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Abstract: Peripheral artery disease (PAD) is a common circulatory disorder characterized by the
accumulation of fats, cholesterol, and other substances in the arteries that restrict blood flow to
the extremities, especially the legs. The ankle brachial index (ABI) is a highly reliable and valid
non-invasive test for diagnosing PAD. However, the traditional method has limitations. These
include the time required, the need for Doppler equipment, the training of clinical staff, and patient
discomfort. PWV refers to the speed at which an arterial pressure wave propagates along the arteries,
and this speed is conditioned by arterial elasticity and stiffness. To address these limitations, we have
developed a system that uses electrocardiogram (ECG) and photoplethysmography (PPG) signals
to calculate pulse wave velocity (PWV). We propose determining the ABI based on this calculation.
Validation was performed on 22 diabetic patients, and the results demonstrate the accuracy of
the system, maintaining a margin of ±0.1 compared with the traditional method. This confirms
the correlation between PWV and ABI and positions this technique as a promising alternative to
overcome some of the limitations of the conventional method.

Keywords: peripheral artery disease; ankle brachial index; pulse wave velocity; electrocardiogram;
photoplethysmography; blood pressure wave

1. Introduction

Peripheral artery disease (PAD) is a common circulatory disorder caused by atheroscle-
rosis, a condition characterized by the buildup of fats, cholesterol, and other substances
in the arteries and on their walls. This buildup causes the peripheral arteries to narrow,
reducing blood flow from the heart to other parts of the body. PAD primarily affects the
arteries of the lower extremities, causing reduced blood flow to the legs and feet. It can
also affect the arteries that supply blood to the head, arms, and kidneys [1].

PAD affects approximately 6% of the adult population worldwide, and its prevalence
continues to increase. Typically recognized as asymptomatic, PAD commonly manifests as
muscle pain with walking that tends to resolve with rest. However, in advanced stages,
symptoms may include rest pain, ulceration, and gangrene, with the potential risk of
amputation if not managed appropriately [2]. Individuals with this condition have a signif-
icantly increased risk of developing cardiovascular disease and cerebrovascular events [3].
Smoking, diabetes mellitus (DM), arterial hypertension, and hypercholesterolemia have
been identified as critical factors in the development of PAD [4]. Impaired and inadequate
glycemic control is associated with PAD, although these patients may be asymptomatic
due to the coexistence of neuropathy [5].

In the clinical setting, PAD is identified by healthcare professionals by observing
signs during physical examination. Key indicators include a weakened pulse or evidence
of impaired wound healing. For accurate diagnosis of PAD, ankle brachial index (ABI)
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testing has been shown to be a highly reliable and valid assessment, especially when
performed using Doppler ultrasound [6]. The ABI is a widely used non-invasive clinical
test. The procedure involves placing blood pressure cuffs on the brachial arteries and
around each ankle, specifically over the malleoli (between the tibia and fibula). The patient
is initially placed in the supine position for a resting period of 5 to 10 mins. Systolic blood
pressure (SBP) is then recorded in each brachial artery and lower extremity using a manual
Doppler probe [7]. ABI is performed on both sides of the body, so SBP measurements are
taken on the right and left arms and ankles, respectively. The result is obtained as the ratio
between the SBP measured at the ankle and at the arm [8]. Arterial pressures in the ankle
region are usually higher than brachial pressures measured in the arms; hence, ABI ≤ 0.9
is used as a diagnostic criterion for PAD [9]. An ABI between 0.9 and 1.3 is considered
normal [8,9], while values above 1.4 may be associated with an increased risk of stroke and
heart failure [10].

The ABI measurement procedure has some drawbacks, such as the time required to
perform it, the need for Doppler equipment, and the need for prior training of the clinical
staff in charge to minimize the variability of the results. This has led to the exploration of
alternative diagnostic methods for clinical practice. For example, the absence or weakness
of pulses in the distal regions of the lower extremities was initially thought to be asso-
ciated with PAD; however, some studies have refuted this hypothesis due to the lack of
positive results [11]. Another method of measuring ABI has been to use an automated
sphygmomanometer to record SBP. However, comparative studies between this measure-
ment and that obtained by the traditional method did not show significant agreement, so
this technique was discarded. In addition, the use of automated sphygmomanometers
involves the occlusion of blood flow through the cuff, which could cause anxiety and
discomfort in the patient, leading to unreliable measurements, especially in individuals
with hypertension [12].

Thus, photoplethysmography (PPG) is emerging as a simple and non-invasive optical
technique capable of detecting variations in blood volume caused by the expansion and
contraction of arteries in response to the arterial pressure wave. Exploratory studies have
demonstrated a correlation between blood pressure measurements obtained with Doppler
devices and those obtained with PPG. In [13], the results of one of the first studies conducted
in 1998 are presented, in which a correlation coefficient of 0.875 was obtained in ABI mea-
surements performed on 52 limbs. This suggested that the PPG technique could be a viable
replacement for Doppler equipment in the development of automated ABI measurement
systems. The results of other studies have supported this hypothesis, with variation intervals
ranging [−0.27, 0.26]; considering the discrepancy between measurements obtained with the
traditional method and PPG-based systems, it is concluded that the PPG technique is easily
implementable in general screening tests for PAD [14–16].

On the other hand, pulse wave velocity (PWV) is characterized as the rate at which
the arterial pressure pulse travels through the circulatory system. This velocity can be
estimated using the parameter pulse transit time (PTT), which is the time it takes for a pulse
wave to travel between two points in the cardiovascular system. PTT can be derived from
both electrocardiogram (ECG) and PPG signals [17]. This parameter can be used to define
the ankle brachial pulse wave velocity (baPWV), an important measure for detecting cardio-
vascular risk and assessing the severity of atherosclerotic vascular damage [18]. Research
has shown that baPWV correlates with the assessment of elasticity of both large and small
arteries, highlighting its enhanced predictive value for hypertension [19]. The measurement
of baPWV and ABI has been associated with the diagnosis of several diseases [20,21]. It
would be interesting to explore the possibility of establishing a measure of ABI from PWV,
as the latter is used as a method of assessing arterial stiffness, which is associated with the
risk of developing atherosclerosis.

