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Simple Summary: The lipid yield of Mucor circinelloides WJ11 has been much studied for industrial
production improvement. In this study, the carRP gene responsible for the production of carotenoids
was knocked out, which resulted in the interruption of the carotenoid production pathway and
a simultaneous impact on lipid production. Further, an integrative transcriptome and genome-
scale metabolic model-driven analysis was conducted, which provides insights into the coordinated
relationship between carotenoid and fatty acid biosynthesis in M. circinelloides. The findings can be
used to design efficient M. circinelloides cell factories.

Abstract: Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic
approach using gene manipulation and bioprocessing development has improved lipid production
and the strain’s economic viability. However, the systematic regulation of lipid accumulation and
carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism
underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identi-
fication were implemented between the wild-type (WJ11) and ∆carRP WJ11 strains of M. circinelloides.
As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed
genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration
with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ∆carRP WJ11
strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism.
Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA genera-
tion suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways.
Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced
acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights
into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides
that are valuable in applied research to design optimized strains for producing desired bioproducts
through emerging technology.
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1. Introduction

Oleaginous filamentous fungi can accumulate oil to more than 20% of their biomass [1–5].
Mucor circinelloides is one of the oleaginous species and has been considered a model organ-
ism for studying microbial lipid and carotenoid production due to its metabolic capability
to produce high levels of polyunsaturated fatty acids (PUFAs), particularly γ-linolenic
acid (GLA) and β-carotene, with nutritional benefits [6–8]. Among six different genera of
oleaginous fungi, including Thamnidium, Cunninghamella, Rhizopus, Mucor, Mortierella, and
Gongronella, M. circinelloides was found to be the most efficient in producing GLA, with
22.3 mg GLA/g dry cell weight (DCW) [9]. Thus, it has been commercially used to produce
oil rich in GLA [1,10,11]. As a source of β-carotene, M. circinelloides also showed to be an
excellent filamentous fungi for accumulating up to 698.4 ± 3.68 µg/g of β-carotene [8]. The
synthesis of different natural commercially important PUFAs and carotenoids with a broad
range of substrate utilization by M. circinelloides [12] has led to the consideration of this
organism rather than oleaginous yeast, e.g., Rhodotorula spp. [13] and Yarrowia lipolytica [14],
as a potent source having industrial interest.

Recently, the genome sequence of M. circinelloides WJ11 has been published, reveal-
ing the key genes related to the lipid-accumulating process [15]. By comparing the WJ11
genome to the low-lipid-producing strain CBS277.49, unique genes involved in carbohy-
drate and lipid metabolism were identified, postulating that the WJ11 strain might provide
additional NADPH for lipid accumulation [15,16]. Proteomic studies showed that the
expression of glutamine synthetase involved in ammonia assimilation was upregulated
when nitrogen was depleted, while the expression of proteins involved in amino acid
biosynthesis was downregulated. At the same time, the expression of proteins involved in
the tricarboxylic acid (TCA) cycle was downregulated, indicating that cells promoted the
biosynthesis of fatty acids by coordinating central carbon metabolism when nitrogen was
restricted [17].

As earlier described, M. circinelloides has also been reported to produce a high amount
of β-carotene under light exposure in contrast to the culture grown under dark condi-
tions [18]. Research exploring the enhanced production of both lipids and carotenoids
in M. circinelloides has been conducted [8]. It has been stated that M. circinelloides also
contains a minor amount of zeaxanthin [19], in contrast to the oleaginous yeast Rhodotorula
glutinis, which only produces carotenoids [20]. Under nitrogen-exhausted and excess
glucose conditions, there was evidence that the acetyl-CoA precursor was shared for the
lipogenesis and carotenogenesis pathways in M. circinelloides, which seems to be a reverse
relationship [21,22]. Studies have reported that under nitrogen starvation, oleic acid mainly
accumulates in triacylglycerol, and the accumulation of astaxanthin monoester shows a
linear relationship [23]. It seems that the synthesis of fatty acids is related to the accu-
mulation of carotenoids [24]. Presumably, lipid biosynthesis and accumulation might be
enhanced by eliminating carotenogenesis. A single gene (carRP) encoding for a protein
with bifunctional enzyme activity, i.e., lycopene cyclase and phytoene synthase, responsible
for carotenogenesis was identified in M. circinelloides [25] and has been postulated to be a
target gene for enhancing lipid accumulation by the gene deletion approach [26]. However,
systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides
should be addressed to offer a precise manipulation strategy. Therefore, this study aimed
to investigate the global metabolic changes of M. circinelloides WJ11 defective in carotenoid
biosynthesis (∆carRP WJ11 strain) in the active growth phase. A comparative transcriptome
analysis was implemented between the wild-type (WJ11) and ∆carRP WJ11 strains of M.
circinelloides under such conditions. A genome-scale metabolic model (GSMM)-driven
analysis was also performed with the integration of differentially expressed gene (DEG)
data to identify the key metabolites associated with the lipid biosynthetic pathway [16,27].
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We also postulate the vital metabolic changes in other pathways of the ∆carRP WJ11 strain
to maintain cell homeostasis through the cooperation of the transcriptional controls. This
study provides a perspective for designing efficient cell factories of M. circinelloides, which
is valuable knowledge in industrial biotechnology.

