find the
position in the solution S that causes the lowest change in the value of the objective function
to insert the removed order i. Let Af; j, represent the difference in the objective value after
inserting order i into position /. The objective of greedy insertion is min,cs{Af; }.

Regret insertion operator: unlike the greedy insertion operator, regret insertion in-
troduces look-ahead information [42]. The operator first finds the best insertion position
h1 and the second-best insertion position h2 of removed order i in the solution S using a
greedy insertion operator and uses the regret value to represent the difference between the
two positions. The objective of the regret insertion operator is to find an optimal position
that maximizes the regret value. The formula for calculating the optimal regret value is

max{Afim — Dfip}-
(2) Adaptive weight adjustment mechanism

As outlined in Algorithm 3, ALNS utilizes a roulette wheel method to select removal
and insertion operators based on their weights. In the standard ALNS algorithm, opera-
tors” weights undergo adaptive updates through operator scores after several iterations.
However, the AGA-ALNS algorithm in this paper incorporates ALNS as a mutation opera-
tor within the genetic operation, necessitating a modification to adapt this mechanism to
population-based searches. In this algorithm, the initial weight of each operator is set to 1.
In each iteration of the mutation operation, ALNS selects chromosomes in the offspring
population probabilistically and executes a neighborhood search operation. The algorithm
records the operators’ scores based on their performance. At the end of each iteration, the
weights are adaptively updated based on the operators’ scores. The method of updating
the weights is shown in Equation (23).

wiig =1 P =0 (23)
Lj+1 (1 — 5)7/01',]‘ + (5ﬁ, Tt j # 0

In Equation (23), w; ; is the weight of operator i at the j-th iteration; 7; ; is the score of
operator i at the j-th iteration; y; ; is the number of times the operator is used at the j-th
iteration; § € [0, 1] is the reaction factor.

4.2.7. Adaptive Crossover and Mutation Probabilities

Inadequate parameter settings for crossover and mutation operations in the GA
can degrade solution quality. Chromosomes with lower fitness values need a higher
crossover/mutation probability to produce better individuals. In addition, chromosomes
with higher fitness values require a lower crossover/mutation probability to prevent indi-
viduals from being destroyed. To address this issue, we introduced the adaptive crossover
and mutation probabilities used by Tang et al. [43] into AGA-ALNS, which determines
probabilities by evaluating chromosome fitness values.

Fmax —
Pc — Pcinit Py — F:;g f = Favg (24)
Pcinip f < Favg

Fmax — fc
Pm = Pyt Frmax — Faog fc > Faz;g (25)
Pttjnjt fc < Fuvg
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In Equations (24) and (25), Pc;y,;; represents the initial crossover probability; Pm;,
is the initial mutation probability; f denotes the greater fitness value in the two parent
chromosomes in crossover operation; f. represents the fitness value of chromosome c; Finax
is the largest fitness value in the current population; F;, is the average fitness value of the
current population.

5. Computational Experiments

In this section, we perform computational experiments to test the effectiveness of the
proposed method in solving the dynamic MDRP. Firstly, we describe the instances used in
the experiments. After that, we compare the AGA-ALNS algorithm with two GA-based
algorithms and the simulated annealing (SA) algorithm in previous studies to validate the
performance of the proposed algorithm in addressing the dynamic MDRP. In addition, the
effectiveness of the waiting strategy is estimated by comparing it with different dynamic
order-processing strategies. Finally, some potentially managerial insights are derived from
sensitivity analysis experiments. All experiments presented in this paper were coded using
MATLAB R2020a software. And all experiments were conducted on a computer with an
Intel(R) Core (TM) i7-10700T CPU @ 2.00 GHz and 16 GB of RAM.