This article presents a system capable of simultaneously measuring ECG and PPG
signals. The system is capable of determining heart rate variability (HRV) and PTT using
characteristic points from the ECG and PPG signals. With this information, a method
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is developed to calculate PWV, considering the approximate length of the arteries that
carry blood from the heart to the index finger of the hand and the hallux toe, proposing to
determine the ABI in this way. This system represents an interesting alternative that could
mitigate the complications associated with the conventional ABI measurement procedure
in the evaluation of patients with PAD. In the Materials and Methods section, the electronic
devices designed for the acquisition of ECG and PPG signals, as well as the data processing
and proposed methodology for the calculation of the ABI, are described in detail. The results
section presents the results of the system validation and discusses the accuracy compared
with the standard procedure using Doppler devices.

2. Materials and Methods
2.1. Physiological Signals and Biomedical Parameters

The system developed in this study uses simultaneously measured ECG and PPG
signals with biomedical parameters such as PPT and PWV to determine the ABI. These
signals and parameters are described below.

2.1.1. Electrocardiogram (ECG)

An electrocardiogram (ECG) is a direct recording of the heart’s electrical activity, which
reflects the heart’s excitement as it contracts and relaxes with each heartbeat. This painless
test is performed by placing two or more electrodes on the patient’s skin at different points
around the chest. The ECG plays a key role in diagnosing heart disease and assessing heart
health [22]. For example, the R-R interval, which is the distance between two consecutive R
waves, defines an individual’s heart rate [23].

2.1.2. Photoplethysmography (PPG)

Photoplethysmography (PPG) is a simple and non-invasive optical technique used
to monitor peripheral heart rate by detecting changes in blood volume through the skin.
There are two main configurations for characterizing the blood pressure waveform using
PPG. In the first, the LED diode is placed on one side of the tissue while the photodetector
is placed on the other side to measure light; in this case, the voltage signal is inversely
proportional to blood flow. In the second configuration, both the LED diode and the
photodetector are placed in the same measurement area. During systole, as the pressure
increases, the blood concentration increases, and so does the light absorption. The opposite
occurs during diastole, where blood pressure decreases and light absorption decreases [24].
These changes in blood volume during the cardiac cycle allow blood pressure to be repre-
sented as a periodic signal in which systolic and diastolic peaks are identified. The systolic
peaks are used to determine heart rate considering the time interval between them [25].

2.1.3. Pulse Wave Velocity (PWV)

Pulse wave velocity is defined as the speed at which the blood pressure pulse travels
through the circulatory system. PWV is calculated as the distance traveled by the pulse
wave divided by the time it takes to travel that distance. It is used as a measure of arterial
stiffness and allows the diagnosis of cardiovascular disease [26]. To calculate PWV, it is
necessary to know the time it takes for the pressure wave to travel a distance and the
length of the distance. The former can be approximated by the parameter pulse transit
time (PTT), which determines the time it takes for the pulse to travel between two points
in the circulatory system. In particular, the behavior of PTT serves as a parameter for
monitoring changes in blood pressure [27]. PTT can be obtained from the R-peaks of the
ECG signal and the systolic amplitude maxima of the PPG waveform, which is usually
measured through the fingertips. PTT can also be estimated from the Q-points of the ECG
and the onset of the systolic rise in the PPG [17,28].

On the other hand, the length of the arteries is not an easily known parameter; it varies
from individual to individual and complicates the PWV measurement procedure. Studies
have been developed to automatically adjust for the length of arteries supplying blood
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to the extremities. In [18], equations were obtained to estimate the length of the brachial
artery and the artery that carries blood flow to the ankle, which could be related to the
tibial artery.

2.2. Measuring Devices

The system consists of two devices. The first captures the ECG signal in the patient’s
chest and the PPG signal in the index finger of the hands. The second device records the
PPG signal at the hallux. The devices were designed using a MAX86150 module from
Analog Devices [29] and a Teensy 4.0 development board from PJRC [30] to acquire the
signals. The design of the devices is described below.

2.2.1. MAX86150

Maxim Integrated’s MAX86150 biosensor module enables ECG and PPG measure-
ments from a single device with a 16-bit resolution. This device consists of LEDs, photode-
tectors, and an analog front end to provide high performance and accuracy in obtaining
PPG and ECG measurements. It is also FDA (United States Food and Drug Administration)-
cleared, which supports its reliability and accuracy in various applications. Its compact
design and low power consumption make it easy to integrate into devices such as smart-
phones and laptops.

In terms of features, this device stands out for its ability to obtain ECG signal derivation
with only two electrodes. PPG signals are captured by an encapsulation that integrates
LEDs and photodetectors, which simplifies the acquisition of measurements in the same
region. It also features an instrumentation amplifier with a high common mode rejection
ratio (CMRR). With a miniature design (3.3 mm × 5.6 mm × 1.3 mm), this optical module
operates from a typical 1.8-volt (V) supply, while the LEDs responsible for the infrared light
require a separate 3.3 V supply. Communication with the integrated circuit is conducted via
the inter-integrated circuit (I2C) protocol. It should be noted that at the input of each ECG
electrode, according to the manufacturer’s specifications, a low-pass R-C filter with a cutoff
frequency of approximately 318 Hz is implemented, which ensures that the frequency
spectrum of the ECG signal is obtained [31].

2.2.2. Teensy 4.0 Board

The devices are equipped with a Teensy 4.0 development board, which plays a central
role in the signal acquisition phase. This module is characterized by high performance and
versatility, making it ideal for applications in robotics, instrumentation and control, user
interfaces, Internet of Things (IoT), and others.

