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Abstract: Community detection is a widely studied topic in network structure analysis. We propose
a community detection method based on the search for the local maxima of an objective function.
This objective function reflects the quality of candidate communities in the network structure. The
objective function can be constructed from a probability matrix that describes interactions in a
network. Different models, such as network structure models and network flow models, can be used
to build the probability matrix, and it acts as a link between network models and community detection
models. In our influence-spreading model, the probability matrix is called an influence-spreading
matrix, which describes the directed influence between all pairs of nodes in the network. By using the
local maxima of an objective function, our method can standardise and help in comparing different
definitions and approaches of community detection. Our proposed approach can detect overlapping
and hierarchical communities and their building blocks within a network. To compare different
structures in the network, we define a cohesion measure. The objective function can be expressed as a
sum of these cohesion measures. We also discuss the probability of community formation to analyse
a different aspect of group behaviour in a network. It is essential to recognise that this concept is
separate from the notion of community cohesion, which emphasises the need for varying objective
functions in different applications. Furthermore, we demonstrate that normalising objective functions
by the size of detected communities can alter their rankings.

Keywords: community detection; building block; influence-spreading matrix; quality function; social
network; complex network; cohesion of network; computational social science

1. Introduction

Community detection has been one of the primary applications of network science [1].
In a network, a community is a group of nodes that are more likely to be connected if
they share common characteristics. In the social context, individuals in a community tend
to interact more with each other than with people outside the community. Community
detection is used not only in social network analysis but also in other areas of complex
network analysis, such as computer, information, and biological networks. Community
detection methods have been applied to analyse functional groups in various areas of
biology. For instance, functional groups in metabolic networks correspond to biochemical
reaction cycles or pathways. In a protein–protein interaction network, communities indicate
groups of proteins that exhibit similar functionality within a biological cell [2,3].

Numerous methods and algorithms have been proposed for community detection.
Most of these methods rely on the notion that nodes within a community are more strongly
connected than between nodes in other communities [4,5]. However, this definition is not
specific, which results in many computational approaches being available. The definition of
what constitutes a community is not well posed, making community detection a challenging
task [1].
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Some of the earliest algorithms for dividing a network into communities include the
minimum-cut method, the Girvan–Newman method, hierarchical clustering, and modular-
ity maximisation. In the minimum-cut method, the network is divided into a predetermined
number of groups selected to minimise the number of edges between groups. The Girvan–
Newman algorithm identifies links in a network that connect communities based on a
betweenness measure and removes them, leaving only the communities themselves [6].
Hierarchical clustering methods group similar objects into clusters and build a cluster hier-
archy. Modularity is often used in community detection methods to measure the strength
of a network’s division into communities [7–9]. By comparing the number of links within
communities to what is expected by chance, modularity allows us to identify significant
community structures [2,3].

When modelling network structures [10], it is important to describe the network’s
topology in terms of nodes and the connections between them. These connections
can be represented as directed links between neighbouring nodes, and they have
weights [8,11] that indicate their ability to convey information or influence. When
modelling the spread of information or influence, we also have to consider network
flow models. These models describe the rules by which information or influence
propagates from one node to another throughout the network [12–14]. In this study,
we are particularly interested in non-conserved network processes, where the spread
from one node continues to all adjacent nodes. In conserving flows, paths cannot be
divided, whereas non-conserving flows allow propagation through multiple paths
simultaneously. The relevant literature on network flow models and message passing
on complex networks includes works such as [13,15].

We have developed a method to detect non-overlapping and overlapping communities
in a network using a probability matrix and local maxima of a quality function (objective
function). Our approach enables us to treat the exploration of network models and com-
munity detection models as distinct tasks. In our study, we model network flow using
an influence-spreading model and define a community cohesion measure as the quality
function. We consider communities as divisions of the network where the quality function
has a local maximum.

We have designed a technique to identify groups of nodes that tend to belong to the
same community frequently, based on a detailed network structure of nodes and links
between them. Although some of these groups may be considered distinct communities
according to our definition, not all of them are entirely self-contained communities. We
use the term "building block" to describe such groups [16], as a similar concept has been
used in the literature [17]. We define a community as a local maximum solution of the
quality function, while building blocks are the union of detected communities and their
intersections. Communities can be made up of one or more building blocks, and a building
block can be a self-contained community or not. The definition of a community is quite
general, and it also allows for hierarchical and overlapping communities [10,18–22]. Our
approach, which involves searching for local maxima of the quality function, is well suited
for identifying complex and overlapping community structures.

Community detection methods aim to accurately identify communities within a net-
work while maintaining computational efficiency. While smaller networks pose no issues
for computational efficiency, larger networks often require a trade-off between accuracy
and efficiency. In our study, we define communities using a quality function which ensures
accuracy by accepting only optimal solutions. However, the exhaustive optimisation of
the quality function over the set of all graphs in a network can be computationally expen-
sive [8]. To ensure that our simulation algorithm effectively detects the most significant
communities, traditional methods such as gradient descent or simulated annealing can be
employed [23,24]. These methods guarantee a similar performance to the algorithm that
uses modularity as a quality function. However, the focus of this study is on presenting
the modelling principles rather than using traditional methods. Our objective is to offer a
complete list of identified communities rather than just the most important ones. Although
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various approximate techniques [25–28] can enhance the efficiency of community detection
algorithms, these methods are not ideal for searching overlapping communities, as we
aim to identify accurate communities and their building blocks. However, approximate
techniques can still be used to initiate the search algorithm. We offer guidelines for optimis-
ing the search for overlapping communities in Appendix C.2. These hints apply to both
random and optimised initialisations of the searching algorithm based on the probability
matrix. The effectiveness of our influence-spreading model, which is used to construct the
probability matrix, has already been discussed in [29].

In this study, experiments are carried out on multiple small networks and two
moderate-size networks that consist of 5000–10,000 nodes. The results show that the
method used in the study is both useful and valid for different network structures and
moderate network sizes. With the help of the pseudo-algorithm and ideas provided in Ap-
pendix C.2, it is possible to apply our method to larger networks by making the algorithm
more efficient. However, detecting overlapping communities in very large networks may
require the development of new post-processing methods to present results, depending
on the desired granularity of the analysis. This is because a significant number of almost
similar overlapping communities can be detected in large networks. Nevertheless, our
study shows that the results can be visualised easily for all network sizes. Furthermore,
the method used in the study is particularly suitable for detailed network structures, as
demonstrated with several small networks.

Several well-known networks are commonly used as test networks in the literature to
compare the results of different community detection models. These include the Zachary’s
Karate Club network, the American football games network, and the Dolphin social net-
work. Also, the ground-truth communities are known for these networks. The Les Mis-
érables social network is known for its information-theoretic solution. Additionally, we
have tested our method on two moderate-size networks and the results have been vi-
sualised by a tool that generates the network layout independently without using any
information about our community detection results. This allows for a more objective and
visual verification of our results.