5.1. Experimental Setting

To verify the effectiveness of the proposed waiting strategy and AGA-ALNS algorithm
in this paper, we generate four instance groups (ISGs) with different scales to perform
numerical experiments. And each ISG includes five different instances. The experimental
instances used in this paper are based on real data from Grubhub (https://github.com/
grubhub /mdrplib (accessed on 12 November 2023)) [8,14] and delivery characteristics in
Chinese regions. For meal delivery services in most regions of China, the typical delivery
area of each courier is within 5 km [15]. Therefore, in each instance, we randomly select a
5 km area from the dataset of Grubhub to determine the coordinate locations of restaurants,
customers, and couriers. Similar to the setting of Chen et al. [18] on dynamic instant
delivery services in the Chinese region, the total scheduling period in each instance is half
an hour, and orders are dynamically generated over time. The instance groups used for
the experiments in this paper can be downloaded from https:/ /github.com/Hellogscode/
MDRP-instance (accessed on 14 April 2024).

In each instance, the latest delivery time and the acceptable delayed delivery time for
each order are generated less than 40 min after the customer places the order. Additionally,
following the setting of Liao et al. [15], where many customers prefer their meal orders
to be delivered as soon as possible, we set the earliest delivery time to be the placement
time of the order. Each customer has only one associated order and the number of meals
included in the order is randomly generated in the interval [1,5]. The capacity of the
courier’s vehicle is 15 meals. The service time at the customer location will not exceed
5 min. To simulate customers’ time-sensitive heterogeneity, in each instance, we set a time-
sensitivity parameter for each order and use the value of [1-3] to indicate that customers’
time sensitivity is high, medium, and low, respectively. And to ensure the fairness of
the experiment, we evenly distributed the number of different time-sensitive types of
customers. On the basis of the relevant literature [12,15,17] and the stability cases of the
instances, Table 3 shows the parameter settings used in this paper.

Through the above analysis, we generate four ISGs with different scales for experi-
ments, and the settings are shown in Table 4. Following the criteria proposed by Chen
et al. [18], which suggests an average of two orders generated per minute, we set instances
on different scales by varying the density of order generation. The number of meal orders
ranges from 25 to 100, and the number of couriers ranges from 5 to 15. For each ISG, we
create five instances of the same scale. Additionally, in the waiting strategy, the DT value
changes with the ISG scale, being twice the number of couriers. For example, in ISG1,
where the number of couriers is 5, the DT value is set to 10.


https://github.com/grubhub/mdrplib
https://github.com/grubhub/mdrplib
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Table 3. Corresponding parameter setting.
Notation Definition Value
Model parameters setting
v The speed of courier’s vehicle 20 km/h
A The riding cost per kilometer of the vehicle 3.33 CNY/km
B1 Delay penalty cost per minute for customers with low time sensitivity 0.2 CNY/min
B2 Delay penalty cost per minute for customers with medium time sensitivity 0.3 CNY/min
B3 Delay penalty cost per minute for customers with high time sensitivity 0.5 CNY/min
kq Weight of customer time satisfaction with heterogeneous time sensitivity 0.4
ko Weight of delay penalty cost 0.4
ks Weight of riding cost 0.2
Parameters in AGA-ALNS algorithm
Psize Population size 50
gen_max Maximum number of iterations 100
PCinit Initial crossover probability 0.9
Py Initial mutation probability 0.5
0 Reaction factor 0.4
o Score for the new solution that is better than the current solution 5
0 Score for the new solution that is worse than the current solution 1
Table 4. Setting of experimental instance groups.
ID The Number of Orders  The Number of Couriers DT in Waiting Strategy
ISG1 25 5 10
ISG2 50 8 16
ISG3 75 13 26
ISG4 100 15 30