The Teensy 4.0 features a microcontroller that integrates a 600 MHz ARM Cortex-M7
processor, 1984 kilobytes of flash memory, and 1024 kilobytes of RAM. It requires a typical
supply voltage of 5.0 V and operates at 3.3 V. Among its communication interfaces, it has
three I2C ports necessary for communication with the MAX86150 module, as well as a
USB port that facilitates the transfer of acquired data to a central computer responsible for
its management. An important advantage of these microcontrollers is their compatibility
with the Arduino programming environment, thanks to the Teensyduino extension. This
simplifies the implementation of libraries and codes developed for Arduino. In this case,
the ProtoCentral MAX86150 PPG and ECG IC library [32] is used.

2.2.3. Signal Acquisition

The system consists of one device to measure the ECG signal on the chest and PPG on
the index fingertip of the hand and another device to measure the PPG signal on the hallux
fingertip. A printed circuit board (PCB) was fabricated for each device. These boards integrate
the Teensy 4.0 development board and the MAX86150 biosensor. The circuit designs were
based on the sensor data sheet specifications and included a 1.8 V voltage regulation circuit to
power the optical module. In addition, the signal sampling frequency was set to 200 Hz.
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In each device, the MAX86150 module acts as a slave to the Teensy 4.0 microcontroller
to simplify the transfer of acquired data. In addition, the control module sends the infor-
mation via the universal asynchronous receiver–transmitter (UART) serial communication
protocol to a central computer responsible for storing and managing the data for further
analysis. The Teensy is connected to the computer via the USB interface, which facilitates
the transfer of information and provides the 5 V power supply.

Figure 1a shows the three-dimensional layout of the circuit boards. On the left is
the PCB for the first unit, with the position of the optical module for capturing the PPG
signal highlighted, along with the connectors for the cables used in the ECG measurement,
identified as ECG_P and ECG_N. The PCB for the second unit is shown on the right.
Figure 1b shows the manufactured measurement devices, highlighted for their compact
size, equipped with housings to improve fixation and comfort. The picture also shows the
connection of the cables and electrodes used for the ECG signal. To reduce the signal noise
emission, the circuit boards were covered with insulating tape. Velcro was also used to
attach the PPG meter to the hallux.

In addition, Figure 2 shows the placement of the index finger and hallux over each
optical module to capture the PPG signals. It is important to completely cover the sensor
area to minimize interference from external light. For the ECG signal, the position of
each electrode is observed, with the N terminal placed on the individual’s chest and the P
terminal being in the axillary region, as shown in the diagram.

(a) (b)

Figure 1. (a) The three-dimensional layout of the designed boards; (b) measuring devices.

(a) (b)

Figure 2. (a) Index finger position and electrodes connection; (b) hallux toe position.

2.3. Signal Processing

The information captured by the measuring devices is collected and stored in text
files on a computer. The data are processed and analyzed using Matlab software [33].
Although the MAX86150 optical modules incorporate protection and rejection circuitry to
ensure accurate measurements, it is essential to include an initial filtering stage to eliminate
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potential electromagnetic interference. These interferences can manifest themselves, for ex-
ample, as an alternating component due to noise emitted by the power grid. A high-pass
filter with a cutoff frequency of 50 Hz is set up for both signals. Figure 3 illustrates the effect
of filtering: the unfiltered signals are shown in red, while the filtered signals are shown in
blue. The elimination of the alternating wave associated with the electric current is evident,
resulting in a significant improvement in the clarity of the filtered signals.

(a) (b)

Figure 3. (a) Raw ECG signal in red and filtered signal in blue; (b) raw PPG signal in red and filtered
signal in blue.

In order to improve the quality of the signals, a second processing stage was imple-
mented to eliminate noise generated by the user’s movements or potential cardiac problems
that may manifest themselves in the ECG signals. For this purpose, a time–frequency anal-
ysis was performed using the Matlab Wavelet Toolbox [34].

For the ECG signal, a four-level decomposition was performed using the fourth-order
wavelet of the Symlets family ‘sym4’, which is characterized by its similarity to the QRS
complex, making it an ideal choice for R-peak detection [35]. In the wavelet transform,
the information contained in the high frequencies is analyzed with greater precision at a
smaller scale, while it is focused on the low frequencies at a larger scale. In this context,
the results of the detail coefficients 2 and 4 of the decomposition are used. Coefficient
2 contains high-frequency information that allows us to identify the QRS complex and
emphasize the R-peak of the signal. On the other hand, coefficient 4 contains low-frequency
information, which in some cases facilitates the representation of P- and T-waves in the
ECG signal. This reconstruction procedure makes it possible to characterize the signals
obtained in people with a weak pulse, where it may be difficult to recognize the R-peak,
or in cases where the ECG derivation obtained represents the QRS complex negatively.
Figure 4a shows the original signal, characterized by significant variation and noise that
make it difficult to identify the components of the ECG signal, together with the result
of the reconstruction using the wavelet transform. Figure 4b shows another signal with
the QRS complex in the negative, together with the result of the processing performed.
The points highlighted in red indicate the identified R-peaks.

In the case of the PPG signals, the wavelet transform is used to smooth the signal
obtained in the first stage of processing in order to obtain a signal that clearly identifies
the peak that characterizes the systolic contraction, the phase of the cardiac cycle in which
blood is being forced into the arteries. This procedure was performed according to the
method described in [36], which involves decomposing the signal into different levels of
detail, followed by a denoised reconstruction of the original signal. This type of processing
allows for the characterization of a PPG signal, especially in those cases where the level
of luminosity around the sensor and possible involuntary movements of the user have
generated noise during the data acquisition, considering that the measurement points
defined on the fingers and toes can be prone to this type of noise sources.
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(a) (b)

Figure 4. (a) ECG signal with variation and noise and result of wavelet processing; (b) ECG signal
with negative QRS complex and result of wavelet processing. The points highlighted in red indicate
the identified R-peaks.