2. Materials and Methods
2.1. Fungal Strains and Cultivations

M. circinelloides strain WJ11 (wild-type) [6] was used as a reference in this study. M.
circinelloides WJ11 defective in the carRP gene (∆carRP WJ11) was employed for investigating
lipid and carotenoid biosynthesis, with reference to the Mc2075 strain with knock out of
the carRP gene performed through homologous recombination by using the designed
pMAT2075 plasmid [28].

For fungal cultivation, seed preparation of each strain was performed by growing the
cells in K&R medium, one liter of which consisted of 30 g of glucose, 1.5 g of MgSO4·7H2O,
3.3 g ammonium tartrate, 7.0 g of KH2PO4, 2.0 g of Na2HPO4, 1.5 g of yeast extract, 0.1 g of
CaCl2·2H2O, 8 mg of FeCl3·6H2O, 1 mg of ZnSO4·7H2O, 0.1 mg of CuSO4·5H2O, 0.1 mg of
Co(NO3)2·6H2O, and 0.1 mg of MnSO4·5H2O [29], under shaking at 150 rpm and 28 ± 1 ◦C
for 24 h. The seed culture was then inoculated into a 2 L fermenter (BioFlo/CelliGen115;
New Brunswick Scientific, NJ, USA) with a 1.5 L working volume of the medium broth
containing 80 g/L glucose and 2 g/L ammonium tartrate. The cultivation conditions were
constantly controlled, including culture temperature of 28 ± 1 ◦C, pH of 6.0, stirring speed
of 700 rpm, and airflow rate of 1 vvm. The culture samples were collected for biomass and
metabolite determination at different time points. All experiments were performed in three
biological replicates.

2.2. Biomass and Metabolite Determination

The harvested mycelial samples were dried by using a freeze dryer at −30 ◦C for
2 days. Dried samples were then weighted and subjected to calculate biomass concentration
represented as dry cell weight (DCW). Total lipids of dried mycelia were extracted by
using a chloroform/methanol (2:1, v/v) solution [30] and then methylated with 4 mol/L
methanolic HCl at 60 ◦C for 3 h. The fatty acid methyl esters were then extracted with
n-hexane and analyzed by a gas chromatography flame ionization detector (GC-FID)
equipped with a 30 m × 0.32 mm DB-WAXETR column (0.25 µm in film thickness) [6]. The
GC analysis was performed at 120 ◦C for 3 min, ramped to 200 ◦C at 5 ◦C per min, ramped
to 220 ◦C at 4 ◦C per min, and held for 2 min. Pentadecanoic acid (15:0) was used as an
internal standard for calculating the concentration of individual fatty acids by using their
chromatographic areas.

For the carotenoid analysis, a 50 mg dried mycelial sample was extracted with 800 µL
of acetone and then mixed using a vortex. This extraction step was then repeated until
the mycelial pellet was colorless. Extracts were partitioned with an equal volume of 10%
diethyl ether in petroleum ether. Acetone and petroleum ether were removed by distilled
water and nitrogen gas, respectively. The pigment extract was resuspended in 700 µL of
tetrahydrofuran supplemented with 250 ppm of butylated hydroxytoluene and subjected
to high-performance liquid chromatography (HPLC) as described in [8].

2.3. RNA Extraction, Transcriptome Sequencing, and Quality Analysis

To perform transcriptome sequencing (Figure 1), the mycelial cells of M. circinel-
loides WJ11 and ∆carRP WJ11 strains grown in a fermenter for 11 h of cultivation time
under dark conditions were harvested, immediately frozen in liquid nitrogen, and then
stored at −80 ◦C before RNA extraction. Total RNA was extracted by using RNeasy Plant
Mini Kit (Qiagen), and the quality and concentration of total RNA were determined by
using an Agilent 2100 bioanalyzer. Further, the cDNA library construction and transcrip-
tome sequencing of three biological replicates of each strain were performed by using the
MGISEQ-2000RS platform.
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Figure 1. Systematic workflow of this study by integrative analysis of transcriptome data of M. circinel-
loides strains WJ11 and ∆carRP WJ11.

