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Abstract: In this study, we synthesized a transition metal sulfide (TMS) with a spinel structure,
i.e., MnIn2S4 (MIS), using a two-step hydrothermal and sintering process. In the context of lithium-
ion battery (LIB) applications, ternary TMSs are being considered as interesting options for anode
materials. This consideration arises from their notable attributes, including high theoretical capacity,
excellent cycle stability, and cost-effectiveness. However, dramatic volume changes result in the
electrochemical performance being severely limited, so we introduced single-walled carbon nanotubes
(SWCNTs) and prepared an MIS/SWCNT composite to enhance the structural stability and electronic
conductivity. The synthesized MIS/SWCNT composite exhibits better cycle performance than bare
MIS. Undergoing 100 cycles, MIS only yields a reversible capacity of 117 mAh/g at 0.1 A/g. However,
the MIS/SWCNT composite exhibits a reversible capacity as high as 536 mAh/g after 100 cycles.
Moreover, the MIS/SWCNT composite shows a better rate capability. The current density increases
with cycling, and the SWCNT composite exhibits high reversible capacities of 232 and 102 mAh/g at
2 A/g and 5 A/g, respectively. Under the same conditions, pristine MIS can only deliver reversible
capacities of 21 and 4 mAh/g. The results indicate that MIS/SWCNT composites are promising
anode materials for LIBs.

Keywords: lithium-ion battery; transition metal sulfides; MnIn2S4; single-walled carbon nanotubes;
anode

1. Introduction

Rapid technological breakthroughs have increased the demand for energy storage
devices with a high energy density and quick charging and discharging capabilities. Among
these, LIBs have garnered the most attention because of their elevated energy density,
sustained operating voltage, and extended cycle lifespan [1,2]. Currently, the anode material
commonly used in commercial LIBs is graphite [3,4]. However, its low theoretical capacity
and power density restrict its usage in several applications. Therefore, it is imperative
to find an alternative to graphite. LIBs can be classified into three categories of anode
materials according to their ion storage mechanisms: intercalation materials, conversion
materials, and alloy materials. Notably, conversion materials, predominantly comprising
transition metal compounds, have emerged as a research focus in recent times. Transition
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metal oxides (TMOs) are less expensive and more accessible than graphite. However, they
still encounter issues such as significant volume expansion and poor conductivity.

Many researchers have turned their focus to TMSs, with the spinel structure proving
particularly attractive. Numerous binary TMSs, including CoS2 [5], CuS [6], In2S3 [7],
MoS2 [8], and ZnS [9], have been proposed as suitable LIB anode materials. However, com-
pared to binary TMSs, with AB2S4, ternary TMSs (A and B are both transition metals, but
they are not the same element; the valence of A is +2, and for B it is +3) exhibited superior
electronic conductivity and redox activity, resulting in better capacity performance [10]. In
recent years, ternary TMSs such as MnCo2S4 [11], NiCo2S4 [12–15], and CuCo2S4 [16–18]
have received significant attention. Kim et al. developed NiTi2S4 and TiS2 as anode ma-
terials for LIBs. In their study, NiTi2S4 electrodes had higher reversible capacities of 820,
759, 700, 651, and 570 mAh/g at current densities of 100, 200, 500, 1000, and 2000 mA/g.
Conversely, as the current density increased, the specific capacities of the TiS2 (588, 258, 116,
47, and 15 mAh/g) electrodes rapidly dropped [19]. To this end, many researchers have
explored the use of carbon-based composites, such as carbon nanotubes (CNTs) [10,20–22],
graphene composites [23–28], carbon nanofibers (CNFs) [7,29], and carbon black [30] to
mitigate the structural damage brought on by volume expansion and enhance the con-
ductivity of ternary TMSs. Lin et al. proposed a NiCo2S4/CNT nanocomposite using a
rapid and straightforward hydrothermal process. NiCo2S4/CNT demonstrated signifi-
cant reversible capacities of 1388, 1257, 1194, 1172, and 1022 mAh/g with corresponding
current densities of 0.2, 0.5, 0.8, 1, and 2 C. Notably, upon returning to a current density
of 0.2 C, NiCo2S4/CNT maintained a high capacity of 1208 mAh/g [31]. Muralidharan
and Nallathamby reported CuCo2S4/multi-walled carbon nanotube (MWCNT) nanopar-
ticles synthesized through a two-step solvothermal and sintering method. The internal
resistance values of 35 Ω and 194 Ω of the CuCo2S4 anode were found to reduce to 15 Ω
and 79 Ω in the composite, respectively [32]. This suggests that incorporating MWCNTs
can significantly enhance the transfer of interface electrons in the material. The reversible
capacities of the CuCo2S4/MWCNT electrode were 1374, 1270, 1094, 920, and 735 mAh/g
for current densities of 50, 100, 200, 500, and 1000 mA/g, respectively. Remarkably, af-
ter reverting to a current density of 100 mA/g, CuCo2S4/MWCNTs illustrated a high
reversible capacity of 1207 mAh/g. The incorporation of CNTs into anode materials has
been proven to be effective in alleviating the significant structure expansion that occurs
during charge and discharge cycles. CNT additives enhance the cycle stability and bolster
the electronic conductivity. Manganese can be used as a low-cost additive, and studies have
also been published on indium-related sulfides [23,29]. However, indium is considered
a relatively rare and expensive metal because of its limited reserves, high demand with
respect to electronics, and recycling challenges. The future price of indium might depend
on various factors, including changes in supply and demand, technological developments,
and exploration of new sources. While predicting specific outcomes is challenging, there
are some potential outcomes that could contribute to a reduction in the price of indium.
Thus, it is necessary to study the electrochemical behavior of MIS/SWCNT composites as
an anode for LIBs.