Figure 5a shows the initial result of the PPG signal processing, highlighted in red,
together with the reconstructed signal, highlighted in blue. An improvement in signal
clarity is observed, which facilitates identification of the systolic contraction point. On the
other hand, Figure 5b shows an initial signal with significant noise, highlighted in red,
but the reconstruction result clearly describes the original signal, being clear and of suf-
ficient quality for further analysis. These two extreme cases illustrate the ability of the
processing to improve the quality of the signal from a clean initial signal to one with a high
level of noise. This processing is different from traditional smoothing techniques, which
are based on a smoothing factor that can vary from case to case, making it difficult to adapt
the algorithm to different situations and not guaranteeing effective signal denoising.

(a)

(b)
Figure 5. (a) Original signal of PPG 1 (in red) and its result after processing (in blue); (b) original
signal of PPG 2 (in red) and its result after processing (in blue).



Biosensors 2024, 14, 251 8 of 19

2.4. HRV and PTT Calculation

After processing the ECG and PPG signals, the characteristic points of these signals
are extracted to determine the HRV and PTT parameters. For this purpose, the R-peaks in
the ECG signal and the systolic amplitude in the PPG, called the S-point in this context,
are identified.

An algorithm has been developed to identify the peaks of each signal. In the case of the
ECG, the algorithm begins to evaluate the signal and detects an R-peak when a predefined
threshold based on the signal magnitude is exceeded. In addition, a minimum time interval
between consecutive peaks is set to ensure accurate identification. This information is used
to calculate HRV, expressed as the approximate number of beats per minute. For the PPG
signal, the algorithm uses the frequency of the R-peaks identified in the ECG to estimate
the time of occurrence of each S-peak. This information is correlated because they represent
the same phase of the cardiac cycle.

Because the ECG and PPG signals are acquired simultaneously, the PTT parameter can
be determined as the time difference between the S-point on the PPG and the preceding
R-peak on the ECG. Therefore, PTTh and PTTf are defined as the pulse transit time from
when the blood leaves the heart to when it is reflected in the fingers and toes of the hand,
respectively. Figure 6 shows the result of processing an ECG signal in blue and PPG in red,
together with an example of the result of identifying R- and S-points, the latter measured on
both the hand and foot. In addition, the graphs illustrate the PTTh and PTTf parameters.

(a)

(b)
Figure 6. (a) ECG and PPG signal measured on the hand. Identification of the R- and S-peaks; (b) ECG
and PPG signal measured on the foot. Identification of R- and S-peaks.

2.5. Pulse Wave Velocity

Once the time it takes for the blood pulse wave to travel from the heart to the fingers
and toes has been determined, it is essential to calculate the distance traveled to determine
the pulse wave velocity.

2.5.1. Arterial Length

Calculating the exact length of the arteries and capillaries that make up the circulatory
system is not an easy task. Although it is possible to physiologically describe the arterial
tree and make an approximate estimate of its length, this measurement would not be
completely accurate due to anatomical variations between individuals. Previous studies,
such as [18], establish a mathematical model between people’s height and arterial lengths.
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The formulas developed take into account the length of the brachial artery to the elbow
and the distance from the heart to the ankle. However, these formulas are not applicable in
this work because the measuring points do not coincide. Therefore, it is proposed to find
a new mathematical relationship to estimate the approximate length of the arteries and
blood vessels that carry blood from the heart to the fingers and toes.

The route of blood from the heart to the fingers is through the axillary artery, which
then continues to the brachial artery and reaches the ulnar and radial arteries, where it is
finally distributed to the blood vessels and capillaries of the fingers. The path to the toes,
on the other hand, is more extensive, starting from the aorta, which bifurcates into the right
and left iliac arteries of each lower extremity and then passes through the tibial arteries
until it reaches the dorsalis pedis and plantar arch, which are responsible for carrying
the blood flow to the vessels of the toes. Once the blood path has been identified, this
study proposes three lengths to estimate these distances according to each side of the body.
The lengths of the left and right arteries and the plantar artery represent the distance from
the heart to the hallux of each foot.

• Right/Left arm artery: The length of the brachial arteries is measured from the end of
the left clavicle attached to the sternum to the tip of each index finger.

• Right/Left artery: The set of arteries that carry blood from the heart to the heel.
The distance is measured from the end of the left clavicle, similar to the previous case,
directly to the heel.

• Plantar artery: The length is measured from the heel to the midpoint of the hallux.

Figure 7 illustrates a schematic of the proposed measurements to characterize the
distances traveled on each side of the body, with the right side highlighted in red and the
left side highlighted in blue.

Figure 7. Proposed distances for the arteries on each side of the body. The right side is shown in red,
and the left side is shown in blue.

Arterial length data were collected from a group of 35 individuals of different ages,
sexes, heights, and physical characteristics. A least-squares fit was performed on these data
to achieve a mathematical optimization that allowed for an automatic approximation of
arterial lengths as a function of height in meters (m). This process resulted in the estimation
of the coefficients of a continuous function that models and approximates the data. Five
different equations were established to describe the lengths of the right (RA) and left (LA)
arm arteries, the right (AR) and left (AL) arteries, and the plantar artery (PA), all as a
function of height (H).

RA = −0.5263H2 + 2.201H − 1.311 (1)
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LA = −0.5018H2 + 2.083H − 1.245 (2)

AR = −0.3993H2 + 1.967H − 0.8949 (3)

AL = −0.5543H2 + 2.488H − 1.336 (4)

PA = −0.2921H2 + 1.055H − 0.736 (5)

To calculate the total distance from the heart to the hallux of each foot, it is necessary
to sum the lengths of the right (AR) and left (AL) arteries together with the measurement
of the plantar artery (PA). Consequently, the parameters AR f and AL f are defined to
characterize these combined distances.