To examine raw RNA-Seq data, they were processed by using FastQC [31]. To
gain clean reads with high-quality data, joint contamination, unknown bases (N > 5%),
and low-quality reads were filtered, and adapters sequences were trimmed by using the
SOAPnuke program [32]. The processed RNA-Seq data were kept in FASTQ format and
were deposited in the NCBI Sequence Read Archive (SRA) under BioProject accession
number PRJNA1013727 (BioSamples SAMN37309028, SAMN37309029, SAMN37309030,
SAMN37309031, SAMN37309032, and SAMN37309033).

2.4. Read Mapping and DEG Analysis for Functional Annotation

For read mapping, the clean reads of RNA-Seq data were mapped to the M. circinelloides
1006PhL genome [33] by using HISAT (Hierarchical Indexing for Spliced Alignment of
Transcripts) [34] and the Bowtie2 program [35,36]. It is noted that M. circinelloides 1006PhL
was selected in this study because it has a high-coverage genome according to NCBI and
has thus been widely used as the reference genome for several comparative genomics
and genetic studies [37,38]. At first, clean reads were efficiently calibrated by HISAT.
After that, we used HISAT to align the clean reads to the reference genome sequence.
Bowtie2 was further used to align clean reads to reference gene sequences. The genes with
mapped reads were subjected to calculation of FPKM (fragment per kilobase of transcript
per million mapped reads), a normalized gene expression value based on RNA-Seq data.
The expressed genes were indicated by an FPKM value ≥ 1. The differential expression
analysis across the two strains was performed by using DESeq2 in the R package [39,40].
The list of significant genes under |log2 (fold change)| ≥ 1 and Q-value < 0.05 were then
identified. The annotated protein functions of the significant genes were retrieved from
the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and the
Non-Redundant Protein Sequence Database (NR). KEGG and GO pathway enrichment
analyses were also performed by using the hypergeometric test [41–44].
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2.5. Reporter Metabolites Identification Based on the Genome-Scale Metabolic Model of M.
circinelloides WJ11 (iNI1159)

An earlier GSMM of M. circinelloides (iNI1159) [13] was employed to identify the re-
porter metabolites. The expressed genes were matched with the list of gene–metabolite sets
by using the EC number ortholog parsing method. Next, the matched gene–metabolite sets
as a scaffold were integrated with the list of DEGs obtained from the comparative transcrip-
tome result of the two strains (WJ11 and ∆carRP WJ11) for identifying the key metabolites
and related metabolic pathways by using the consensus gene set enrichment analysis for
reporter metabolites identification with the piano R package [45,46]. The metabolite with a
distinct up-directional p-value < 0.05 was identified as a reporter metabolite.

3. Results and Discussion
3.1. Comparative Growth Profiles and Targeted Metabolite Traits of WJ11 and ∆carRP WJ11 Strains

The comparative growth characteristics and the production of lipids and carotenoids
of the wild-type (WJ11) and the gene-knock-out strain (∆carRP WJ11) are shown in Table 1
and Supplementary Table S1. The WJ11 culture had a biomass titer higher than that of the
∆carRP WJ11 culture (Table 1), similarly to previous studies [6]. The maximum specific
growth rate of the WJ11 culture (µmax of 0.765 ± 0.5 h−1) was higher than that of ∆carRP
WJ11 (µmax of 0.665 ± 0.17 h−1) (Table 1), and the biomass titer of the gene-knock-out strain
was lower than that of the wild-type. Fatty acids in DCW (g/g, %) were not significantly
different between these two strains. The carotenoid content in WJ11 was higher than that
in ∆carRP WJ11 (Table 1). The biomass titer (DCW) of the wild-type culture was higher
than that of the gene-knock-out strain, which seems to be indicative of diauxic growth.
Diauxic growth has been reported in the oleaginous fungus Mucor rouxii [47], with evidence
indicating that fungal cells might utilize the secreted ethanol as a secondary carbon source
for secondary growth. There was an increase in biomass rich in β-carotene for the WJ11
culture during the secondary growth stage, which was the lipid-accumulating phase [48,49].
In contrast, the biomass productivity was lower in the gene-knock-out strain, even though
it could accumulate fatty acids in the cells at a similar level to the WJ11 culture (Table 1).
The carotenoid content within the cells of the knocked-out carRP gene strain exhibited a
significant decrease, as expected due to the elimination of one of the structural genes of the
carotenogenesis pathway.