In this study, we used a two-step hydrothermal and sintering approach to synthesize
pristine MIS and an MIS/SWCNT composite. The crystal structure, surface morphology,
elemental distribution, specific surface area, pore size distribution, charge distribution,
and carbon content were evaluated using a range of techniques. These included X-ray
diffraction (XRD) for crystal structure analysis, scanning electron microscopy (SEM) for sur-
face morphology observation, high-resolution transmission electron microscopy (HRTEM)
for detailed imaging, energy-dispersive X-ray spectroscopy (EDX) for elemental distribu-
tion analysis, the Brunauer–Emmett–Teller method (BET) for assessing surface area, X-ray
photoelectron spectroscopy (XPS) for surface chemical composition analysis, and thermo-
gravimetric analysis (TGA) for studying carbon content changes. Finally, we assembled
half cells and investigated their electrochemical storage performance and electrochemical
behavior. The MIS modified by SWCNTs showed a good rate performance and excellent cy-
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cle stability, and its electrochemical performance was also significantly improved compared
to pristine MIS.

2. Materials and Methods
2.1. Synthesis of Pristine MIS and MIS/SWCNT Composites

The MIS/SWCNT composite was synthesized via a two-step hydrothermal sintering
method. Typically, 1 wt.% of SWCNTs (Sino Applied Technology, Taoyuan, Taiwan) was
dispersed in 50 mL of deionized (DI) water for a duration of 30 min. Following this,
a solution containing 1 mmol of manganese nitrate tetrahydrate (Mn(NO3)2·4H2O, 98%
purity, Alfa-Aesar, Ward Hill, MA, USA), 2 mmol of indium nitrate (In(NO3)3, 99.99% purity,
Alfa-Aesar), 8 mmol of thioacetamide (CH3CSNH2, 99% purity, Alfa-Aesar), and 15 mmol
of urea (CH4N2O, 99% purity, Sigma-Aldrich, St. Louis, MO, USA) was introduced into
the aforementioned dispersion. Subsequently, the mixture underwent vigorous stirring
for a duration of two hours, ensuring its uniformity. After being put into a 100 mL Teflon-
lined stainless-steel autoclave, the homogenous solution was allowed to react for 24 h at
180 ◦C. Subsequently, the autoclave was left to cool naturally to ambient temperature. Next,
the obtained powder was collected via high-speed centrifugation and extensively rinsed
multiple times with DI water and ethanol. Eventually, the powder was dried for 12 h in a
vacuum oven set to 60 ◦C. Subsequently, the powder underwent an additional annealing
process, being heated to 350 ◦C at a rate of 5 ◦C per minute for a duration of 2 h in an
argon environment. The aim of this step was to enhance crystallinity and generate the
MIS/SWCNT composite. In contrast, the creation of pristine MIS involved a comparable
process but the addition of SWCNTs was skipped. A flowchart of MIS/SWCNT composite
creation is shown in Scheme 1.
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Scheme 1. Schematic illustration of the preparation process of MIS/SWCNT composites.