In Section 2, we summarise the most commonly used community detection methods
in the literature. In Section 3, we present properties of our influence-spreading model, and
in Section 4, we explain our model for detecting communities and their building blocks. In
Sections 5 and 6, we present a pseudo-algorithm that can be used to detect overlapping
communities and discuss the accuracy and efficiency of our method. In Appendix C.2, we
provide a more detailed explanation of the accuracy and efficiency of our algorithm and
also suggest ways it could be further optimised. In Section 7, we introduce our models
with four small social networks. In addition, we demonstrate the use of the models with
two larger social media networks. In Sections 8 and 9, we discuss the properties of our
models and present conclusions of this study. In Appendix A, we provide a simple example
of calculating circular effects in our influence-spreading model. In Appendix B, we have
an example with one of our small networks of how to use the model to divide a network
into three communities. In Appendix C, we discuss how to improve the efficiency of our
simulation program for detecting overlapping community structures.

2. Related Work

Communities are groups of nodes in a network that are strongly connected or that
share similar features or roles [1]. Detecting communities are useful in studying the struc-
ture of complex systems such as social, information, and biological networks. The applica-
tions of these methods are numerous, including epidemic spreading, market segmentation,
criminal detection, influence spreading, fake news detection, recommendation systems,
and more. Various articles have reviewed and discussed community detection meth-
ods [1,4,5,28,30–35], including those that consider overlapping communities [10,19,36,37].

Community detection methods aim to enhance the accuracy of the outcomes while also
creating computationally efficient algorithms for various applications. The accuracy of the
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results is evaluated based on the algorithm’s ability to identify ground-truth communities or
recover known communities that are planted in artificial benchmark networks [37,38]. Many
community detection algorithms aim to optimise a quality function, such as modularity or
the one proposed in this study, which measures the quality of potential communities. The
development of community detection algorithms is dependent on the desired community
characteristics and the computational efficiency requirements. The methods proposed
often prioritise the speed of calculation, which is why multi-step algorithms are frequently
utilised [39]. In such cases, the algorithm determines the connection to the community
definition indirectly.

The exhaustive optimisation of a quality function over the set of all graphs of a network
is computationally hard as the computational complexity of the problem is NP-complete [8].
The optimisation of the quality function proposed in this study can be compared with the
corresponding optimisation of the modularity measure. As mentioned in [8], practical
methods make use of approximate optimisation schemes such as greedy algorithms [25],
simulated annealing [26,27,30,40], spectral methods [28], and genetic algorithms [27]. Simu-
lated annealing [23] is a probabilistic technique that approximates the global optimum of a
given function. It is preferred over exact algorithms like gradient descent [23] or branch and
bound [24] when finding an approximate global optimum is more important than finding a
precise local optimum within a fixed amount of time. However, using simulated annealing
for large network problems is not practical because it requires a significant computational
effort [7,8]. A recent study discussed in [41] proposes an effective hybrid community
detection method to enhance the quality of detected communities. It aims to increase the
modularity of a community detected by any detection algorithm and network structure.

Challenges and opportunities of community detection methods have been discussed
in [36]. One approach is to choose a metric that measures the quality of a community and
then try to maximise it. Another approach is statistical inference, where a generative model
is fitted to the observed network data. One popular generative model is the stochastic
block model, where nodes are grouped into blocks and edges are randomly placed between
them based on their block assignments. However, this approach has a weakness in that it
treats nodes within the same block as statistically independent, which may result in lower
and higher-degree blocks rather than traditional community structures [36]. According to
the study in [10], traditional quality measures are not enough to assess communities in a
network. The study suggests that understanding the structural properties of how nodes are
organised is crucial. The research in [10] investigates four quality functions: overlapping
normalised mutual information [37,42], the Omega index [37], modularity [7], and the
statistical F1-score.

The Louvain method [43,44], InfoMap [40], and spectral clustering [28] are three pop-
ular algorithms used for community detection. The Louvain and InfoMap methods are
particularly efficient for detecting communities in large complex networks. The Louvain
method uses modularity [7] as a quality function, and the algorithm optimises modularity
by moving nodes between communities iteratively until no further improvements can be
made. It has been shown that modularity suffers from a resolution limit, which means
that in large networks, methods based on modularity would fail to detect small commu-
nities [9,44]. InfoMap, on the other hand, uses the so-called map equation to represent
information diffusion on a map, where nodes are connected if they are close in the map’s
representation [40]. Communities are identified by minimising the entropy of the map.
Spectral clustering is a method that uses the eigenvectors of the network’s graph Laplacian
matrix, which is constructed from the network’s adjacency matrix, to identify different
communities within the network [2,3].

Traditionally, community detection methods have assumed that nodes belong to
disjoint communities, but real-world networks often exhibit overlapping community struc-
tures where nodes can participate in multiple groups. Methods and algorithms for detecting
overlapping communities have been studied in [18,20–22,45–47] to mention a few. An over-
lapping community detection method in complex networks based on information theory
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was presented in [20]. A method to analyse and explore the main statistical features of
the sets of overlapping communities was presented in [18]. The first algorithm that finds
simultaneously both overlapping communities and the hierarchical structure in complex
networks was introduced in [21]. Later, overlapping and hierarchical community detection
for weighted networks was studied, for example, in [22].

Recently, different approaches and strategies to detect and analyse overlapping com-
munities have been proposed. In [45], the algorithm identifies similar seed communities
and calculates the similarity between the neighbouring nodes and the community. Nodes
that meet the similarity threshold are selected, and an adaptive optimisation function is
used to expand the community. Finally, free nodes are divided into communities. The
study in [46] presents two community detection algorithms that use extended modularity
and cosine functions as quality functions.

One area of research involves fuzzy overlapping community detection [48,49]. In this
method, each node is assigned to a community with a belonging factor that reflects the
strength of its association. This fuzzy assignment can be turned into a crisp overlapping
assignment by setting a belonging threshold. In a crisp overlapping assignment, each node
is associated with each community with a binary belonging factor. This approach enables
the identification of overlapping nodes at different scales.

Researchers have also developed tools for higher-order network analysis. Such higher-
order interactions [50] have been observed in a variety of systems, including collaboration
networks, ecosystems, social networks, and nervous systems. The authors in [51] found
that the existence of higher-order interactions obscured the community structure in the
network, and they suggested removing higher-order interactions to improve the accuracy
of community detection.

The topic of opinion dynamics has received significant attention in the literature, and
several studies have been conducted in [12,52–54]. In [54], complex contagion is defined as
a situation where an individual needs several exposures before adopting an innovation or
behaviour change. Unlike a disease that can spread after just one contact (simple contagion)
with an infected neighbour, innovation may not spread as easily [54].

In the following section, we briefly describe our influence-spreading model, which
generates an influence-spreading matrix capturing the network structure and spreading
probabilities between all node pairs on the network. The model was introduced in previous
research [16,29]. An alternative to the influence-spreading model is the network connec-
tivity model [16,29], which describes the static connectivity in a network structure. In this
case, the results are presented in the same matrix form, but we call the matrix a probability
matrix. In Section 4, we introduce our community detection model and the corresponding
pseudo-algorithm for detecting overlapping communities. The algorithm is based on a
quality function that is a function of the influence-spreading matrix.