5.2. Performance of AGA-ALNS Algorithm

To further evaluate the performance of the AGA-ALNS algorithm in solving the
MDRP, we compare it with two GA-based algorithms (enhanced GA [44] and GA-LNS [45])
and the simulated annealing (SA) algorithm [46]. We chose these comparison algorithms
for the following reasons: (1) Two GA-based algorithms incorporate the modified BCRC
as a crossover operator, providing a basis for comparing the performance of the EBRSIC
operator in the AGA-ALNS algorithm; (2) GA-LNS uses large neighborhood search (LNS)
as a mutation operator, enabling us to assess the effectiveness of ALNS in enhancing the
local search capability of the AGA-ALNS algorithm; (3) Enhanced GA adaptively adjusts
the crossover probability using a local optimality detection strategy, which is employed to
validate the performance of the adaptive probability. If the same solution is obtained in ten
consecutive generations in the enhanced GA, it is recognized as reaching a local optimum.
The value of crossover threshold is reduced by 10%. If the crossover threshold is reduced
to 0.1, it is reset to 1; (4) In order to comprehensively validate the solution quality of the
AGA-ALNS algorithm, SA is employed as a comparison algorithm. SA is commonly used
to solve VRP and is also a common benchmark for algorithm performance comparison.
The relevant parameters of comparison algorithms are set as follows: population size and
maximum iterations for the two GA-based algorithms are set to 50 and 100, respectively;
in enhanced GA, the initial crossover threshold is 1, and the mutation probability is 0.1;
both crossover and mutation probability are set to 1 in GA-LNS; in SA, the number of
iterations is 2000, the initial temperature is 50, and the cooling rate is 0.98. Table 5 compares
the results of the four algorithms in different ISGs, including customer time satisfaction Fj,
delay penalty cost F, riding cost F3, and computation time (CT). To ensure a comprehensive
comparison of results, we employ the waiting strategy proposed in this paper to handle
dynamic orders for each algorithm. Additionally, we execute each algorithm 10 times in
each instance and report the optimal results from the 10 runs in Table 5.
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Table 5. Comparison results of algorithms in different instances.
Instances AGA-ALNS Enhanced GA GA-LNS SA

D Number F F) F3 cT F F, 3 cT F F) F3 cT F F, F3 cT

(%) (CNY) (CNY) (s) (%) (CNY) (CNY) (s) (%) (CNY) (CNY) (s) (%) (CNY) (CNY) (s)

1 93.46 5.19 157.11 8.92 91.33 9.35 167.53 39.07 90.97 6.7 169.96 29.26 83.12 19.43 189.16 3213

2 94.54 4.66 165.13 16.13 93.1 5.01 169.76 39.21 92.54 6.01 167.51 28.77 83.84 28.55 185.71 34.96

1SG1 3 96.58 2.68 164.99 13.77 94.73 5.05 165.08 41.86 94.76 4.24 165.79 31.86 93.85 4.85 183.37 31.91
4 93.7 5.54 176.43 15.99 89.79 8.59 180.57 38.14 89.99 11.5 177.24 31.52 81.4 20.22 215.55 46.43

5 96.35 3.17 182.77 13.95 95.47 3.79 186.42 30.16 87.82 10.3 184.95 29.44 79.61 32.69 191.01 38.8

6 95.89 6.4 289.64 46.89 94.59 8.54 289.72 111.27 90.74 20.37 274.48 77.84 73.87 90.87 362.18 73.23

7 91.72 16.6 323.62 64.02 89.35 21.9 324.38 106.66 84.27 33.77 310.13 73.53 75.44 105.72 348.24 71.69

1SG2 8 96.44 5.79 291.68 34.92 92.64 12.59 29222 139.06 90.23 18.37 280.76 76.76 82.01 54.07 334.07 73.55
9 95.8 8.27 300.88 53.55 90 19.13 308.1 109.91 83.81 27.85 287.18 82.62 77.84 74.38 344.96 72.09