2.2. Characterizations

The crystal structure and phase purity of synthesized samples were analyzed using an
X-ray diffractometer (Bruker, D2-Phaser, Billerica, MA, USA) with Cu-Kα radiation at a
scan rate of 5◦/min and a scanning angle range from 10◦ to 80◦. The surface morphology of
the samples was examined using a field-emission scanning electron microscope (JEOL JSM-
7600F, Zhubei City, Taiwan) and a high-resolution transmission electron microscope (JEOL
JEM2100). The specific surface area and pore size distribution were determined via the
BET method by employing a Micromeritics Tristar 3000 (Norcross, GA, USA). Additionally,
the valence state of compounds was examined using an X-ray photoelectron spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA), which uses X-rays as the detection source.

2.3. Electrochemical Measurements

The active materials (MIS or MIS/SWCNTs), conductive additive (Super-P carbon,
Timcal®, Shanghai, China), and organic-based binder polyvinylidene were dissolved in N-
methylpyrrolidone at a weight ratio of 8:1:1. Subsequently, the resulting slurry was applied
to a copper foil to create the working electrode. Next, the electrodes were introduced into
a vacuum oven set at 120 ◦C for a duration of 9 h. Then, a CR2032 coin-type half-cell
was built in a glove box filled with argon. The LIB electrolyte utilized in the experiment
consisted of a 1 M LiPF6 solution diluted at a weight ratio of 1:1:1 with a combination of
ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate. The potential range
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of the coin-type half-cell (CR2032) during charging and discharging under various current
densities is 0.01~3 V. Furthermore, the frequency range of the electrochemical impedance
spectrum AC impedance setting is 10 mHz to 1 MHz.

3. Results and Discussion

The XRD patterns of pristine MIS and MIS/SWCNT composites are illustrated in
Figure 1a. All of the diffraction peaks match the ICSD standard pattern (ICSD-639973).
The results indicate that both MIS and the MIS/SWCNT composite were pure. Table S1
displays the grain size of pristine MIS and the as-synthesized MIS/SWCNT composite
calculated using the Scherrer equation. Compared with pristine MIS, it can be observed that
the grain size of the MIS/SWCNT composite has obviously decreased, which also means
that the use of SWCNTs for modification will inhibit the agglomeration and nucleation
of MIS. The crystal structure of MIS is illustrated in Figure 1b. MIS has a face-centered
cubic spinel structure with an Fd3m space group, in which Mn2+ occupies tetrahedron 8a
sites, In3+ occupies octahedron 16d sites, and S2− occupies tetrahedron 32e sites, forming a
corner-sharing tetrahedral network.
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In order to analyze the surface morphology and structure of MIS, the MIS/SWCNT
composite, and SWCNTs, field-emission scanning electron microscopy (FE-SEM) was used.
The SEM image of unmodified MIS is depicted in Figure 2a. The SEM results indicate
that pristine MIS has irregular aggregate particles that are around 1–2 mm in size. By
comparison, as illustrated in Figure 2b, MIS/SWCNT composite particles exhibit a small
tubular structure on the surface. The SEM image of SWCNTs is displayed in Figure 2c.
These results demonstrate that MIS is successfully wrapped by the SWCNTs. The EDX
mapping of pristine MIS is presented in Figure 2d. The molar concentrations of Mn, In, and
S in MIS were determined to be 11, 59, and 30%, respectively.