Because the influence-spreading matrix includes information on both the structure
of the network and the influence-spreading process, the quality function also has similar
properties. Thus, our proposed community detection method that incorporates information
about the network structure into the quality function can be a solution to the problem
mentioned in [10].

3. Influence-Spreading Model

Social influence can be represented by a probability matrix describing how people
in a social network interact. This matrix can be created using different methods such as
influence-spreading and connectivity models. To describe influence spreading, we require a
network flow model to explain how influence spreads between nodes through paths in the
network structure. The primary objective of our influence-spreading model is to calculate
the probabilities of the influence between all individual nodes in the network by utilising
the given probabilities between neighbouring nodes in the network structure [16,29,55].

Our model uses as the initial information the topological structure of the network and
directed link weights for all edges between adjacent nodes in the network. The topological
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structure is expressed as a list of directed links between the nodes in the network. Link
weights are expressed as probability values in the range from 0 to 1. Similarly to link
weights, nodes can have node weights. Node and link weights indicate the ability of these
network elements to disseminate the influence in the spreading process.

We use probabilistic methods because they ensure the unambiguous interpretation of
the influence-spreading matrix itself and the possibility of defining further interpretative
quantities of the model. An element of the influence-spreading matrix is the probability
of influence from one node to another node through all alternative paths in the network.
The link weight wi,j between adjacent nodes i and j is interpreted as the probability of
transmitting a piece of information or exerting social influence from node i to node j.
Notice that link weights are directed and can all differ between neighbouring nodes in the
network structure.

The model of network flow determines how interactions within the network structure
influence the spreading process. The spreading mechanism can depend on various factors,
such as the network structure, link and node properties, and the nodes’ states. In this
study, the node state refers to the probability of the node being influenced already. In
two extreme cases of our influence-spreading model, the full breakthrough influence and
network connectivity models, the node states do not affect the spreading process. However,
we do consider the influence spreading through different alternative paths to a target
node, following the rules of probability theory to avoid double-counting. Unique in our
influence-spreading model is the method of combining the alternative paths coming from
different routes from source nodes to target nodes. In the case of full breakthrough effects,
we can perform this calculation analytically.

Different models can have restrictions for alternative paths. There are two extreme
cases: one model allows all possible paths, including circular and recurrent paths, while
the other model only allows self-avoiding paths, where nodes can only appear once. Our
influence-spreading model is an example of the first case. Self-avoiding paths are commonly
used for modelling virus epidemics, where infected and recovered individuals achieve
full immunity to the disease. These kinds of models are also useful for describing the
transmission of well-defined information on social networks and other related applications.

Spreading processes are based on the principle that spreading from a node is only
possible if the influence has already reached that node. This leads to an attenuating
propagation because the node and link weights are typically less than one, and they are
multiplied in the probabilistic calculations. Unlike typical Markov chain or random walk
models in the literature, our non-conserved model allows a spread to all possible adjacent
nodes in the network within the limits of the node and link weights.

Influence spreading and network connectivity models are related, as the connectivity
of nodes in a network can be considered as a limiting case of influence spreading without
any recurrent or circular effects. We discussed this in our earlier paper [56]. In the
following, we categorise our influence-spreading model with full breakthrough effects as
a complex contagion and the network connectivity model as a simple contagion model.
These definitions are generalisations of the commonly used concepts in the literature [57].
Both models consider all possible paths of the network structure limited by the network
size or maximum path length parameter Lmax.

A key element of our influence-spreading model is combining the effects of different
paths in the network structure [29]. When influence propagates through multiple paths
to a node, we utilise a formula from probability theory that accounts for mutually non-
excluding events. This method ensures that influence from multiple neighbouring nodes is
calculated only once for a given source node, rather than simply being added up. By doing
so, we avoid the possibility of non-physical probabilities greater than one.

We have also published an efficient algorithm [29] for computing the spreading
probabilities, or the influence-spreading matrix elements, in the case of full breakthrough
effects [16,55]. For large networks, the computation time can be limited by setting a



Computation 2024, 12, 85 7 of 35

value to the maximum path length Lmax. We still use simulation methods for the network
connectivity or spreading model with self-avoiding paths [58].

Full breakthrough influence does not depend on the node states and does not affect
the spreading process. Our current influence-spreading model only accounts for non-
influenced and influenced states, where nodes that have already been influenced and those
that have forgotten their opinion are considered as one state.

4. Community Detection Model

Our objective in this study is to introduce the method of separating the modelling
of network structure or network flow from the modelling of community detection. We
propose a community detection approach that is based on a probability matrix or an
influence-spreading matrix and local maxima of a quality function.

We denote the influence-spreading matrix by C and its elements by C(s, t);
s, t = 1, . . . , N, where s is a source node, and t is a target node in the network struc-
ture. The number of nodes in the network is N. The elements in the matrix describe
directed influence probabilities between any two nodes in the network. This definition dif-
fers from other matrices used in the literature, such as the adjacency matrix and the Markov
matrix [3].

Centrality measures indicate a node’s importance in the network. These metrics help
study network phenomena like opinion spreading and group formation. We define two
variants of centrality measures based on the influence-spreading matrix. Out-centrality
measures the influence one node exerts on other nodes in the network. In-centrality
measures the influence other nodes in the network have on one node. These metrics denote
the mean number of influenced or influencing nodes, or probabilities, depending on the
normalisation convention. We define the out-centrality of node s in network G as

C(out)(s) = ∑
t∈G
s ̸=t

C(s, t) (1)

and the in-centrality of node t as

C(in)(t) = ∑
s∈G
s ̸=t

C(s, t). (2)

In the literature, several other centrality measures [2,3] have been proposed but usually,
they are not based on a consistent model where probabilistic or similar interpretations
are possible.

In our model, the method for detecting communities is based on finding local maxi-
mum values of the quality function in Equation (3) computed from the influence-spreading
matrix elements C(s, t); s, t = 1, . . . , N:

q = ∑
s,t∈V
s ̸=t

C(s, t) + ∑
s,t∈(G−V)

s ̸=t

C(s, t). (3)

If there is a local maximum for a subset of nodes V, we infer that V is a community
in network G. Our approach is an application of the general principle in applied mathe-
matics where a local optimum of an optimisation problem is an optimal solution within a
neighbouring set of candidate solutions.

Equation (3) measures the division’s strength into two factions V and G− V of the
original network G. The higher the value of q, the better the sum of the cohesion of the
two communities. The value of q can be used as a quantitative measure for comparing the
quality of different divisions of the network structure.

One of the key features of this model is that it can have multiple local maxima with
varying strengths in the network structure. This allows for the existence of several overlap-
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ping community structures. The quality function in Equation (3) can be used to measure the
quality of each division. For a division, the quality function is a sum of the terms on both
factions of the network. The advantage of the method based on searching local maxima of
the quality function is that it does not fix the number of nodes in the communities, unlike
some other community detection or network partition methods in the literature where the
number of communities is predetermined [3].