10 89.2 16.76 278.62 47.54 87.77 21.3 282.31 127.18 84.33 34.01 280.64 76.07 73.14 98.33 381.94 71.04
11 97.53 6.1 432.61 112.5 94.35 12.57 448.51 340.16 88.97 31.62 400.65 119.66 8717 50.87 537.66 186.23
12 88.6 30.97 476.69 115.8 86.3 36.59 495.2 29217 78.26 52.37 439.51 119.45 75.39 89.41 598.63 185.49
1SG3 13 96.24 9.34 474.56 117 91.61 25.49 478.52 339.23 89.34 34.61 431.87 12258 80.01 84.39 575.44 188.55
14 97.47 6.81 409.3 149.3 95.02 11.34 411.77 378.73 93.44 20.49 374.48 137.42 84.41 47.69 524.43 187.46
15 97.04 9.32 416.79 105.4 94.09 12.58 428.97 356.45 92.24 18.86 417.14 118.61 84.07 69.77 551.71 188.66
16 91.61 29.93 568.09 237.5 87.94 42.46 585.82 445.83 82.56 64.42 516.92 175.73 68.72 195.39 745.17 241.83
17 91.54 28.07 540.26 179.1 88.31 39.71 576.47 422.78 84.8 66.45 504.25 167.23 65.73 275.37 821.62 230.36
1SG4 18 93.38 20.78 546.13 2874 87.7 429 555.8 522.12 85.31 59.91 510.74 170.89 68.27 200.08 738.57 229.89
19 88.99 35.31 519.37 181.2 86.97 4491 532.51 513.69 84.5 57.61 504.7 191.68 67.72 221.73 770.44 226.33
20 93.38 21.16 550.23 271.2 91.19 29.11 583.72 506.59 87.87 47.06 512.52 168.72 69.52 227.23 771.32 227.95
Average 93.97 13.64 363.24 103.6 91.11 20.65 37317 245.01 87.84 31.33 345.57 101.48 77.76 99.55 468.55 131.93

Note: Bold shows the optimal results of the three algorithms for the same case; F; shows the results for customer
satisfaction; F, represents the results for delay penalty cost; F3 indicates the results for riding cost; and CT is the
computation time of the algorithms.

According to the average results of the 20 instances in Table 5, the following conclu-
sions are drawn. Firstly, the customer satisfaction of AGA-ALNS is 93.97%, which is 2.86%,
6.13%, and 16.21% higher than enhanced GA, GA-LNS, and SA, respectively. Secondly,
AGA-ALNS achieves a minimum delay penalty cost of CNY 13.64, which saves CNY 7.01,
CNY 17.69, and CNY 85.91 relative to enhanced GA, GA-LNS, and SA, respectively. In
addition, AGA-ALNS generates a riding cost of CNY 363.24, which is a decrease of CNY
9.93 and CNY 105.31 compared with enhanced GA and SA, but an increase of CNY 17.67
compared with GA-LNS. Finally, the computation time of AGA-ALNS is 103.6 s, which is
significantly reduced compared with enhanced GA (245.01 s) and SA (131.93 s), and the
difference between AGA-ALNS and GA-LNS (101.48 s) is only about 2 s. Although GA-
LNS produces less riding cost and CT, GA-LNS results for both customer time satisfaction
and delay penalty cost are inferior to those of AGA-ALNS in all cases. In the MDRP, as
a strongly timely vehicle routing problem, meal delivery punctuality is a crucial factor to
measure route effectiveness. Therefore, the AGA-ALNS algorithm proposed in this paper
has obvious advantages in terms of both accuracy and computation time when dealing
with the dynamic MDRP.

In order to further illustrate the solution method in solving the dynamic MDRP, Table 6
presents the optimal delivery routes generated by the waiting strategy and the AGA-ALNS
algorithm for the instance from ISG1 [47]. The waiting strategy categorizes orders based on
customer time sensitivity and accumulates them until the decision threshold (DT) is reached.
This process divides the dynamic horizon into four decision periods: (0, 9), (9, 16), (16, 28),
and (28, 30). Each decision period corresponds to a static meal delivery subproblem, and
the AGA-ALNS algorithm is employed to solve the subproblem. In each decision period,
the system assigns orders and reoptimizes routes considering couriers’ load capacities and
starting locations. For instance, in the decision period (9,16), where courier 1 and courier
5 are awaiting new assignments, the system allocates order 9 and order 15 to courier 1,
while order 11, order 12, and order 16 are allocated to courier 5. The delivery routes of the
two couriers are R9—C9—R15—C15 and R11—+R16—R12—C11—-C16—C12, respectively.
Meanwhile, courier 2, courier 3, and courier 4 still have unfinished orders on their routes,
with only one additional order assigned to each of them. The final delivery routes generated
by the solution method are also presented in Table 6.
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Table 6. Optimization routes generated by the proposed solution method.
Decision Period Orders Courier ID Starting Locations Traveled Routes Planned Routes
1 Initial — R8*—C8*
2 Initial — R6*—R5*—C6*—C5*
©,9) 1,2,3,4,56,7,8 3 Initial — R7*—R1*—R2*—C2*—C1*—C7*