Table 1. Growth and production of fatty acids in DCW and carotenoids in M. circienlloides WJ11 and
∆carRP WJ11 strains.

Phenotypic Characteristics M. circinelloides WJ11 M. circinelloides ∆carRP WJ11

Maximum specific growth rate, µmax (h−1) 0.765 ± 0.5 a 0.665 ± 0.17 a

Biomass productivity (gDCW L−1) 12.95 ± 0.6 a 8.83 ± 1.03 b

Fatty acids in DCW (g gDCW−1, %) 35.18 ± 2.18 a 31.45 ± 6.36 a

Carotenoid content (µg gDCW−1) 208.99 ± 7.24 a 2.47 ± 0.4 b

Note: Values are means ± SDs (n = 3). a,b Different superscript letters in rows indicate statistically significant
differences (p-value ≤ 0.05, Tukey’s test). The maximum specific growth rates of M. circinelloides WJ11 and ∆carRP
WJ11 strains were all obtained from cultivation for 11 h. The highest biomass productivity of M. circinelloides
WJ11 and ∆carRP WJ11 strains were all obtained from cultivation for 84 h. The highest fatty acids/DCW% of M.
circinelloides WJ11 and ∆carRP WJ11 strains were all obtained from cultivation for 96 h. The highest carotenoid
contents of M. circinelloides WJ11 and ∆carRP WJ11 were obtained from cultivations for 48 and 36 h, respectively.

3.2. Transcriptome Data and DEGs across Pairwise Comparisons of WJ11 and ∆carRP WJ11 Cultures

Due to the discrimination in phenotypic characteristics between the wild-type and
disruptant strains in the active growth phase, which is the stage when metabolism is ac-
tive [50], we collected the cells after 11 h of cultivation time under dark conditions, which
had the maximum specific growth rates (Table 1), to investigate their global transcriptional
responses. The transcriptome analysis of WJ11 and ∆carRP WJ11 strains showed that
raw reads were obtained at an average sequencing depth of 43.82 million reads. After
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removing the adaptor, low-quality sequences, and read pollution, clean reads were re-
trieved with average sequencing depth values of 43.18 and 43.12 million reads for the
WJ11 and ∆carRP WJ11 strains, respectively. The sequencing quality rates of WJ11 and
∆carRP WJ11 strains were 96.78% and 96.93%, respectively (Table 2). Consequently, they
were mapped through the M. circinelloides 1006PhL genome, resulting in the average total
mapped reads of 93.49% and 93.86% for the WJ11 and ∆carRP WJ11 strains, respectively.
The expressed genes for the WJ11 and ∆carRP WJ11 cultures were 10,063 and 10,162,
respectively (Supplementary Table S2).

Table 2. Mapping results of M. circinelloides WJ11 and ∆carRP WJ11 transcriptomes.

Features WJ11 ∆carRP WJ11

Sequencing depth (million reads) 43.82 43.82
Total clean reads (million reads) 43.18 43.12
Sequencing quality (%) 96.78 96.93
Total mapped reads for genome (%) 93.49 93.86
Total mapped reads for gene (%) 68.84 70.04
Number of expressed genes 10,063 10,162
Total number of expressed genes 10,287