We can also express Formula (3) as

q = ∑
s∈V,t∈G

s ̸=t

C(s, t) + ∑
s∈(G−V),t∈G

s ̸=t

C(s, t)− ∑
s∈V

t∈(G−V)

C(s, t)− ∑
s∈(G−V)

t∈V

C(s, t). (4)

We can identify that the first two terms can be expressed with the help of out-centrality
measures as

C(G) = ∑
s∈V

C(out)(s) + ∑
s∈(G−V)

C(out)(s). (5)

Equation (5) defines a new quantity C(G) as a measure of the influence of nodes in V
and G−V on all nodes in network G, including V and G−V. Similarly, Equation (5) can
be expressed with in-centrality measures as

C(G) = ∑
t∈V

C(in)(t) + ∑
t∈(G−V)

C(in)(t). (6)

The centrality measures in (1) and (2) and the community influence measure in
Equations (3) and (4) are closely related, as they are all based on the same influence-
spreading matrix C, ensuring their consistent definition. The sum of all matrix elements
of the matrix C is a constant, and we can define C(G) as a measure of cohesion of the
entire network G. From Equation (4), we see that maximising q in Equation (3) is
equivalent to minimising the sum of the last two terms in Equation (4). We denote this
quantity as Q in the following formula:

Q = ∑
s∈V

t∈(G−V)

C(s, t) + ∑
s∈(G−V)

t∈V

C(s, t). (7)

Our approach involves maximising interactions within the two factions V and (G−V)
of a network while minimising interactions across the two factions. As a result, the
definition of the community quality function, denoted by q in Equation (3), does not have
cross terms. This community quality function can be compared to the commonly used
modularity measure [3,8], where networks with high modularity have dense connections
between nodes within modules but sparse connections between nodes in different modules.

The quality function that is defined in Equation (3) or (4) is useful when comparing
divisions within a network. However, when comparing communities in networks of
different sizes, it is more appropriate to normalise the measure and take into account that
the sums in Equation (3) include different numbers of links and nodes depending on the
sizes of the two factions of a division. Equations (3) and (4) can be normalised by dividing
the expressions by the value of N , as shown in Equation (8). The value of N is calculated
using the formula:

N =
#12 − #1 + (N − #1)2 − (N − #1)

N2 − N
= 1− 2

#1
N − 1

(1− #1
N
), (8)

where #1 represents the number of nodes in one of the two factions of the division. The
number of nodes in the other faction is #2 = N − #1. Normalised quality function values
can be calculated for each division of a network as

Q = q/N . (9)
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Diagonal elements do not affect the community detection results because we calculate
the influence-spreading matrix elements by assuming that the spreading process is initiated
from a source node with probability one [29]. We have set the values of the diagonal
elements of matrix C to zero. In Equation (8), the number of terms corresponding to the
first and second sums in Equation (3) are #12 − #1 and (N − #1)2 − (N − #1), respectively.
Source nodes can take part in circular and recurrent spreading events, as long as these
events are permitted within the network flow model. However, target nodes are not
involved in such events [29]. This characteristic distinguishes our model from other models,
like Markov models, that are commonly found in the literature.

Normalisation has little impact on whether a community exists within a network,
but it can influence the ranking of communities. If the network is divided into two
communities of unequal sizes, normalisation would assign a lower weight to that division.
The decision to use normalised values or not depends on the needs of the application. In
this study, we present the findings as un-normalised values, except in Table 1, where we
provide normalised values in column Q(%)). It is interesting to note that the community
rankings for Zachary’s Karate Club have changed in a way that follows the majority of
other community detection models in the literature [3,8,20]. Specifically, the division into
communities with #1 = 16 and #2 = 18 nodes depicted in Figure 1b has the first ranking.

Table 1. The values of the quality function q (un-normalised), Q (normalised by Equation (8)), and
community formation measure f for the detected divisions with a link weight value 0.05 in the
Zachary’s Karate Club network. The last two columns show the number of nodes in the two factions
in each division.

q (%) Q (%) f (%) #1 #2

1 10.6 14.1 10.3 29 5

2 9.4 18.7 12.9 16 18

3 8.9 17.3 2.6 20 14

4 8.9 15.2 5.2 24 10

5 8.8 15.0 1.6 10 24

6 8.2 16.2 0.3 15 19

7 8.1 16.0 0.4 19 15

We introduce a broader concept of a building block that comprises all the divisions of
a network identified as local maxima of Equation (3), along with their intersections. It is
worth noting that while these intersections may not be local maxima of Equation (3), many
of them are. All communities qualify as building blocks, but not all the building blocks
meet the criteria for being communities as defined by our method.

Figure 1 shows an example of the two strongest divisions and building blocks of
communities in Zachary’s Karate Club network [59] detected by our method. In Section 7.1,
we explain by example how these building blocks are detected.

Figure 1. Zachary’s Karate Club network [59] with the two strongest divisions (a,b) and building
blocks (c) detected by our method (building blocks are indicated by different colours).

Notice that the sums in Equation (3) do not include interactions between the two
factions of the network. This is a simplification because in real life, communication between
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different communities continues, albeit the relations inside each community usually are
closer and more active. On the other hand, we can assume that the cross-terms cancel out
in the process of community formation, which justifies leaving the cross-terms out.

It is worth noting that the model has a specific feature whereby paths between mem-
bers of the same community via the other community are included in the calculation of
Equation (3). While this can strengthen cohesion within a community, the effects of directly
connecting the two partitions are far more significant. Strong or dense connections between
the two factions can prevent a local maximum or a subdivision into two communities.

In the literature, communities are often detected based on modularity [3,6,7], a popular
quality function in community detection methods. However, modularity is not based
on probabilities and, therefore, it has no direct probabilistic or physical interpretation.
Modularity has the same assumption as we have in our model that the cross-terms have no
effects on community formation.

We define optimal solutions to the community detection problem as divisions into
two factions of the original network where q in Equation (3) has a local maximum. This
means that moving a node from one community to another community decreases the value
of q. We justify our model by the well-known principle of equilibrium, a condition or state
in which driving forces are balanced. The probabilistic interpretation of the model enables
us to define the quality function as an equilibrium state of the network.

Although the value of the quality function in Equation (3) is important, there is another
aspect related to the likelihood of community formation. To address this, we introduce
a second measure that indicates the probability of community formation starting from
a random initial setting of nodes in the network. Our statistics are derived from the
computational results that we obtain by employing a basic simulation method to search for
the local maxima of the quality function. We refer to this measure as a statistical measure
of community formation and denote it by f and define it for a detected community A as

f =
number of times community A is detected

number of simulations starting from a random setting of nodes
. (10)

We define a random setting as a situation where nodes are assigned randomly to two sets
that represent the two factions of the division in a network. It is worth noting that in
simulations, there is a possibility that all the nodes of the network end up in one group
and the second group is empty. Equation (3) always gives this division the highest value
q. However, we do not count the entire network G as a separate community. Due to this
effect, the statistical community formation measure f does not add up to 100 per cent. The
missing portion can be interpreted as the probability of no communities arising.