4 Initial — R4*—R3*—C4*—C3*
5 Initial — —
1 Cc8 R8—C8 R9*—C9*—R15*—C15*
2 R5 R6 R5—R10*—C6—C10*—C5

©,16) 9,10,11, 112é 13, 14,15, 3 R1 R7 R1—R2—R14*—C2—C1—C7—Cl14*
4 R3 R4 R3—R13*—C13*—C4—C3
5 Initial — R11*—R16*—R12*—C11*—C16*— C12*
1 R15 R9—C9 R15—C15—R22*—R21*—C21*—C22*
2 C10 R5—R10—C6 C10—R17*—C5—C17*—R23*—C23*

(16, 28) 17,18,19,20,21,22,23 3 Cc7 R1—-R2—R14—C2—C1 C7—C14—R19*—R20*— C19*—C20*
4 C3 R3—R13—C13—C4 C3—R18*—C18*
5 R16 R11 R16—R12—C11—+C16—C12
1 R15 — R15—C15—+R22—R21—-C21—C22—R24*—C24*
2 R17 C10 R17—C5—C17—R23—C23

(28, 30) 24,25 3 C14 c7 C14—R19—+R20—C19—C20
4 c3 — C3—R18—C18—R25*—C25*
5 Cl1 R16—R12 C11—-Cl16—C12
1 R8—C8—R9—C9—R15—C15—+R22—R21—C21—C22—R24—C24
2 R6—R5—+R10—+C6—C10—R17—C5—C17—R23—C23

Final delivery routes 3 R7—R1—-R2—R14—-C2—C1—-C7—C14—R19—R20—C19—-C20

4 R4—R3—R13—C13—C4—C3—R18—C18—+R25—+C25
5 R11—+R16—R12—C11-C16—C12

Note: R and C represent the restaurant and customer node corresponding to the same order; R* and C* represent
the orders generated in the current decision period; Starting locations indicate the initial locations of couriers in
each decision period; Traveled routes represent the completion of the routes generated in the last decision period;
Planned routes represent the delivery routes reoptimized in the current decision period.

5.3. Performance of the Waiting Strategy with Time-Sensitive Priority

In this section, the performance of the waiting strategy with time-sensitive priority
(WSTP) is further evaluated through numerical experiments. To demonstrate the effec-
tiveness of the WSTP, we propose two comparison strategies. On the one hand, WS is
developed to indicate where time-sensitive priority is not considered in the waiting strategy.
On the other hand, the rolling horizon (RH) method is employed to validate the effective-
ness of the two waiting strategies. The DT of the WS takes the same value as the WSTP in
Table 4. In the RH method, we set the scheduling period to 5 min. The performance of the
three strategies in different instances is summarized in Table 7 and Figure 8. We employ
the AGA-ALNS algorithm proposed in this paper to solve each static subproblem. And we
execute each strategy 10 times in each instance and report the optimal results from the 10
runs in Table 7.
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Figure 8. Comparison of performance in three strategies.
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Table 7. Performance comparison of different strategies.
WSTP ws RH
F F, F; F F F; Fy F F3
® Number %) (CNY) (CNY) ) (CNY) (CNY) %) (CNY) CNY)
1 93.46 519 157.11 94.44 449 163.97 93.83 4.86 181.11
2 94.54 4.66 165.13 94.49 5.36 163.71 89.31 17.81 195.39
ISG1 3 96.58 2.68 164.99 95.54 347 159.01 92 5.42 169.34
4 93.7 5.54 176.43 90.69 6.77 170.34 87.72 9.82 19232
5 96.35 3.17 182.77 94.81 456 175.91 94.26 5.28 187.26
6 95.89 6.4 289.64 94.17 9.37 284.7 93.29 12.65 295.42
7 91.72 16.6 323.62 90.7 15.73 294.26 85.81 30.3 3224
1SG2 8 96.44 5.79 291.68 94.38 9.48 275.3 91.93 15.75 310.37
9 95.8 8.27 300.88 93.13 14.19 297.11 84.77 31.99 3113
10 89.2 16.76 278.62 88.45 22.6 304.19 84.4 30.19 314.75
11 97.53 6.1 432.61 96.55 7.49 432.28 90.21 25.64 458.56
12 88.6 30.97 476.69 88.28 3162 493.67 82.41 52.21 538.34
ISG3 13 96.24 9.34 474.56 95.46 15.3 468.62 90.62 31.06 482.47
14 97.47 6.81 409.3 96.53 7.81 421.22 94.84 15.5 454.87
15 97.04 9.32 416.79 95.54 10.61 425 92.87 19.42 459.57
16 91.61 29.93 568.09 90.5 35.07 578.81 86.68 48.06 606.87
17 91.54 28.07 540.26 91 31 589.45 89.23 36.94 577.01
1SG4 18 93.38 20.78 546.13 91.73 30.94 560.91 89.72 32.05 568.82
19 88.99 35.31 519.37 89.09 36.93 578.78 86.89 49.49 577.66
20 93.38 21.16 550.23 92.76 21.49 580.28 89.75 32.05 577.96
Average 93.97 13.64 363.24 92,91 16.21 370.88 89.52 25.32 389.09