As listed in Table 2, 10,287 expressed genes as protein-encoding genes were identified,
of which 10,283 (99.96%) were annotated with protein functions according to the NR,
GO, or KEGG database [41,51–53]. Of the 10,283 genes, the putative functions could
be predicted based on NR (10,280 genes), GO (7813 genes), and KEGG Orthology (KO)
(7273 genes). A list of annotated genes and putative functions according to the different
protein databases used in this study is listed in Supplementary Table S3. Figure 2A shows
five major functional categories of the expressed genes based on the KEGG database,
which included metabolism (1682 genes), genetic information processing (1358 genes),
environmental information processing (651 genes), cellular processes (582 genes), and
organismal systems (135 genes). For the metabolic category, the expressed genes related to
carbohydrate metabolism (534 genes), lipid metabolism (306 genes), amino acid metabolism
(204 genes), metabolism of cofactors and vitamins (156 genes), glycan biosynthesis and
metabolism (125 genes), nucleotide metabolism (123 genes), energy metabolism (122 genes),
metabolism of terpenoids and polyketides (42 genes), metabolism of other amino acids
(26 genes), xenobiotic biodegradation and metabolism (24 genes), and biosynthesis of other
secondary metabolites (20 genes) were identified (Figure 2B and Supplementary Table S4).
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Transcriptome data were organized into pairwise comparisons between WJ11 and ∆carRP
WJ11 strains. By using the thresholds of |log2 (fold change)| ≥ 1 with Q-value ≤ 0.05 in
pairwise comparisons, a total number of 657 differentially expressed genes (DEGs) was
identified, as illustrated in Figure 3A and Supplementary Table S5. It was shown that
228 upregulated and 429 downregulated DEGs were obtained when comparing the ∆carRP
WJ11 and WJ11 strains (Figure 3A). To explore the critical attributes in the transcriptional
regulation of WJ11 and ∆carRP WJ11 cultures, a functional enrichment analysis was per-
formed by using the DEG metabolic pathways according to a p-value < 0.09 (Figure 3B and
Supplementary Table S6). The highest number of DEGs (94 genes) was found in amino
acid metabolism, whereas the lowest number of DEGs (2 genes) was detected in xenobiotic
biodegradation and metabolism.
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The majority of DEGs enriched in amino acid metabolism were found in alanine, aspar-
tate, and glutamate metabolism (14 genes), followed by phenylalanine, tyrosine, and tryp-
tophan biosynthesis (12 genes); arginine biosynthesis (12 genes); and arginine and proline
metabolism (11 genes). Other pathways with a high number of DEGs included lysine degra-
dation; glycine, serine, and threonine metabolism; cysteine and methionine metabolism;
and valine, leucine, and isoleucine degradation (listed in Supplementary Table S6). Table 3
shows list of DEGs that encoded enzymes involved in various metabolic reactions related
to amino acid metabolism, nitrogen metabolism, central carbon metabolism, and fatty acid
and carotenoid biosynthesis. In the ∆carRP WJ11 strain, for instance, the significant gene
encoding for ornithine carbamoyltransferase was upregulated by 5.59 times compared
with the WJ11 strain. The enzymes carbamoyl-phosphate synthase (EC:6.3.5.5), argini-
nosuccinate lyase (EC: 4.3.2.1), and argininosuccinate synthase (EC: 6.3.4.5), responsible
for producing carbamoyl phosphate, fumarate and arginine, and succinate, in the ∆carRP
WJ11 strain were also transcriptionally upregulated by3.14, 3.29, and 3.28 times, respec-
tively. Genes involved in chorismate production, such as phosphoheptulonate synthase
(EC: 2.5.1.54), were also significantly upregulated in the ∆carRP WJ11 strain. The transcrip-
tional upregulation of the enzyme-encoding genes responsible for NADP generation, such
as nitrite reductase (EC: 1.7.1.4) and pyrroline-5-carboxylate reductase (EC: 1.5.1.2), was
additionally found in the ∆carRP WJ11 strain.
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Table 3. List of selected DEGs involved in metabolism.

Gene Name Functions (EC Number) Metabolic Pathway Log2FC

HMPREF1544_11519 Ornithine carbamoyltransferase
(EC: 2.1.3.3) Arginine and proline metabolism 5.59

HMPREF1544_06810 Argininosuccinate synthase
(EC: 6.3.4.5) Arginine and proline metabolism 3.28

HMPREF1544_01650 Argininosuccinate lyase (EC: 4.3.2.1) Arginine and proline metabolism 3.29

HMPREF1544_11380 Pyrroline-5-carboxylate reductase
(EC: 1.5.1.2) Arginine and proline metabolism 1.47

HMPREF1544_09829 Acetylglutamate kinase (EC: 2.7.2.8) Arginine and proline metabolism 1.50
HMPREF1544_09419 Arginase (EC: 3.5.3.1) Arginine and proline metabolism 1.83

HMPREF1544_10960 glutamate N-acetyltransferase
(EC: 2.3.1.35) Arginine biosynthesis 2.88

HMPREF1544_01946 Carbamoyl-phosphate synthase (EC:6.3.5.5) Alanine, aspartate, and glutamate metabolism 3.14

HMPREF1544_07542 Phosphoheptulonate synthase (EC:2.5.1.54) Phenylalanine, tyrosine,
and tryptophan biosynthesis 3.26

HMPREF1544_09131 Hydroxyphenylpyruvate dioxygenase
(EC:1.13.11.27)

Phenylalanine, tyrosine,
and tryptophan biosynthesis 2.11

HMPREF1544_03914 Glutaryl-CoA dehydrogenase
(EC: 1.3.8.6) Lysine degradation 1.40

HMPREF1544_01100 Acetolactate synthase (EC:2.2.1.6) Valine, leucine, and isoleucine metabolism 2.09