It is important to note that the quality function defined in Equation (3) does not rely
on the statistical measure suggested in Equation (10). As a result, the latter should be
viewed as supplementary information that emphasises the difficulties involved in defining
a quality function that can accurately detect overlapping communities. The measure f in
Equation (10) is based on two randomly initiated sets of nodes. However, theoretically, the
order of processing nodes in Algorithm 1 affects the value of f . But it is worth mentioning
that the order of processing does not affect the values of q in Equation (3) for detected
communities because the algorithm only accepts optimal solutions. In this respect, there is
no stability issue because optimal solutions of Equation (3) are well defined.

When exploring network structures with unknown link weights, we can still analyse
the network structure by using the link weight as a parameter. In this case, the same link
weight value is used for all links in the network. The results of community detection can
be influenced by varying the link weight parameter. If the link weight is high, then no
communities will be detected. However, if the link weight is lowered, the first division
into two communities will appear. Furthermore, if the link weight is further decreased,
the number of different divisions into communities will increase. The numerical value of
the threshold link weight is not required in the community detection algorithm. It is a
theoretical quantity that has a natural interpretation in the model. The value determines a
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critical point above which the cohesion of the entire network is so high that there is only
one community.

Algorithm 1 Detecting overlapping communities.

1: ▷ Searches communities based on probability matrix M by maximising q (Equation (3)).
2: procedure DIVISION(control parameters, M)
3: ▷ Control parameters include stopping rules for the calculation and optimisation

rules to initialise the simulation and control the order of processing nodes. Maximum
number of detected communities A and maximum number of iterations B are provided
as control parameters. Matrix M elements describe directed influence probabilities
between all node pairs. Matrix M has N × N elements.

4: a← 0
5: while a ≤ A and no other stopping criteria are fulfilled do
6: vipu← .TRUE.
7: b← 0
8: while vipu equals .TRUE. and b ≤ B do
9: V(i)← 1 or V(i)← 0 for i = 1, N ▷ Initiate V, random or optimised

10: Calculate q
11: for I=1,N do
12: V(I)← 1− (V(I) ▷ The order of processing nodes can be optimised
13: Calculate q
14: if the value of q is higher than the previous q value then
15: cycle ▷ Skip the remaining statements inside the loop
16: else
17: V(I)← 1−V(I) ▷ Restore V(I)
18: vipu← .FALSE.
19: end if
20: end for
21: b← b + 1 ▷ The number of iterations is increased by one
22: end while
23: if the same division has not been detected in earlier iterations then
24: a← a + 1 ▷ The number of detected divisions is increased by one
25: V(a)← V ▷ Save vector V to list V(a)
26: Q(a)← q ▷ Save q to vector Q
27: end if
28: end while
29: for J=1,a do
30: Print V(J),Q(J) to a file
31: end for
32: ▷ Now, the list of divisions and their quality function values are saved in a file.
33: end procedure

In practice, communities with very low values of the quality function or low formation
probability are not very important. However, in general, the increasing number of possible
communities indicates a low cohesion and fragility of the community. Low cohesion is a
natural consequence of weak ties in the community structure. The cohesion value of a set
of nodes V can be calculated as a function of the link weight by taking the sum of influence
matrix elements:

C(V) = ∑
s,t∈V
s ̸=t

C(s, t). (11)

This measure can be calculated for any subset of nodes V ∈ G in the network. Now,
we can express the quality function in Equations (3) and (4) yet in another form as a sum of
the cohesion values of node sets V and G−V

q = C(V) + C(G−V). (12)
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Our model can only identify two separate factions of the original network G at a time.
Although this may appear to be a constraint, it allows us to examine the intersections
and boundaries between these divisions. By calculating the intersections of different
divisions, we can more effectively detect new communities in the network structure using
computational methods. Some of these intersections correspond to communities, while
others do not. If the set of nodes does not form a community, the statistical community
measure is zero because it is not a local maximum of the quality function. As mentioned
above, we have defined the concept of network building blocks as sets of nodes that
are either communities or their intersections. Intersections are potential candidates for
communities as members of two or more communities.

The statistical measures can indicate how long it takes to carry out a simulation.
However, in some applications, it may be sufficient to find solutions in less time instead
of searching for communities that may have a higher strength based on the value of the
quality function. Nonetheless, structures with high local cohesion can be of interest. Local
communities can emerge when nodes in the network structure locally have many links
between each other or link weights are relatively high. Communities can be formed around
specific interests, often consisting of a small number of members. In this model, such a
scenario would involve the network being asymmetrically divided into a large and a small
group, resulting in a local maximum of the quality function in Equation (3).

Communities have a crucial aspect of stability. If we remove a node or a set of nodes
from a community, it can cause the entire community to dissolve, leaving behind fewer
nodes that do not form an optimal solution. We can measure the impact of removing a
node or nodes by calculating the difference in the value of the quality function before and
after the change. This information can be used to combine overlapping communities and
reduce the number of communities. However, the combined effect of removing a set of
nodes is different from the sum of the individual node-removing effects. In Section 2, we
discussed fuzzy overlapping community detection, where a belonging factor indicates the
strength of a node’s association with a community. This factor can be defined for one node
but may not be practical if we want to maintain an optimal solution for the quality function
while defining the community.

5. Algorithm for Detecting Communities

Our method involves separating the modelling process into two parts: network
modelling and analysing the community structure. Algorithm 1 concerns the analy-
sis part of the problem while the network modelling part was presented in our ear-
lier work [16,55,58]. In the past, community detection methods combined these two
steps into a single model [3,32,36]. While this approach may be beneficial for optimis-
ing traditional community detection algorithms, it can also make the two models less
distinct and complicate the use of a well-defined quality function for the community
detection problem.

In our approach, we can use the probability matrix for optimising the search algorithm.
This is because the matrix contains the needed information about the influence strength
between all node pairs in the network structure. We can test how moving a node or a set of
nodes affects the quality of a division and use that information to generate a more optimal
division of the network. Currently, our algorithm moves one node at a time between the
two factions of the division. When no move improves the value of the quality function in
Equation (3), we have detected an optimal division. The order in which we process nodes
does not affect the value of the quality function, but it can affect the computing time and
the order of detecting communities.

The detection of building blocks begins by searching the network structure’s optimal
divisions into two factions (communities). The divisions are then sorted based on a quality
function value, and the building blocks are constructed. If we consider all detected divisions,
the sorting does not change the result as per our definition of a building block. However, we
have the option to focus only on the most significant communities and building blocks based
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on our requirements in the application. Particularly, when there are numerous divisions,
we want to consider only the most important cases where the quality function has a high
value or focus on large communities. By default, we use the q value in Equation (3) as
the quality function. Note that the cohesion value of Equation (11) can also be calculated
separately for the two factions of each division.