To confirm the carbon content of the MIS/SWCNT composite, we conducted a thermo-
gravimetric analysis with a heating rate of 10 ◦C per minute from ambient temperature to
800 ◦C in an air atmosphere. As displayed in Figure S1, between 35 ◦C and 180 ◦C, MIS and
the MIS/SWCNT composite showed a slight weight loss that was caused by evaporation
of the water in the sample [7]. Upon reaching a temperature of 350 ◦C, a slight increase
in weight was observed. This phenomenon can be attributed to the oxidation of sulfides,
leading to the formation of metal oxides [33]. With the temperature was elevated to 550 ◦C,
a gradual decrease in weight was observed. This phenomenon can be attributed to the
decomposition of metal oxides present in the sample [34]. This trend continued until ap-
proximately 750 ◦C. Compared to the TGA curves of pristine MIS, it can be concluded that
the carbon content of the MIS/SWCNT composite was about 10.07 wt.%. It was speculated
that, during the centrifugation process, a small amount of metal MIS was still dissolved in



Nanomaterials 2024, 14, 716 5 of 15

the DI water and ethanol and was not precipitated, which caused a discrepancy between
the amount of SWCNTs added and the actual loading amount.
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Further insight into the intricate nanostructure of both the pristine MIS and the
MIS/SWCNT composite was gained through transmission electron microscopy (TEM)
analysis. Figure 3a illustrates the agglomerated particles of MIS, with an average particle
size measuring around 1–2 µm. The MIS HRTEM image and the accompanying selected-
area electron diffraction (SAED) pattern are displayed in Figure 3b. The analysis shows that
lattice spacings of 0.189 nm and 0.204 nm correspond to the (440) and (333) crystallographic
planes, respectively. The SAED pattern displayed in Figure 3b also confirms that MIS has
a polycrystalline nature. The TEM images of the MIS/SWCNT composite are shown in
Figure 3c,d. It can be observed that some SWCNTs exist on the MIS surface. In order to see
the tubular structure of SWCNTs more clearly, Figure S2 demonstrates the HRTEM image
of SWCNTs. And the diameter of SWCNTs was observed ~10 nm. The HRTEM images
and SAED patterns of the MIS/SWCNT composite are displayed in Figure 3e. The (311),
(400), (511), and (620) planes for the different rings are similar to the SAED pattern that
was obtained for the MIS/SWCNT composite. The EDX elemental mapping from the TEM
image of the MIS/SWCNT composite is shown in Figure 3f. Mn, In, S, and C are uniformly
distributed throughout the sample, which is consistent with the SEM-EDX mapping results
in Figure 2d.

The nitrogen adsorption/desorption isotherms and pore size distributions for the
virgin MIS and the MIS/SWCNT composite are presented in Figure 4a–d. Both samples
exhibited type-IV curves with hysteresis loops, indicating that the material had a meso-
porous structure. The specific surface area curves of pure MIS and the MIS/SWCNT
composite are shown in Figure 4a,c. The pore size distributions of pristine MIS and the
MIS/SWCNT composite determined via the Barrett–Joyner–Halenda model are depicted in
Figure 4b,d. The specific surface areas of the pristine MIS and the MIS/SWCNT composite
were 50.16 m2/g and 39.77 m2/g, respectively. The average pore diameters of MIS and
the MIS/SWCNT composite were 9.00 nm and 10.67 nm, respectively. The surface area
was drastically reduced after compositing with SWCNTs, but the average pore size rose
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noticeably. This could be attributed to the fact that SWCNTs cover the smaller micropores
on MIS, resulting in a reduced contact area with nitrogen [23,35].
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Figure 4. N2 adsorption–desorption isotherms and pore size distributions of as-synthesized MIS
(a,b) and the MIS/SWCNT composite (c,d), respectively.