HMPREF1544_06855 Branched-chain amino acid
aminotransferase (EC:2.6.1.42) Valine, leucine, and isoleucine metabolism 1.27

HMPREF1544_11990 Nitrite reductase (NAD(P)H)
(EC: 1.7.1.4) Nitrogen metabolism 4.35

HMPREF1544_11989 Nitrate reductase (NAD(P)H) (EC:1.7.1.1;
1.7.1.2; 1.7.1.3) Nitrogen metabolism 4.92

HMPREF1544_11064 Glutamate dehydrogenase (EC:1.4.1.2) Nitrogen metabolism 1.96
HMPREF1544_00954 Glutamine synthetase (EC:6.3.1.2) Nitrogen metabolism 1.07

HMPREF1544_09200 Fructose-bisphosphate aldolase
(EC:4.1.2.13) Glycolysis/gluconeogenesis −1.33

HMPREF1544_09493 Pyruvate kinase (EC:2.7.1.40) Glycolysis/gluconeogenesis −1.01
HMPREF1544_02579 Acetyl-CoA synthetase (EC:6.2.1.1) Pyruvate metabolism −2.94
HMPREF1544_12198 Pyruvate decarboxylase (EC: 4.1.1.1) Pyruvate metabolism −2.08
HMPREF1544_06544 Isocitrate dehydrogenase (EC:1.1.1.42) Tricarboxylic acid cycle 1.94
HMPREF1544_03574 ATP citrate lyase (EC:2.3.3.8) Tricarboxylic acid cycle −2.68
HMPREF1544_05482 Fatty acid synthase (EC:2.3.1.86) Fatty acid biosynthesis −2.10
HMPREF1544_01855 Acetyl-CoA carboxylase (EC:6.4.1.2) Fatty acid biosynthesis −1.92
HMPREF1544_10598 Acetyl-CoA carboxylase (EC:6.4.1.2) Fatty acid biosynthesis −1.62

HMPREF1544_10223 Phytoene synthase/lycopene beta-cyclase
(EC:2.5.1.32) Carotenoid biosynthesis −7.81

In carbohydrate metabolism, the 46 DEGs were mainly involved in glycolysis and glu-
coneogenesis, pyruvate metabolism, propanoate metabolism, glyoxylate and dicarboxylate
metabolism, ascorbate and aldarate metabolism, and fructose and mannose metabolism.
Glycolysis involves the conversion of fructose bisphosphate (FBP) into glyceraldehyde
3-phosphate (G3P) by using the enzyme fructose bisphosphate aldolase (EC: 4.1.2.13). How-
ever, in the ∆carRP WJ11 strain, this enzyme was found to be downregulated, leading to a
decrease in G3P production. Moreover, pyruvate kinase (EC: 2.7.1.40), which is responsible
for the production of pyruvate, was also slightly downregulated in the ∆carRP WJ11 strain.
This resulted in a reduction in pyruvate production, which could have implications for the
overall efficiency of glycolysis in the knock-out strain compared with WJ11 [6]. Remarkably,
the isocitrate dehydrogenase (EC: 1.1.1.42) of the ∆carRP WJ11 strain was upregulated by
1.94-fold, thus allocating more energy supply and carbon flux to amino acid biosynthesis.

Twenty-one DEGs involved in energy metabolism, including nitrogen metabolism,
methane metabolism, and oxidative phosphorylation, were identified. In the ∆carRP WJ11
strain, four genes encoding nitrate reductase, nitrite reductase, glutamate dehydrogenase,
and glutamine synthetase were upregulated. These enzymes can reduce nitric acid to
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nitrous acid, reducing the production of fermenting acid and thereby maintaining cell
viability [54]. These enzymes are key enzymes involved in nitrogen assimilation and are
important for maintaining intracellular nitrogen balance [55].

In addition, several enzymes were found to be upregulated in the ∆carRP WJ11
strain, such as acetylglutamate kinase (EC: 2.7.2.8) and carbamoyl-phosphate synthase
(EC: 6.3.5.5), which are two enzymes that use ATP for catalysis. Glutaryl-CoA dehydro-
genase (EC: 1.3.8.6) was also significantly upregulated, which could potentially provide
more acetyl-CoA for the TCA cycle. Upregulation of hydroxyphenylpyruvate dioxygenase
(EC: 1.13.11.27) in the ∆carRP WJ11 strain was also observed, suggesting that the fungal cell
might generate other precursors for the citrate cycle. This enzyme catalyzes the catabolism
of tyrosine, producing fumaric acid, which can enter the TCA cycle [56]. Acetolactate
synthase (EC: 2.2.1.6) and branched-chain amino acid aminotransferase (EC: 2.6.1.42) were
also upregulated, indicating that the ∆carRP WJ11 strain might use more pyruvate outside
the mitochondria to synthesize valine.