The procedure for dividing a network structure into two factions is presented in
Algorithm 1. The algorithm takes as input a probability matrix, or an influence-spreading
matrix, denoted by M. The matrix contains N × N elements, where N is the number
of nodes in the network, and each element represents the probability or strength of the
directed influence from one node to another. There are several methods to generate the
probability matrix, but we do not discuss them in this study as they depend on the particular
application. Examples of different spreading processes or network connectivity models
whose results can be expressed in the matrix form can be found in references [29,58].

Apart from the probability matrix, several variables are required to control the compu-
tation. These variables determine when to stop, how to optimise the initialisation of the
simulation, and how to speed up the search process for optimal solutions. In this particular
study, the optimal solutions correspond to the maximal values of the quality function in
Equation (3). Since we are dividing the nodes of the network into two factions, we present
the solutions in the form of an N-dimensional vector V with 1’s and 0’s indicating the
faction of each node.

Our model defines two communities for each division, which may overlap with
other communities. By analysing these overlaps, we can identify the building blocks of
communities. We define building blocks as the communities themselves and all possible
intersections of the detected communities.

In some cases, a building block can be classified as a community if the quality function,
denoted as q in Equation (3), attains its maximum for that specific division. This implies
that moving any node would lead to a reduction in the value of q. Moreover, an optimal
combination can be formed by two or more building blocks, even if they are not directly
linked. To maintain consistency, we also consider these solutions as communities. This is a
convention since these solutions can be removed from the set of detected optimal divisions
depending on our definition of a community. It is worth noting that in some studies [44],
internally disconnected communities are considered problematic.

The final step of generating the building blocks from the list of network divisions can
be performed in multiple ways. One approach is to use a tool like the Gephi analysis tool
or an Excel spreadsheet application. In Algorithm 1, the output of line 30 can be formatted
as a comma-separated values (CSV) file, which can be imported into the Gephi analysis
tool. Developing software with a programming language may be a suitable alternative if
specific post-processing is needed for analysing the results. To provide a concrete example
of how the Gephi tool is used, we will demonstrate the building blocks structure of the
football games network in Section 7.4.

6. Accuracy and Efficiency of the Method

When selecting a community detection method, it is important to consider its efficiency
for practical applications. However, it is also crucial to choose a method that provides
theoretically accurate solutions for specific research problems. In this study, we prioritise
focusing on the theoretical aspects of analysing community structure. Our work is based
on a framework that includes detail-level network structure, overlapping and hierarchic
communities, and a quality function based on a probability matrix. By modelling the
detail-level network and analysing community structures, we use the probability matrix
to establish the connection between the two models, which helps us to streamline the
modelling process and keep it under control.

Community detection methods have traditionally focused on identifying non-
overlapping communities [4]. Some benchmarking methods still focus on detecting
non-overlapping communities even though some nodes may belong to multiple com-
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munities. While some benchmarking methods have been proposed to measure and
compare overlapping community detection methods [37,38], this field of study is still
evolving. There are many issues to address in this field of study. One of the main
challenges is defining what to measure and how to compare results accurately. The
current benchmarks are not designed to compare the results of overlapping commu-
nity detection with communities planted in artificial benchmark networks by a given
quality function. Many publicly available benchmarks use the normalised mutual
information measure, which is biased [42]. Hence, we demonstrated the accuracy of
our algorithm and quality function using commonly used network structures with
ground-truth communities and visualisations that we compared with independently
generated Gephi layouts. Our findings are in good agreement with the ground truth,
literature, and visualisations.

Normalised mutual information (NMI) is a commonly used metric to evaluate the
accuracy of solutions to the community detection problem. However, researchers have
found that NMI is often biased and can lead to inaccurate conclusions about the best algo-
rithm for the problem [42]. Extensive numerical tests on popular algorithms have shown
that the biases in the traditional mutual information significantly affect the results [42].
Although modifications to the NMI metric have been proposed to address this issue, it is
still debatable whether NMI is the best measure that can be used to assess the quality of
solutions to the community detection problem.

Our approach involves detecting and comparing overlapping communities using a
quality function based on the influence-spreading matrix. This matrix is generated from
a detailed network model, and it considers variables like node and link weights with
a probabilistic interpretation [16,55,58]. The probability matrix’s elements represent the
influence strength between nodes in the network, and we define derived quantities based
on this matrix. Consequently, the quality function in Equation (11) serves as a method to
measure the strength of communities or other sets of nodes within the network, including
the building blocks determined by the intersection of detected communities.

In Section 4, we introduced another statistical measure, denoted as f , which quantified
the probability of community formation. Although this measure may require significant
computation time for large networks, it serves as a theoretical example of an alternative
measure to evaluate the quality of detected communities. Our method for detecting
communities within a network does not rely on the statistical measure, as this measure is
a byproduct of the search process. The quality function q in Equation (3), the normalised
quality function Q in Equation (7), and the statistical measure f can provide different
rankings for the same community (refer to Table 1 in Section 4 for an example). The
normalised measure Q is calculated in proportion to the number of possible connections
in the communities. We conclude that different quality functions are needed for different
applications and requirements. This is also related to the fact that there is currently no
widely accepted definition of a community [4].

Both versions of the quality functions q in Equation (3) and Q in Equation (7) detect
the same communities, but their rankings may be different. Note that f is zero for building
blocks that are not communities or optimal solutions of Equation (3). However, there is
an application of community formation in which we can calculate the value of cohesion
even for building blocks that are not alone detected as communities. Strengthening ties in
such weakly connected building blocks can lead to community formation. On the other
hand, targeting information activities to nodes that belong to interceptions of detected
communities can lead to the formation of a larger community. In this way, building blocks
are potential groups that can evolve into a community alone or with other building blocks
or communities in the network.

Our objective is to identify the divisions within a network structure. The number and
comprehensiveness of the divisions required depend on the specific application. Building
blocks are determined based on the list of divisions, as outlined above. The optimisation
methods employed will differ depending on whether we are searching for a couple of
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important divisions or a more comprehensive list. In Appendix C.2, we discuss how
Algorithm 1 can be improved for the detection of a large number of divisions within a
network structure.

7. Demonstrations

We showcase our technique for detecting communities and building blocks using four
small network structures, namely the popular Zachary’s Karate Club social network in
Section 7.1, the social network of fictional characters in Victor Hugo’s book Les Misérables
in Section 7.2, the dolphin animal social network in Section 7.3, and the American football
games network in Section 7.4. Additionally, we present two examples of larger networks
to illustrate the typical outcomes of building blocks that cover bigger structures of the
networks. These are the Facebook social circles network in Section 7.5 with 4039 nodes and
a Government Facebook link network in Section 7.6 with 7057 nodes. In the following, the
main focus is on detecting the building blocks based on the idea explained in Section 4.

7.1. Zachary’s Karate Club Social Network

Detecting building blocks in the network structure is accomplished in two phases.
First, communities are detected as division into two factions of the network as local max-
ima of quality function (3). Second, we sort the divisions in descending order of the
quality function values and then build up different structures using this order. Our
method is capable of detecting community structures that are hierarchical or overlap.
One example, as shown in Figure 1, is the set of nodes A = {5, 6, 7, 11, 17} which is a
subset of B = {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20, 22}. Sub-communities can exist
inside communities.