2.5.2. PWV Calculation

Once the distances and PTT to the measurement points of the PPG signals have been
determined, it is possible to define PWV as the quotient between these two parameters,
expressed in units of meters per second (m/s). Therefore, the PWV to the toe (PWVf ) and
the PWV to the fingertip (PWVh), both on the right and left side, are determined according
to the following expressions:

PWVr f =
AR f

PTTr f
(6)

PWVl f =
AL f

PTTl f
(7)

PWVrh =
RA

PTTrh
(8)

PWVlh =
LA

PTTlh
(9)

Where PTTr f and PTTl f are the time between the R-peak of the ECG and the S-peak
of the PPG measured at the right and left toes, respectively. PTTrh and PTTlh are the time
to reach the right and left fingertips, respectively.

2.6. ABI Calculation

In this study, it is proposed to relate the PWV to determine the ABI. For this purpose,
the ABI is defined as the quotient between the PWV measured up to the foot and the PWV
obtained up to the hand on both sides of the body, expressed by the following equations.

• Right ABI:

ABIr =
PWVr f

PWVrh
(10)

• Left ABI:

ABIl =
PWVl f

PWVlh
(11)

The proposed ABI calculation is performed for each measurement point, i.e., for each
ECG R-peak in relation to the next PPG S-peak, both in the hand and in the foot. In this way,
a specific number of measurements is obtained according to the amount of data available.

The measurement system is complemented by a desktop software application for comput-
ers developed in the Matlab App Designer tool [37].This programming includes the creation
of a graphical user interface (GUI), as well as the necessary algorithms for signal processing,
including the calculation of the ABI according to the methodology proposed in this work.
The final ABI value corresponds to the arithmetic mean of the data evaluated at 30-s intervals.

The GUI provides a visualization of the acquired ECG and PPG signals in addition to
a slider that allows for the selection of the time period to analyze the data. This is useful in
case involuntary movements have affected the measured signals.
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3. Results
3.1. System Validation

The validation of the system included the assessment of its accuracy compared with
the conventional ABI measurement method. The study included 22 subjects: 13 men and
9 women, aged between 46 and 86 years (mean age 64.3 years), diagnosed with diabetes
mellitus and at risk for PAD. The study was conducted at the San Juan Medical Center
in Alicante, Spain, with the approval of the Ethics Committee of the Health Department
of the General Hospital of Alicante. Before the start of the examination, each participant
signed an informed consent form to participate in the study. During the medical evaluation,
general information was collected, including age, body weight, smoking habits, and diet.

The examination of each patient began with a vascular examination to measure the
ABI using the traditional method. Subsequently, the evaluation was performed with the
system developed in this work. The experimental protocol included a rest period of 5 to
10 mins before each test, with the patient being in the supine decubitus position.

3.1.1. ABI Measurement by Vascular Exploration

The ABI measurement procedure by vascular exploration was performed by medical
personnel specialized in podiatry. It was performed using a sphygmomanometer with
pressure cuff and a Bidop V3 vascular Doppler device. The patient was placed in the supine
decubitus position, and the pressure cuff was placed above the elbow flexion point to locate
the brachial artery. The Doppler equipment was then turned on, and SBP was recorded
based on the sounds generated across the artery due to pressure changes. The same
procedure was repeated on both ankles, with the cuffed sphygmomanometer placed over
the malleoli and SBP measured over the pedal artery at the instep and posterior tibial artery
behind the ankle. Figure 8 shows an example of the device setup and arterial locations.

(a) (b)

Figure 8. (a) Location of the brachial artery in the arm; (b) locations of the dorsalis pedis and posterior
tibial arteries.

3.1.2. ABI Measurement Using the Developed System

The ECG and PPG signals are recorded simultaneously, starting with one pair of
limbs, either the right or left hands and feet, and then moving to the other set. Similar
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to the conventional method, the patient must remain lying down. The patient’s height
is recorded, and the two electrodes necessary for the acquisition of the ECG signal are
placed, one in the left axillary region and the other on the line dividing the pectoral muscles.
Next, the cables that facilitate the transmission of the signal from the electrodes to the
acquisition device are connected, following the arrangement of the ECG_P and ECG_N
inputs. In order to obtain the PPG signals, it is essential to ensure the correct positioning of
the fingers so that the sensor is completely covered and there is optimal contact between the
fingertip and the device, without exerting excessive pressure. This is performed according
to the recommendations in Section 2.2.3. Signal acquisition is performed for 90 s on each
side of the body. Once acquired, the data are visualized and processed in the developed
application hosted on a computer. This application displays the corresponding ABI value.
It is important to note that this result is the arithmetic mean of the data collected over a
period of at least 30 s. Figure 9 shows an individual in the supine position and the setup
configuration for acquiring measurements with the developed system and a computer
where the data are stored and which has the GUI for its visualization.

Figure 9. Subject in supine position and configuration of the measurement acquisition system and a
computer with the data display interface.

3.2. Validation Results

During the medical evaluation, additional information was collected for each pa-
tient, including clinical variables such as body weight, time since diagnosis of diabetes,
and smoking habits, which may be related to the degree of PAD.

To facilitate the analysis of the results, Table 1 presents the data collected from the
22 subjects who participated in the validation study. The information is presented by sex
and includes the ABI obtained with the traditional method and with the system developed
in this work, together with data related to age, body weight and height.

In order to improve the visualization of the obtained ABI results, it is suggested to
generate a comparative graph of the results obtained with the two calculation methods.
This comparison is shown in Figure 10. The abscissa axis represents the 22 patients, and the
ordinate axis represents the difference between the ABI results obtained with the traditional
method and those obtained with the developed system. In order to evaluate the degree of
agreement between the two measurement methods, a range of ±0.1 difference is established
to determine the degree of accuracy and variability of the proposed system. In the graphs,
a horizontal line is included to delimit the defined difference range, which facilitates the
identification of the number of results within and outside the established tolerance interval.
The upper part of the figure represents the difference between the data obtained from the
right ABI, while the lower part shows the difference between the data obtained from the
left ABI.
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Table 1. Subject information and ABI measurement results using the traditional method and devel-
oped system.