XPS was used to analyze the MIS/SWCNT composites’ elemental make-up and chem-
ical bonding states. The XPS spectrum for the MIS/SWCNT composite is depicted in
Figure S3. This spectrum confirms the presence of elements such as Mn, In, S, and C, which
correlate with the elemental distribution observed in the EDX mapping spectrum shown
in Figure 3f. The two deconvoluted peaks in Figure 5a may be attributed to the contribu-
tions of Mn 2p3/2 and Mn 2p1/2, and are present at 641.8 eV and 653.2 eV, respectively.
Furthermore, the satellite peak at 645.4 eV is a result of the multiple splitting of Mn ion
energy levels. Two peaks at 444.9 eV and 452.5 eV, which represent the In 3d5/2 and In
3d3/2 states, respectively, can also be seen in the In 3d spectrum in Figure 5b. These results
are in accordance with the three valence states of In in MIS. The spectrum of the S 2p region
is displayed in Figure 5c. This spectrum can be separated into three main peaks. The
peaks observed at roughly 161.5 eV and 162.7 eV can be attributed to S 2p3/2 and S 2p1/2,
respectively, whereas the peak at 162.6 eV can be attributed to a metal–sulfur (M-S, M=Mn
or In) bond. The deconvoluted C 1s spectra, as shown in Figure 5d, have two primary
peaks located at around 284.9 eV and 286.0 eV, which were assigned to C=C/C-C and
C-S, respectively.
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Figure 5. High-resolution XPS survey spectra of (a) Mn 2p, (b) In 3d, (c) S 2p, and (d) C 1s for the
MIS/SWCNT composite.

To determine the electrochemical reactions occurring during the charge and discharge
process of the MIS and MIS/SWCNT anode electrodes, we conducted cyclic voltammetry
(CV) measurements. Figure 6a,b show the CV curves of MIS and MIS/SWCNT composite
during the first three cycles, with a scan rate of 0.1 mV/s, in the potential range 0.01–3.0 V.
During the initial cycle, the reduction peaks observed in the voltage range of 1.3–1.6 V
were attributed to the conversion of MIS into MnS [36]. This reduction resulted in cathodic
peaks of 0.92 V and 0.26 V due to the formation of in-metallic and stable solid electrolyte
interphase (SEI) layers on the MIS electrode [7]. The anodic peak at 0.41 V in the subse-
quent cycles illustrates the process of reducing MnS to metallic Mn [37]. The potential
peak observed at 0–0.1 V is indicative of the insertion/intercalation of Li+ ions into the
carbon structure of the electrode [38]. The oxidation peaks detected at 0.43 V and 0.68 V are
attributed to the Mn-alloy delithiation process, whereas the anodic peak at 1.14 V indicates
LixIn delithiation [7,26]. The peaks in the 1.4–2.4 V potential range are related to the pro-
duction of Mn-sulfide and In-sulfide molecules [33]. The SWCNT-modified MIS electrode
exhibited similar redox peaks to pristine MIS. Additionally, MIS/SWCNT composite exhib-
ited better overlapping than pristine MIS. This also means that the MIS/SWCNT electrode
demonstrated excellent electrochemical performance. Based on the CV test results, the
electrochemical reaction process of MIS was determined as follows:

MnIn2S4 + 6Li+ + 6e− → MnS + 2In + 3Li2S (1)

MnS + 2Li+ + 2e− ↔ Mn + Li2S (2)
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In + xLi+ + xe− ↔ LixIn (3)

or
MnIn2S4 + 8Li+ + 8e− → Mn + 2In + 4Li2S (4)

Mn + xLi+ + xe− ↔ LixMn (5)

In + xLi+ + xe− ↔ LixIn (6)
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Figure 6. CV curves of (a) MIS and (b) the MIS/SWCNT composite at a scan rate of 0.1 mVs−1; (c) MIS
and (d) MIS/SWCNT composite charging and discharging at a 0.1 A/g current density.