In Figure 2, we demonstrate our incremental procedure of detecting both overlapping
and non-overlapping communities. Divisions are represented by the colours brown and
blue. In Figure 2a, the nodes in set Amake up a community, while the rest of the network
constitutes the second community. Figure 2b shows the division into two approximately
same-sized communities. This network division into two communities agrees with those
observed by Zachary [59], except for node 3 being misclassified.

It is interesting to note that if we increase the link weights in a network until there is
only one division into two communities, the last division, where all link weights are set to
w = 0.1, agrees precisely with the observed division where node 3 belongs to the brown-
coloured division in Figures 1b and 2b. This result has the interpretation that when the
Karate Club’s cohesion is too high, it is not optimal to split into two separate communities.
This scenario corresponds to link weights higher than w = 0.1. Disagreement in the club
results in weaker ties, or lower link weights, between the club members. When link weights
are lowered to the value of w = 0.1, the club splits into two factions. This result is the only
solution for the model with these link weights.

On the third and fourth lines of the corresponding figures, we can observe how our
model detects the building blocks. The first figure on the third line (Figure 2g) is divided
into two factions according to the first figure on the first line (Figure 2a). The second figure
on the third line (Figure 2h) shows the intersection of node setsA and B highlighted in dark
green. The third figure on the third line (Figure 2i) highlights four nodes {25, 26, 29, 32} in
violet because they belong to two different communities. Similarly, nodes {9, 10, 28, 31}
highlighted in cyan appear in both the left and right divisions of the network in Figure 2c,d.
In Figure 2k, node {3} is highlighted in yellow because it has shifted between two divisions.

Note that the last three figures in Figure 2 on the fourth line are similar despite the
different divisions still detected on the third line. When the link weights are 0.05, there
are seven divisions or fourteen different communities in total. In the seventh division (not
shown in Figure 2), nodes {9, 10, 28, 31} have moved to the left division compared to the
previous division. However, this group of nodes was detected earlier as a building block.
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Figure 2. Communities and building blocks from Zachary’s Karate Club network with link weights
w = 0.05. Figures illustrate our cumulative method to detect building blocks of the community
structure. The method is based on processing the divisions of the network into two communities
(figures a–f) and processing them in the descending order of the quality function value shows
the building blocks of the network (figures g–l). Numerical values of the quality function q and
community formation measure f are shown in Table 1.

Communities can be constructed using building blocks. However, not all combinations
of building blocks make up a community. A building block can be a community on its
own or be part of a larger community. The concept of building blocks is defined as a union
of intersections of communities and detected communities. The main difference between
the concepts of a community and a building block is that a building block may not be a
community on its own.

It is important to note that an intersection may not be a community if we only divide
the network into two factions, but it can be a community when we divide a network
into three or more factions, depending on how we define the quality function in these
cases. In Appendix B, we provide examples of communities detected from Zachary’s
Karate Club network, where divisions into three factions are considered. For instance,
in Figure A2e, nodes 25, 26, 29, and 32 are detected as a community while they do not
constitute a community in Figure 2.

Table 1 displays the values of the quality function q and the community formation
measure f . The last two columns of the table show the number of nodes for the two factions
in each division. The first division has the highest value of q = 10.6, and the second
division has the highest value of f = 12.9. These are the strongest divisions according to
both measures. The fourth division has a relatively high value of f = 5.2, but it is still
much lower than the values of the first and second divisions. The sum of the values for the
community formation measure is 33.4%. This means that the probability of not forming a
community is 66.6% when the search is initiated randomly.

In all network divisions, community A always remains together. However, the second
division has two additional variations where a set of nodes has moved from one side to
the other. It is important to note that in the remaining figures, the sets of nodes indicated
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by the blue and brown colours are both communities. Even though community A is not
directly connected to the left part of the community, it is still a part of this community. The
left and right parts are connected via the second community nodes in the middle of the
network, indicated by the blue colour. These connections may impact the composition of
nodes or local maxima of the quality function in Equation (3).

Upon examining the results shown in Figure 2, we can observe the existence of two
additional groups of nodes that always remain together. The first group comprises nodes
{15, 16, 19, 21, 23, 24, 27, 30, 22, 34}, highlighted in red, and the second group includes nodes
{1, 2, 4, 8, 12, 13, 14, 18, 20, 22}, marked in dark green. These groups of nodes do not break up
into distinct communities and are considered core structures of communities. Identifying
these sets is crucial in the analysis of community formation.

7.2. Les Misérables Social Network

Our second example is the Les Misérables social network. This network illustrates the
co-occurrence of fictional characters in Victor Hugo’s book Les Misérables. Characters are
linked if they appear in the same paragraph or page in the book.

In Figure 3, we present the results of our model in different scenarios. Figure 3a
displays the results when the model includes loops with link weights of w = 0.06. Figure 3b
shows the results when the model uses self-avoiding paths with link weights of w = 0.075.

Next, we limited the path length to L ≤ Lmax = 4, and the corresponding results
are shown in Figure 3c,d. To obtain approximately the same number of solutions for
communities, we increased the link weights to w = 0.075 in Figure 3c and to w = 0.07 in
Figure 3d. Because the rule of self-avoiding paths restricts interactions, higher link weights
try to compensate for the effects of fewer alternative paths on the network structure.

Finally, we introduced a new scenario to study situations where a new idea spreads in
a network with established opinions. For each node n, we assigned a phenomenological
node weight of 1− Cin(n), and the results of this experiments are presented in Figure 3e,f.
Figure 3e illustrates the results when the model includes loops with link weights of
w = 0.065, while Figure 3f presents the results when the model uses self-avoiding paths
with link weights of w = 0.07. In this example, equal link weights were used to model the
equilibrium state of the network and spread new ideas.

When we compare Figure 3a,b, we can observe only a minor difference between the
loop and self-avoiding path models. Specifically, nodes 29 and 46 have shifted from the
community indicated by the violet colour to the community indicated by the black colour.
Additionally, node 34 is counted in different communities in different divisions. One
explanation can be that including loops in the model can strengthen larger communities
or communities with more connections. Node 12, for example, has a high degree, which
means it has a significant influence on its neighbours. However, the second model in
Figure 3b only considers self-avoiding paths, which means there is no circular or recurrent
influence between node 12 and its neighbours.

Figure 3c,d depict a scenario where we limit the path lengths to the maximum value of
Lmax = 4. Although the main structures remain the same, more nodes appear in different
divisions in both models, yet all communities are still detected. Shortening the path lengths
has caused less clear boundaries between communities. The shortening of path lengths
prevents circular interactions, which has a similar effect as self-avoiding paths.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Building blocks of the Les Misérables network. The left column shows the results of our
model with circular and recurrent effects while the right column shows the results of the model with
paths with no visits to the same node more than once. The following are the model versions and their
corresponding link weight values: (a) Loops allowed with w = 0.06, (b) Self-avoiding paths with
w = 0.075, (c) Loops allowed with w = 0.07 and maximum length Lmax = 4, (d) Self-avoiding paths
with w = 0.08 and maximum length Lmax = 4, (e) Loops allowed with w = 0.065 and a new idea,
(f) Self-avoiding paths with w = 0.07 and a new idea.