However, the downregulation of acetyl-CoA synthetase (EC: 6.2.1.1) and ATP citrate
lyase (EC: 2.3.3.8) might lead to a reduction in the acetyl-CoA pool for fatty acid synthe-
sis [28]. Downregulation of fatty acid synthase (FAS1) (EC: 2.3.1.86), involved in long-chain
fatty acid synthesis, was also found in ∆carRP WJ11. Two other DEGs that encode for
acetyl-CoA carboxylase (EC: 6.4.1.2), a crucial precursor substance for fatty acid synthesis,
were also downregulated in ∆carRP WJ11. Acetyl-CoA carboxylase is a key enzymatic
reaction in the first step of fatty acid synthesis [57]. The overexpression of acetyl-CoA
carboxylase can increase the total fatty acid yield of non-oleaginous yeast, e.g., Hansenula
polymorpha and Mucor spp. [58,59]. This indicates that carRP gene deletion impacts fatty
acid synthesis through the downregulation of acetyl-CoA carboxylase.

There were seven DEGs related to the metabolism of terpenoids and polyketides,
dominated by carotenoid biosynthesis. In the ∆carRP WJ11 strain, for example, phytoene
synthase/lycopene beta-cyclase (EC: 2.5.1.32), responsible for generating phytoene, was
significantly downregulated by 7.81 times, which is a result of carRP gene deletion, leading
to defects in phytoene and β-carotene production.

3.3. Metabolic Responses of Lipid and β-Carotene Biosynthetic Pathways in WJ11 and ∆carRP
WJ11 Strains

Due to the finding of DEGs being mostly enriched in amino acid and carbohydrate
metabolism, an integrative analysis between transcriptome data and the GSMM of M.
circinelloides WJ11 (iNI1159) was performed to explore the metabolic responses of ∆carRP
WJ11 through the transcriptional regulation of significant metabolic genes. As a result, 18 re-
porter metabolites were identified (Figure 4, Table 4, and Supplementary Table S7). These
reporter metabolites are mainly involved in pyrimidine, amino acids, energy, and nitrogen
metabolism and some examples are 5-phospho-alpha-D-ribose 1-diphosphate, glutamate,
glutamine, arginine, arginine succinate, NADPH, ATP, citrulline, and ornithine. These re-
porter metabolites were found to be enriched by several upregulated genes associated with
the metabolism of arginine and glutamate, and the urea cycle, such as argininosuccinate
synthase (HMPREF1544_06810), argininosuccinate lyase (HMPREF1544_01650), arginase
(HMPREF1544_09419), glutamate N-acetyltransferase (HMPREF1544_10960), and ornithine
carbamoyltransferase (HMPREF1544_11519), as shown in Figure 5 and Table 3. The urea cy-
cle serves a vital role in eliminating excess nitrogen through the production of urea [60,61].
Ornithine carbamoyltransferase is a key player in this process, as it facilitates the conversion
of ornithine to citrulline [62]. Additionally, argininosuccinate synthase aids in creating
argininosuccinate, which is a building block for arginine [63]. Argininosuccinate lyase then
breaks down argininosuccinate into arginine and fumarate. Finally, arginase (EC: 3.5.3.1)
hydrolyzes arginine into urea and ornithine, while fumarate enters the TCA cycle [61,64,65].
Consistently, genes responsible for the TCA cycle were upregulated, including the gene
for isocitrate dehydrogenase. The upregulation of the isocitrate dehydrogenase gene can
also increase the accumulation of α-ketoglutarate, leading to an increase in the amount of
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carbon entering the TCA cycle (Figure 5). In addition, isocitrate dehydrogenase plays a
key role in NADPH formation, which is essential to maintaining the balance of reactive
oxygen species (ROS) in the mitochondria. However, excessive accumulation of NADPH
can trigger apoptosis caused by an increase in ROS and redox stress. Considering that
redox-associated NADPH is a substrate of fatty acid synthase (FAS1) (EC: 2.3.1.86), the
downregulation of FAS1 and fatty acid biosynthesis in the ∆carRP WJ11 strain could lead
to NADPH accumulation and redox stress. This is consistent with the upregulation of
genes involved in converting NADPH to NADP in nitrogen metabolism, such as nitrite
reductase (EC: 1.7.1.4) and pyrroline-5-carboxylate reductase (EC: 1.5.1.2), as shown in
Figure 5. We hypothesized that the upregulation of amino acid metabolism and urea cycle
in the ∆carRP WJ11 strain might favor compensating for the metabolic imbalance caused
by a decrease in fatty acid biosynthesis and a defect in the biosynthesis of carotenoid,
which has a protective effect on oxidative stress by eliminating excess ROS, quenching
singlet oxygen, and promoting better cell growth [66]. Therefore, after knocking out the
carRP gene, the metabolic balance in the cell is disrupted, leading to reduced production of
biomass and carotenoids, as well as slightly reduced lipid production (Table 1).
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Table 4. List of reporter metabolites of M. circinelloides when comparing ∆carRP WJ11 and WJ11 strains.