Note: WSTP represents waiting strategy with time-sensitive priority; WS represents the waiting strategy that does
not include time-sensitive priority; RH represents the rolling horizon method; bold shows the optimal results of
the three strategies for the same case; F; shows the results for customer time satisfaction; F, represents the results
for delay penalty cost; F3 indicates the results for riding cost.

According to the results in Table 7, we found the following: Firstly, both wait-
ing strategies perform better than the RH method on all objectives. In the average re-
sults of the 20 instances, the customer satisfaction calculated by RH decreased by 4.45%
and 3.39% relative to WSTP and WS, respectively; the delay penalty cost increased by
CNY 11.68 and CNY 9.11, respectively; and the riding cost increased by CNY 25.85 and
CNY 18.21 relative to the two waiting strategies, correspondingly. This conclusion indicates
that the waiting strategy, which uses the number of meal orders as the timing of dynamic
processing, is more effective than the rolling horizon method in solving MDRP. In addi-
tion, in the comparison of the two waiting strategies, WSTP produces higher customer
satisfaction as well as lower delay penalty cost and riding cost. WSTP generates a 1.06%
increase in customer satisfaction relative to WS. Moreover, WSTP saves CNY 2.57 and
CNY 7.64 in delay penalty cost and riding cost, respectively. Thus, this conclusion provides
further evidence that it is essential to consider the customer’s time-sensitive priority in the
waiting strategy.

Figure 8 visualizes the above results. In Figure 8, we also compare the average
rerouting counts of the three strategies over 20 instances. Relative to the RH method, the
two waiting strategies generate lower rerouting counts, which indicates that postponing
the assignment of more meal orders while guaranteeing customer satisfaction will generate
a lower cost. In addition, accelerating the decision to reroute based on the customers’
time-sensitive type will generate better routes, which explains the that, although the
rerouting counts of the WSTP increase relative to the WS, the WSTP outperforms the WS in
each objective.

In order to further investigate the impact of the three dynamic processing strategies
on the service efficiency of time-sensitive heterogeneous customers, we analyze the delay
times of orders from customers with high, medium, and low time sensitivities by choosing
one instance from each of the four ISGs. The results are presented in Figure 9a-d. As
illustrated in Figure 9, it is observed that, in most cases of the WSTDP, the delay time tends to
decrease with higher customer time sensitivity. Conversely, the WS and RH methods do not
have a significant regular pattern for reducing the delay time of orders from heterogeneous
time-sensitive customers. This finding suggests that the incorporation of time-sensitive
priority into the waiting strategy effectively addresses orders from heterogeneous time-
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sensitive customers. The decision horizon of orders is shorter for customers with higher
time sensitivity, thereby effectively mitigating the risk of order delays.
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Figure 9. Comparison of order delay time in three strategies.