Figure 6c,d display pristine MIS and MIS/SWCNT electrode galvanostatic discharge–
charge curves at 0.1 A/g for the first three cycles, with a potential window of 0.01–3.0 V. It
was found that, during the first cycle, pristine MIS had an initial Coulombic efficiency of
51.1% with discharge and charge capacities of 1314 mAh/g and 671 mAh/g, respectively.
A more irreversible capacity loss was brought on by the formation of SEI layers on the
electrode surface and the suppression of Li+ insertion [11]. Subsequently, during the sec-
ond/third cycles, the discharge and charge capacities were 722/542 and 527/444 mAh/g
with Coulombic efficiencies of 70.2% and 84.3%, respectively. At the same current density,
the initial discharge and charge capacities for MIS/SWCNT electrodes were 1249 mAh/g
and 771 mAh/g, respectively, with a primary Coulombic efficiency of 61.7%. The re-
versible capacities for the second and third cycles were 780/702 and 717/675 mAh/g, with
improvements in the Coulombic efficiencies of 90.0% and 94.1%, respectively. Addition-
ally, when compared to pristine MIS, the galvanostatic charge–discharge curves of the
MIS/SWCNT composite display a substantial overlap. This overlapping suggests that the
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synthesized MIS/SWCNT composite possesses excellent stability throughout the charge
and discharge processes.

Figure 7a displays the rate capability of pure MIS and the MIS/SWCNT composite at
various current densities. The pristine MIS discharge capacities were 525, 260, 133, 66, 21,
and 4 mAh/g at current densities of 0.1, 0.2, 0.5, 1, 2, and 5 A/g, respectively. An average
reversible capacity of only 234 mAh/g was attained when the current density reverted
to 0.1 A/g. Conversely, the synthesized MIS/SWCNT composite demonstrated superior
reversible capacities of 706, 532, 413, 324, 232, and 102 mAh/g in comparison to those of
the bare MIS at the same current densities. Even with a reduced current density of 0.1 A/g,
the MIS/SWCNT composite maintained a higher capacity of 523 mAh/g. The cycling
performance of pristine MIS and MIS/SWCNT composite is illustrated in Figure 7b. A
reversible capacity of only 117 mAh/g was maintained by pristine MIS after 100 cycles
with a 0.2 A/g current density. Its capacity decayed rapidly over these cycles. In contrast,
the MIS/SWCNT composite retained a high reversible capacity of 536 mAh/g at a current
density of 0.2 A/g. Figure 7c–f depicts the corresponding galvanostatic discharge–charge
curves for pristine MIS and the MIS/SWCNT composite for different current densities and
cycles. The results reveal that SWCNT-modified MIS demonstrates enhanced overlapping
behavior, contributing to improved battery stability and capacity performance. This obser-
vation indirectly substantiates the efficacy of utilizing SWCNTs as a means of enhancing
anode materials.
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Figure 7. (a) Rate capacity of MIS and the MIS/SWCNT composite; (b) cyclic performance of MIS
and the MIS/SWCNT composite at a current density of 0.2 A/g; (c,d) charge–discharge profiles at
different current densities for MIS and the MIS/SWCNT composite; (e,f) charge–discharge profiles
with different cycles in a 100-cycle life test for MIS and the MIS/SWCNT composite.

To explore the conductivity and kinetic characteristics of pristine MIS and MIS/SWCNT
composite, electrochemical impedance spectroscopy (EIS) plots were employed. Figure 8a
illustrates the EIS plots for the initial MIS and the MIS/SWCNT composite after 2.5 cycles.
The equivalent circuit diagram is shown in the inner figure in Figure 8a. The fitted data
and calculated diffusion coefficients are shown in Table S2. In the area of intermediate
frequency, RCT denotes the charge transfer resistance, RSEI denotes the resistance of the SEI
film, and RS denotes the electrolyte resistance at the highest frequency. The slope of the line
at low frequencies indicates the substance’s diffusion coefficient. As shown in Figure 8a
and Table S2, the MIS/SWCNT electrode illustrated two smaller semicircles compared
to pristine MIS. These results indicate that the resistance of the MIS/SWCNT composite
was significantly lower than that of pristine MIS. The linear connection between Z’ and
ω−1/2 in the low-frequency domain is shown in Figure 8b. The formula below was used to
calculate the diffusion coefficient of lithium ions (DLi+).