Subject Sex Age Body Weight (Kg) Height (m) Traditional Method Developed System
Right ABI Left ABI Right ABI Left ABI

1

Female

77 76 1.535 1.03 1.12 1.083 1.137
2 61 59 1.53 1.18 1.20 1.132 1.104
3 46 93 1.64 1.10 1.13 1.018 1.118
4 56 93.5 1.63 1.35 1.23 1.071 1.099
5 52 46.5 1.465 1.14 1.14 1.079 1.014
6 66 75.3 1.48 1.11 1.11 1.107 1.021
7 74 60.5 1.55 1.21 1.26 1.199 1.166
8 79 75.2 1.49 1.17 1.05 1.081 1.245
9 64 70 1.535 1.18 1.12 0.960 1.204

10

Male

54 87 1.64 1.02 1.01 0.932 0.974
11 73 71 1.63 >1.30 >1.30 1.309 1.348
12 47 83.1 1.875 1.19 1.19 0.931 0.909
13 49 79 1.79 1.18 1.20 1.066 1.005
14 86 72 1.65 1.20 1.32 1.110 1.099
15 75 96.5 1.64 1.08 1.23 0.918 1.000
16 67 57.8 1.78 1.26 1.21 1.348 1.326
17 64 108.7 1.71 1.07 1.14 1.134 1.061
18 48 66 1.73 1.09 1.15 1.063 1.207
19 55 79.3 1.68 1.16 1.26 1.079 1.112
20 66 91 1.695 1.00 0.89 1.078 0.896
21 83 93.5 1.61 1.30 1.30 1.064 1.136
22 73 53.5 1.66 1.21 1.27 1.155 1.246

Figure 10. Comparison of right and left ABI measurements obtained with the traditional method and
with the system developed in this work.

According to the validation results presented in Table 1 and Figure 10, a total of 17 right
ABI measurements obtained from the subjects were found to be within the established
tolerance interval, representing 77.3% of the total. With respect to the left ABI results,
12 measurements were found to be within the concordance interval of ±0.1, representing
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54.54% of the total subjects. Overall, when considering measurements from both sides of
the body, a total of 29 measurements, representing 65.9% of subjects, were found to be
within the established precision interval.

In terms of sex, the results show that for female subjects, 77.78% of the ABI measure-
ments on the right side had a difference of less than 0.1, while this percentage was 66.67%
on the left side. For male subjects, 76.92% of the ABI measurements on the right side had a
difference of less than 0.1 with respect to the standard, while this value was 46.15% on the
left side.

On the other hand, the Bland–Altman method [38] is a graphical tool that is widely
used to compare two measurement methods, allowing their accuracy to be evaluated
and providing a relevant clinical interpretation. This type of graph shows the difference
between the results obtained with the two methods compared with the mean of these
results [39]. The horizontal lines of the graph represent the mean of the differences and
the limits of agreement, which are defined as 1.96 times the standard deviation of the
mean difference. This range of agreement provides a frame of reference within which
most of the differences between measurements made with the two methods are expected
to be found. In this context, the application of this method is essential for evaluating
the reliability and appropriateness of the results obtained in this study, especially with
regard to the potential clinical application of the developed system. Figure 11 illustrates
the Bland–Altman graphical analysis for this study based on measurements performed on
both sides of the body. In this graph, the red lines represent the mean of the differences
between the methods, while the black lines indicate the limits of agreement.

Figure 11. Bland–Altman plot comparing the ABI obtained with the traditional method and the ABI
calculated with the developed system. The red lines represent the mean of the differences between the
methods, while the black lines indicate the limits of agreement, the blue dots represent the difference
between the results obtained with the two methods compared to the mean of these results.
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4. Discussion and Conclusions

This study presents a system consisting of two electronic devices that allow for the
simultaneous acquisition of ECG and PPG signals to calculate PWV and thus determine
the ABI value on each side of the body. The PPG signals are recorded from both hands
and feet. These devices are designed to be portable and non-invasive to ensure patient
comfort and ease of use in both clinical and home settings. The MAX86150 sensor was
selected for the design because of its high performance and accuracy in obtaining ECG and
PPG measurements. This sensor offers an advanced manufacturing design that ensures
efficient acquisition of the signal spectrum, which simplifies post-processing. For the signals,
an algorithm has been developed to identify the characteristic parameters related to the ECG
R-peak and the systolic amplitude of the PPG signal. This algorithm is divided into two
distinct stages: in the first stage, a high-pass filter is applied to remove any measurement
noise induced by the electrical signal; then, in the second stage, the wavelet transform
is used for signal reconstruction and noise removal. There are several signal processing
techniques that have proven effective in pattern recognition and arrhythmia identification
in electrocardiogram (ECG) signals. Among these techniques are the application of wavelet
transforms and machine learning methods [40,41]. In the context of this work, these
techniques could be used. However, the signal decomposition strategy and the application
of the wavelet transform ’sym4’ proved to be simple and robust enough for the analysis
of ECG signals. This second step was fundamental to validate the processing of different
lead signals obtained in the ECG as well as to evaluate the cases in which the pulses are
weak. Although the proposed system is designed for ambulatory and clinical use and
with patients at rest, it could be affected by possible interferences or movements of the
patient. Therefore, a signal processing approach divided into two sections has been chosen
to mitigate such problems.

This study proposes a set of three distances that describe the trajectory of blood
through the arteries to the fingers and toes. The goal is to achieve a mathematical opti-
mization that automatically estimates the arterial lengths as a function of each individual’s
height. The time and distance from the heart to the PPG measurement points are calculated
to obtain the corresponding PWV. In addition, the ABI is defined as the ratio of the PWV
obtained at the foot to the PWV obtained at the hand.