5.4. Managerial Insights Based on Sensitivity Analysis

This section conducts some sensitive analysis to derive managerial insights that sup-
port platform operational decisions. To ensure representation across different problem
sizes, we select one instance from each ISG for analysis.

5.4.1. Sensitivity Analysis on Different DT Values

In the waiting strategy, the DT determines the number of orders accumulated in this
scheduling and the decision timing for rerouting. In Section 5.1, we set the DT value to be
twice the couriers’ number K for different ISGs. In order to comprehensively analyze the
impact of DT, in this subsection, we set the values of DT to K, 2 K, 3 K and 4 K, respectively.

The results of the objective values when the DT is changed in the four ISGs are shown
in Figure 10a—d. Moreover, Figure 10 also records the variation in rerouting counts under
different DTs. As shown in Figure 10, among the four instance groups, when the value of
DT is K, the results of the three objectives are the worst and the number of reroutes is also
the highest. When the DT is changed from K to 2K, the results are significantly improved.
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However, the results for each objective become worse when DT values are 3K and 4K,
although rerouting counts are further reduced. The reason for this situation is that, when
the DT takes a very small value, the waiting strategy accumulates a small number of orders.
More frequent rerouting will result in higher detour costs. In addition, when the DT value
is too large, although it decreases courier rerouting counts, the system accumulates more
orders. As a strong timely problem, if the number of couriers is insufficient to support the
delivery of these orders, more delays will occur. Therefore, it is crucial for decision-makers
to optimize operational costs and enhance customer satisfaction by appropriately setting
the value of DT in accordance with the current number of couriers in the delivery system.
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Figure 10. Sensitivity analysis on different DT values.

5.4.2. Sensitivity Analysis on the Time-Sensitive Priority in the Waiting Strategy

In order to flexibly process dynamic orders from customers with heterogeneous time
sensitivity, we introduce the concept of time-sensitive priority into the waiting strategy. In
Section 4.1.2, we assign time-sensitive priorities of 1, 1.5, and 2 to represent orders from
customers with low, medium, and high time sensitivity, respectively. To comprehensively
assess the impact of time-sensitive priorities on the waiting strategy, we conduct a sensitivity
analysis of different priority combinations. Specifically, we examine four sets of time-
sensitive priorities: (0.5, 1, 1.5), (1, 1.5, 2), (1.5, 2, 2.5), and (2, 2.5, 3). The values in
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parentheses sequentially indicate that the customer’s time sensitivity is low, medium, and
high, respectively. The experimental results of four ISGs are shown in Figure 11a—d.
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Figure 11. Sensitivity analysis on the time-sensitive priority in the waiting strategy.

As depicted in Figure 11, the frequency of rerouting increases with higher levels of
time-sensitive priority. Optimal results across all objectives are observed in most cases
when the time-sensitive priority is set to 1, 1.5, and 2, respectively. However, as the priority
grows, all three objectives deteriorate incrementally. Similar to Section 5.4.1, the waiting
strategy accumulates fewer orders as the time-sensitive priority rises. Nonetheless, frequent
rerouting leads to increased detours and a higher likelihood of order delays. Furthermore,
although the rerouting counts and riding cost in ISG1 and ISG2 are fewer when the time-
sensitive priority is 0.5, 1, and 1.5, the objectives related to customer satisfaction and delay
penalty cost become worse. This outcome occurs because, when the time-sensitive priority
is too small, the waiting strategy extends the decision period, leading to a higher number
of accumulated orders. Therefore, some urgent orders cannot receive immediate delivery,
leading to order delays.

5.4.3. Sensitivity Analysis on Different Proportions of Customers with High Time Sensitivity

The sensitivity analysis in this section is about the change in the total delay time
for different types of orders when the proportion of customers with high time sensitivity
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changes. We analyze the change in the percentage of customers with high time sensitivity
from 10% to 50%, with an average distribution of the number of medium and low-sensitive
types of customers. The results are shown in Figure 12a—d.
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Figure 12. Sensitivity analysis on different proportions of customers with high time sensitivity.