Reporter Metabolite Up-Directional p-Value

Glutamate (GLU) 0.00009999 *
Phosphate (PI) 0.00009999 *
Carbamoyl phosphate (CAP) 0.00009999 *
NADPH 0.00029997 *
Arginine succinate (ARGSUCC) 0.00029997 *
Citrulline (CITR) 0.00029997 *
NADP 0.00059994 *
Chorismate (CHOR) 0.0019998 *
ATP 0.0022998 *
Glutamine (GLN) 0.0031997 *
Diphosphate (PPI) 0.0033997 *
Ornithine (ORN) 0.0033997 *
Arginine (ARG) 0.0037996 *
Fumarate (FUM) 0.0062994 *
HCO3 0.0062994 *
α-Ketoglutarate (AKG) 0.0074993 *
5-Phospho-alpha-D-ribose 1-diphosphate (PRPP) 0.009799 *
CO2 0.012199

Note: * represents the metabolite with a distinct up-directional p-value < 0.01 that was identified as a significant
reporter metabolite.
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Figure 5. The proposed metabolic routes associated with lipid and β-carotene biosynthetic pathways
in ∆carRP WJ11 in comparison with the WJ11 strain. The abbreviations of all metabolite names are
in Supplementary Table S8. The abbreviations of all gene IDs are in Supplementary Table S3. A red
metabolite name represents a reporter metabolite. Red EC numbers are associated with upregulated
genes. The red arrows indicate upregulation routes associated with amino acid metabolism. The
green arrows indicate downregulation routes associated with carotenoid and fatty acid biosynthesis.
Green EC numbers are associated with downregulated genes.

Moreover, the genes that play a crucial role in generating acetyl-CoA, such as ATP
citrate lyase (EC: 2.3.3.8) and acetyl-CoA synthetase (EC: 6.2.1.1), were also observed to
be significantly downregulated, as shown in Figure 5. In addition, we also speculate
that phytoene synthase/lycopene beta-cyclase (EC: 2.5.1.32) and pyruvate decarboxy-
lase (EC: 4.1.1.1) are positively correlated (Table 3). Therefore, the production of ethanol
and acetyl-CoA in the cytoplasm might be decreased due to the absence of phytoene
synthase/lycopene beta-cyclase expression and the downregulation of pyruvate decar-
boxylase in the ∆carRP WJ11 strain, thus leading to no improvement in lipid produc-
tion, despite acetyl-CoA not being used for carotenoid biosynthesis. Overall, the results
highlight a coordinated relationship between carotenoid and fatty acid biosynthesis in
oleaginous M. circinelloides.

4. Conclusions

An integrative approach was employed in the study to analyze the metabolic responses
of M. circinelloides WJ11 defective in carotenoid biosynthesis. The results indicate that
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knocking out the carRP gene in the WJ11 strain led to an increase in amino acid production
and a reduction in carbon allocation towards fatty acid biosynthesis. Downregulation of
genes encoding precursors for fatty acid biosynthesis was related to defective carotenoid
biosynthesis. This highlights the interdependence between carotenoid and fatty acid
biosynthesis, which is useful for developing an optimized strain for producing desired
bioproducts by using gene-editing technology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology13040276/s1, Table S1: Growth and β-carotene in M. circinel-
loides WJ11 and ∆carRP WJ11, Table S2: List of expressed genes in M. circinelloides WJ11 and ∆carRP
WJ11, Table S3: Annotation according to KEGG, NR, and GO, Table S4: List of expressed genes with
KEGG annotation, Table S5: List of differentially expressed genes (DEGs) between M. circinelloides
∆carRP WJ11 and WJ11 (reference) strains, Table S6: The enrichment analysis of DEGs of M. circinel-
loides based on KEGG annotation, Table S7: List of reporter metabolites with up-directional changes
in M. circinelloides ∆carRP WJ11, Table S8: Abbreviation of metabolites and genes of M. circinelloides
in Figure 5.
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