After highlighting some of the design features of the developed system, the results
of the experiments performed to validate the system at the medical level are discussed.
For this purpose, the results obtained are compared with those of the traditional clinical
procedure, which has been established as the gold standard for the diagnosis of PAD [6].
The results of the 22 patients who participated in the experiment are detailed in Table 1.
In addition, the graphs in Figure 10 are used to compare the concordance results obtained
for each patient. A variation interval between −0.1 and +0.1 was defined to analyze the
degree of agreement of each result. This interval is defined to evaluate the accuracy of
the developed system in comparison with the gold standard used. Because the intervals
defining the diagnosis are very sensitive values that can lead to misdiagnosis, it has been
considered that the results obtained with the proposed system, which present values
lower than 0.9 and higher than 1.3 with a variation of ±0.1 with respect to the traditional
procedure, are not considered dangerous, at least in this first medical validation study.

Figure 10 shows two graphs that illustrate the correlation of the errors between the
measurements obtained with the standard method and those obtained with the system
proposed in this work. The graphs differentiate the number of results that fall within the
acceptable evaluation range established in this research. Of the 44 results, 29 (66%) were
within this range. However, upon closer analysis of the results obtained with the proposed
system, it was observed that the mean absolute error (MAE) of the 44 measurements,
considering both sides of the body, was 0.1051. This value indicates a fit very close to 0.1,
which supports the results of previous studies that have already demonstrated the feasibility
of implementing PPG signals for ABI measurement at the clinical level [16]. Considering the
sex of the participants, 72.22% of the results obtained from female participants fell within
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the agreement interval of ±0.1. The MAE for the differences between the measurements was
0.0939, which is less than 0.1, indicating significant agreement between the measurements
using both methods. This initial study suggests that the system developed in this work
may help to improve the diagnosis of PAD in women. This is particularly relevant given
the observed increase in cases in recent years [42]. For the male participants, the results
show that 61.54% of the measurements fell within the range of agreement, with an inter-
measurement MAE of 0.1129. Although the mean variation of the measurements is slightly
above 0.1, increasing the sample size and improving the adaptation of the arterial lengths
would increase the sensitivity and accuracy of the developed system.

The results derived from the Bland–Altman graphical analysis, Figure 11, show that
for both the right and left ABI, the estimation errors of the results obtained with the
proposed system with respect to the standard measurements were distributed within the
95% confidence interval. In both cases, 21 out of 22 measurements were within this interval,
indicating satisfactory agreement. Furthermore, the Root Mean Square Error (RMSE) is
0.3396 for the right ABI agreement analysis and 0.2991 for the left ABI. This statistical
analysis highlights the consistency and accuracy of the proposed system in assessing
ABI compared to the standard method, which reinforces its clinical validity and potential
usefulness in healthcare settings. Regarding the atypical result observed in a subject outside
the confidence interval, it is important to note that his clinical history reveals complications
in his cardiac system that affect blood circulation through the arteries. Therefore, it is
important to perform an evaluation of a group of subjects with similar cardiac problems
to investigate and better understand how these conditions may affect the reliability of
the results. This further investigation will identify strategies to improve the accuracy
and interpretation of results in patients with cardiovascular complications, which will
strengthen the validity and usefulness of this study in a clinical context.

In the case of subject 11, it was not possible to obtain a quantitative value of the
patient’s arterial health during vascular exploration using the standard method. This
finding was associated with a high degree of arterial obstruction, suggesting the presence
of arterial calcification, a common condition in diabetic patients with chronic kidney
damage [43]. In this context, in these types of patients, the ABI value is expected to be
higher than 1.3, indicating arterial incompressibility in the lower extremities [44]. However,
the system developed in this work allowed for the determination of a quantitative value
of the subject’s arterial health status. The results showed a value greater than 1.3 on both
sides of the body, as shown in the results table. The ABI value reported by the standard
method was assumed to be >1.3. This finding suggests that the system may be useful in
evaluating patients with arterial obstruction and calcification.

It is worth noting that there are currently no medical validation studies in the scientific
literature that establish the relationship between PWV and ABI as investigated in this
study. The results demonstrate a high degree of agreement and accuracy, suggesting that
PWV may be clinically useful in improving the diagnostic process for PAD, particularly
in primary care settings. This finding is a notable improvement as it has the potential to
alleviate the difficulties associated with conventional vascular assessment methods. The
measurement of PWV, a non-invasive and simple technique, could reduce the time needed
to diagnose PAD, benefiting patients and healthcare providers alike.

Future research should aim to validate these findings in a larger and more diverse
population. In addition, the feasibility of integrating PWV measurement to determine ABI
into routine clinical practice should be evaluated.

On the other hand, the integration of artificial intelligence techniques to adapt the
model to the individual characteristics of each subject may be beneficial to improve the
accuracy in estimating the distances traveled by blood flow in the arteries. This strategy
could reduce discrepancies between model predictions and clinical data.
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25. Slapničar, G.; Mlakar, N.; Luštrek, M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural

network. Sensors 2019, 19, 3420. [CrossRef] [PubMed]
26. Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery,

C.M.; Mitchell, G.F.; et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific
statement from the American Heart Association. Hypertension 2015, 66, 698–722. [CrossRef] [PubMed]

27. Ghosh, S.; Banerjee, A.; Ray, N.; Wood, P.W.; Boulanger, P.; Padwal, R. Continuous blood pressure prediction from pulse transit
time using ECG and PPG signals. In Proceedings of the 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference
(HI-POCT), Cancun, Mexico, 9–11 November 2016; pp. 188–191.

28. Pulse Transit Time for Cuff-Less BP from ECG and PPG. Available online: https://www.hackster.io/protocentral/pulse-transit-
time-for-cuff-less-bp-from-ecg-and-ppg-06c229#team (accessed on 1 March 2024).

29. MAX86150. Available online: https://www.analog.com/en/products/max86150.html (accessed on 1 March 2024).
30. Teensy 4.0. Available online: https://www.pjrc.com/store/teensy40.html (accessed on 1 March 2024).
31. Golden, D.P.; Wolthuis, R.A.; Hoffler, G. A spectral analysis of the normal resting electrocardiogram. IEEE Trans. Biomed. Eng.