The results in Figure 12 show that, as the percentage of customers with high time
sensitivity gradually increases, the total delay time of such customers tends to increase.
However, it is lower than the other two categories. In addition, although there has been
a gradual decrease in the number of orders from customers with medium and low time
sensitivity, there has not been a significant decrease in the total delay time for these orders.
This situation arises because, with no change in the number of couriers, an increase in
orders from customers with high time sensitivity escalates delivery complexity. To ensure
the timely delivery of urgent orders, the system may compromise the punctuality of some
medium and low-sensitivity orders.

6. Conclusions

In this paper, we study the MDRP with time-sensitive customers considering the
dynamic characteristics of meal orders. A multi-objective optimization model considering
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customers with time-sensitive heterogeneity is developed to maximize customer time
satisfaction and minimize the delay penalty cost and riding cost. To solve the dynamic
MDRP, we propose a novel waiting strategy with time-sensitive priority to divide the
dynamic problem into a series of static subproblems. For each static meal delivery routing
subproblem, the hybrid AGA-ALNS algorithm is developed. We test the effectiveness of
the proposed solution method on different scales of dynamic MDRP instance groups. This
paper contributes to the existing MDRP research in the following aspects.

From the modelling perspective, taking customers’ time-sensitive heterogeneity into
account, we build a multi-objective optimization model combined with three objectives,
including customer satisfaction, delay penalty, and riding cost, which determines the se-
quence of locations visited by couriers in the MDRP. Considering customers’ time-sensitive
heterogeneity is meaningful and practical for meal delivery.

From the perspective of the dynamic meal order-processing strategy, we design a
waiting strategy with time-sensitive priority to transform the dynamic problem into several
static subproblems. The proposed waiting strategy accumulates new orders arriving
at the system and uses a decision threshold to determine rerouting time. Furthermore,
time-sensitive priority is introduced in the waiting strategy to accelerate assignment and
rerouting decisions for orders from customers with high time sensitivity. Experimental
analysis shows that the proposed waiting strategy is more suitable for addressing the
dynamic MDRP than the rolling horizon method. In addition, the introduction of time-
sensitive priority in the waiting strategy can effectively handle the meal orders from
time-sensitive customers.

From an algorithmic perspective, we develop a hybrid metaheuristic algorithm,
namely AGA-ALNS, to solve the static meal delivery routing subproblem. On the one
hand, the EBRSIC operator is employed to enhance the global search capability of the
algorithm. On the other hand, ALNS is used as a mutation operator to further improve the
algorithm’s local search capability. In addition, adaptive crossover and mutation probabili-
ties are introduced to optimize the algorithm probability settings. By comparing with SA
and two GA-based enhanced algorithms in previous studies, our AGA-ALNS algorithm
has evident advantages in terms of solution accuracy and computation time.

From a practical perspective, through sensitivity analysis we have derived some
managerial implications to provide recommendations for platforms to serve time-sensitive
customers. Firstly, as the DT value increases in the waiting strategy, it can effectively
improve customer satisfaction and reduce operational costs. However, if the value of
the DT is too high, the strategy will accumulate more orders, causing higher delays in
the case of insufficient delivery capacity. Similarly, a reasonable setting of time-sensitive
priority is also significant for improving the performance of the waiting strategy. When the
time-sensitive priority is too large, it will increase the detour cost and decrease the delivery
efficiency. Conversely, if the time-sensitive priority is too small, it will extend the decision
period, leading to some urgent orders which cannot be delivered immediately. Furthermore,
as the number of customers with high time sensitivity gradually increases, it will further
increase the delivery complexity, and the strategy will sacrifice the punctuality of orders
from customers with medium and low time sensitivity to ensure the timely delivery of
high time-sensitive customers.

This study still has some limitations and further research can be conducted in the
future. In the meal delivery process, there are several uncertainties affecting route planning,
such as meal preparation time and real-time traffic conditions. It is worth exploring
these uncertainties comprehensively for future studies, rather than focusing solely on the
uncertainty of customers” ordering time in our current study. In addition, the courier’s
shifts considered in our study are certain; however, in the case of meal delivery mostly
using crowdsourced couriers, their available time and delivery efficiency are different.
Considering the characteristics of couriers in meal delivery is a more realistic scenario.
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