D =
R2T2

2A2n2F4C2σ2 (7)
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Figure 8. (a) EIS of MIS and the MIS/SWCNT composite; (b) low-frequency relationship between Z’
and ω1/2 of pristine MIS and the MIS/SWCNT composite.

In Equation (7), the variables represent the following: R signifies the ideal gas constant,
T stands for the ambient temperature, A denotes the electrode contact area, n signifies
the number of electrons engaged during this reaction, F represents the Faraday constant,
C denotes the concentration of Li+, and σ symbolizes the slope obtained from the fitted
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diffusion coefficient line. Based on Equation (7), the diffusion coefficient of MIS/SWCNT
composite was measured to be 1.7 × 10−13 cm2/s, which is higher than the value of
1.7 × 10−14 cm2/s observed for pristine MIS. These EIS results suggest that modification
with SWCNTs can indeed enhance the electrical conductivity, consequently leading to
improved electrochemical performance.

To investigate the structural and morphological alterations that these materials un-
dergo during the charging and discharging processes, we observed the SEM images of pris-
tine MIS and MIS/SWCNT electrodes after 100 cycles, which are displayed in Figure 9a–d.
Initially, there is no obvious difference between the MIS/SWCNT composite and pristine
MIS before charging and discharging. However, after 100 cycles, it is apparent that there
are numerous cracks and pores on the pristine MIS electrode, and there is obvious aggre-
gation. Conversely, the MIS/SWCNT electrode is protected by SWCNTs, which inhibits
the dramatic volume expansion and contraction resulting from lithium ion insertion and
deintercalation. As a result, the morphology of the MIS/SWCNT electrode is maintained,
without any fractures or damage. Via the introduction of SWCNTs into MIS, not only
is the volume expansion of MIS buffered, but the electronic conductivity of the MIS an-
ode is significantly enhanced, which further improves its electrochemical performance.
Figure S4 and Table S3 further compare the rate performance and cycle life of MIS/SWCNT
composite and other reported TMS anode materials for LIBs [7,25,29,39–41]. Overall, the
MIS/SWCNT composite exhibits better electrochemical performance than other TMSs.
SWCNTs play a crucial role in providing good protection to the electrode’s structure, which
helps prevent crack formation and aggregation. Additionally, SWCNTs improve the elec-
tronic conductivity of MIS during the process of Li+ insertion and extraction, resulting in
an overall improvement in battery performance. Due to these synergistic effects, SWCNTs
are recognized as a valuable component for the modification of anode materials, improving
the performance and stability of LIBs.
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4. Conclusions

As a result of hydrothermal synthesis and high-temperature sintering, a transition
metal sulfide with a unique spinel structure (MnIn2S4) was effectively synthesized. To
solve the problems of volume expansion and agglomeration, we introduced SWCNTs into
MIS during the hydrothermal process. The rate capability results show that, at a current
density of 0.1 A/g, the MIS/SWCNT composite initially had a high reversible capacity of
706 mAh/g. Even when the current density was increased to 5 A/g, the capacity remained
at 102 mAh/g. Furthermore, the MIS/SWCNT composite maintained a specific capacity
of 536 mAh/g even after undergoing 100 cycles with a current density of 0.2 A/g. In
the EIS tests, it was found that the semicircle of the SWCNT-modified MIS was smaller
than that of pristine MIS, and the diffusion coefficient was also significantly improved.
The results obtained from the experiments clearly demonstrate that utilizing SWCNTs to
modify MIS is a potential approach to improving the lithium storage performance and
overall electrochemical performance. The enhanced stability, structural integrity, and
improved conductivity of the MIS/SWCNT electrode contribute to better cycling stability
and capacity retention during repeated charging and discharging cycles. The success of the
MIS/SWCNT composite in these experiments suggests that it holds considerable potential
for practical application in LIBs. The use of MIS/SWCNT electrodes is a promising avenue
by which to enhance the energy storage capacity and efficiency of LIBs. This advancement
holds the potential to contribute to the creation of more reliable and high-performance
energy storage devices due to the heightened performance and stability MIS/SWCNT
electrodes offer.
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