1973, 20, 366–372. [CrossRef] [PubMed]
32. Protocentral max86150 ppg and ecg ic Library. Available online: https://www.arduino.cc/reference/en/libraries/protocentral-

max86150-ppg-and-ecg-ic-library/ (accessed on 1 March 2024).
33. MATLAB. Available online: https://es.mathworks.com/products/matlab.html (accessed on 1 March 2024).
34. Wavelet Toolbox. Available online: https://es.mathworks.com/products/wavelet.html (accessed on 1 March 2024).
35. R Wave Detection in the ECG. Available online: https://es.mathworks.com/help/wavelet/ug/r-wave-detection-in-the-ecg.html

(accessed on 1 March 2024).
36. Wavelet Interval-Dependent Denoising. Available online: https://es.mathworks.com/help/wavelet/ug/wavelet-interval-

dependent-denoising.html (accessed on 1 March 2024).
37. App Designer. Available online: https://es.mathworks.com/products/matlab/app-designer.html (accessed on 1 March 2024).
38. Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986,

327, 307–310. [CrossRef]
39. Mansournia, M.A.; Waters, R.; Nazemipour, M.; Bland, M.; Altman, D.G. Bland-Altman methods for comparing methods of

measurement and response to criticisms. Glob. Epidemiol. 2021, 3, 100045. [CrossRef]
40. Subasi, A.; Dogan, S.; Tuncer, T. A novel automated tower graph based ECG signal classification method with hexadecimal local

adaptive binary pattern and deep learning. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 711–725. [CrossRef]
41. Tuncer, T.; Dogan, S.; Plawiak, P.; Subasi, A. A novel Discrete Wavelet-Concatenated Mesh Tree and ternary chess pattern based

ECG signal recognition method. Biomed. Signal Process. Control. 2022, 72, 103331. [CrossRef]
42. Patel, T.; Baydoun, H.; Patel, N.K.; Tripathi, B.; Nanavaty, S.; Savani, S.; Mojadidi, M.K.; Agarwal, N.; Patel, G.; Patel, S.; et al.

Peripheral arterial disease in women: The gender effect. Cardiovasc. Revascularization Med. 2020, 21, 404–408. [CrossRef]
43. Rocha-Singh, K.J.; Zeller, T.; Jaff, M.R. Peripheral arterial calcification: Prevalence, mechanism, detection, and clinical implications.

Catheter. Cardiovasc. Interv. 2014, 83, E212–E220. [CrossRef] [PubMed]
44. del Rincon, I.; Haas, R.W.; Pogosian, S.; Escalante, A. Lower limb arterial incompressibility and obstruction in rheumatoid

arthritis. Ann. Rheum. Dis. 2005, 64, 425–432. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/app10062137
http://dx.doi.org/10.3390/s19245543
http://www.ncbi.nlm.nih.gov/pubmed/31847474
http://dx.doi.org/10.1291/hypres.26.615
http://dx.doi.org/10.1080/08037051.2019.1598254
http://dx.doi.org/10.1136/jim-2017-000638
http://dx.doi.org/10.1155/2019/9421352
http://dx.doi.org/10.2344/0003-3006(2006)53[53:FOEI]2.0.CO;2
http://dx.doi.org/10.3390/s19153420
http://www.ncbi.nlm.nih.gov/pubmed/31382703
http://dx.doi.org/10.1161/HYP.0000000000000033
http://www.ncbi.nlm.nih.gov/pubmed/26160955
https://www.hackster.io/protocentral/pulse-transit-time-for-cuff-less-bp-from-ecg-and-ppg-06c229#team
https://www.hackster.io/protocentral/pulse-transit-time-for-cuff-less-bp-from-ecg-and-ppg-06c229#team
https://www.analog.com/en/products/max86150.html
https://www.pjrc.com/store/teensy40.html
http://dx.doi.org/10.1109/TBME.1973.324231
http://www.ncbi.nlm.nih.gov/pubmed/4727424
https://www.arduino.cc/reference/en/libraries/protocentral-max86150-ppg-and-ecg-ic-library/
https://www.arduino.cc/reference/en/libraries/protocentral-max86150-ppg-and-ecg-ic-library/
https://es.mathworks.com/products/matlab.html
https://es.mathworks.com/products/wavelet.html
https://es.mathworks.com/help/wavelet/ug/r-wave-detection-in-the-ecg.html
https://es.mathworks.com/help/wavelet/ug/wavelet-interval-dependent-denoising.html
https://es.mathworks.com/help/wavelet/ug/wavelet-interval-dependent-denoising.html
https://es.mathworks.com/products/matlab/app-designer.html
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.1016/j.gloepi.2020.100045
http://dx.doi.org/10.1007/s12652-021-03324-4
http://dx.doi.org/10.1016/j.bspc.2021.103331
http://dx.doi.org/10.1016/j.carrev.2019.05.026
http://dx.doi.org/10.1002/ccd.25387
http://www.ncbi.nlm.nih.gov/pubmed/24402839
http://dx.doi.org/10.1136/ard.2003.018671
http://www.ncbi.nlm.nih.gov/pubmed/15271772


Biosensors 2024, 14, 251 19 of 19

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Materials and Methods 
	Physiological Signals and Biomedical Parameters
	Electrocardiogram (ECG)
	Photoplethysmography (PPG)
	Pulse Wave Velocity (PWV)

	Measuring Devices
	MAX86150
	Teensy 4.0 Board
	Signal Acquisition

	Signal Processing
	HRV and PTT Calculation
	Pulse Wave Velocity
	Arterial Length
	PWV Calculation

	ABI Calculation

	Results
	System Validation
	ABI Measurement by Vascular Exploration
	ABI Measurement Using the Developed System

	Validation Results

	Discussion and Conclusions
	References