Finally, Figure 3e,f simulate a situation where a new idea or innovation is spreading in
the network of established opinions. These results are similar to those in Figure 3a,b with
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minor node-level changes. In Figure 3e, nodes 29 and 46 belong to communities indicated
by the violet or black colours. However, in the basic situation shown in Figure 3a, they
both belong to the community indicated by the violet colour in all detected divisions. The
spread of new ideas can be affected by present opinions.

The authors in [17,42] proposed an information-theoretic method to discover building
blocks in a network structure. They applied their method to the Les Misérables social
network. In Figure 4, we show the information-theoretic results adapted from [17]. We
follow the same colouring as in Figure 3.

Figure 4. The results of the information-theoretic approach in [17] applied to the Les Misérables social
network. The structure of building blocks maximises mutual information. The figure is adapted
from [17].

We can compare the results of our model presented in Figure 3 with the results
of the information-theoretic model. The results are almost identical, but there are two
main differences. Firstly, in our model, the building block {40, 50, 52, 53, 54, 55} merged
with the violet building block in the information-theoretic model, while the building
block {30, 35, 36, 37, 38, 39} in our model merged with the turquoise building block in
the information theoretical model. Secondly, in the information-theoretic model, nodes
12, 28, and 49 constitute separate building blocks and are not members of larger building
blocks as they are in our model. The distinction between these nodes is crucial, as they
possess high degrees and therefore have a significant influence on their neighbouring
nodes. In our model, nodes 12, 28, and 49 belong to the building blocks represented by
the black, violet, and dark turquoise colours, respectively. However, node 56 belongs
to different divisions of the network, and hence, it cannot be unambiguously identified
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to any one of those communities. This holds for our model in all scenarios and the
information-theoretic model.

7.3. Dolphin Social Network

The following example is an undirected social network representing frequent associ-
ations observed among 62 dolphins living off Doubtful Sound, New Zealand, from 1994
to 2001. Dolphins are connected by edges if they are observed together more often than
expected by chance. One dolphin named SN100, temporarily disappeared during the
observation period. Research in [60] concluded that this event led to the community of
dolphins being divided into two separate groups. Later, when dolphin SN100 reappeared,
the two groups reunited.

Figure 5 displays the building blocks that make up the social network of the dolphins.
The link weights used to calculate these results were w = 0.05 and w = 0.1. In both cases,
the first division into two groups occurred in the middle of the network with dolphins
SN100, Oscar, and PL belonging to the left-hand side community. This split was consistent
with what was observed in real life, with the sole exception of node SN89 [60,61].

(a) w = 0.1

(b) w = 0.05

Figure 5. Building blocks of the dolphin social network calculated with link weights w = 0.1 and
w = 0.05.

In Figure 5a, dolphin SN100 constitutes a one-node building block because it is a
member of both sides in different optimal divisions of the network. The six dolphins
indicated by the dark colour are also members of both sides depending on the division.
Figure 5b shows a more granular view of divisions with a lower link-weight value. Our
experiment using a higher link weight of w = 0.137 resulted in one split, where dolphins
DN63, Knit, and Beescratch joined the smaller community. This outcome in part supports
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the conclusion regarding the role of dolphin SN100, as in real life, it was a member of the
larger group.

7.4. A Network of American Football Games

Next, we examine United States college football Division I games during the regular
Fall 2000 season, as outlined in [6]. Each node in the network represents a team, while
links signify games played between two teams. Teams are separated into conferences, with
each conference containing roughly 10 teams. Notably, games are typically played between
members of the same conference, rather than between different conferences. Furthermore,
teams located in close proximity to one another but belonging to different conferences are
more likely to play against each other than teams located far apart.

Since the approach used in [6] employed a hierarchical clustering algorithm, inde-
pendent teams and teams that played against non-conference teams were merged with
the conference with which they shared the closest relationship. These outcomes can be
compared with those produced by our model. Additionally, the conference structure of
teams can be found in the same article, presented as a graph in Figure 6b.

In Figures 7 and 6a, we present results for two different link weight values, w = 0.085
and w = 0.074, respectively. These values were chosen to demonstrate two different levels
of granularity in the results. Figure 7a,c,e display the three divisions in order of the quality
function value of Equation (3). On the right-hand side, the corresponding building blocks
are displayed incrementally as intersections of the left-hand side structures. The final
Figure 7f, on the right-hand side, provides a fairly accurate representation of the structure,
despite being limited by only three network divisions used to construct the building blocks.

In Figure 6a, we can observe a detailed map of the identified building blocks for link
weight w = 0.0075. As seen in the figure, almost all teams are accurately grouped with the
other teams in their respective conferences. To facilitate a comparison of the results, we
also included another image, Figure 6b, which displays the actual conferences of the teams
on a similar network graph as the building blocks in Figure 6a.

Our model does not explicitly consider the hierarchical structure of the network. In
Figure 6a, eight nodes are shown in grey colour. These nodes are the building blocks made
up of only one node. Additionally, three pairs of nodes form the building blocks of just
two nodes. These 14 nodes can be compared to the misclassified nodes in [6] which were
assigned to an incorrect conference.

Next, we provide an example of how the Gephi tool is used to analyse and visualise
the building block structure. Figure 8 illustrates this structure in the Gephi tool. The
figure shows three divisions—1, 3, 2—which are ordered in descending order of the qual-
ity function value. It also shows the corresponding partitions—q450.658, q417.005, and
q411.899—that correspond to these divisions. For instance, let us take team Brigham Young.
Brigham Young belongs to the community indicated by x in the first division. It also
belongs to the communities indicated by o in the second and third divisions of the network.
In partition q411.899, the concatenated blue symbol xoo corresponds to 23 nodes (20% of the
nodes in the network) in Figure 7f. Symbols oxx, ooo, xoo, xox, oxo, and xxx are identified
with the building blocks of the model in Figure 7f. From Figure 6b, we can see that Brigham
Young is a member of the Mountain West conference of the eight nodes indicated by the
dark brown colour. These eight nodes are in the blue building block of Figure 7f. This
demonstrates that the link weight w = 0.075 of Figure 6b provides a more granular and
detailed structure compared to Figure 7. The blue nodes in Figure 7e constitute a union of
Mountain West and Western Athletic conferences with a couple of exceptions. In summary,
the three divisions of the network with w = 0.085 provide six building blocks that describe
the network structure quite well.
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Figure 6. Football games network. (a) Results from our model, w = 0.075 (b) Conferences of the
teams taken from the information in [6].

Figure 7. Cont.
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Figure 7. The three divisions of the network of American football games between Division IA colleges
during the Fall 2000 regular season. Left-hand side figures show the divisions into two communities,
and the right-hand side figures show the corresponding building blocks. Link weight value w = 0.085
is used in the figures. Correspondence to the Gephi data table in Figure 8 is the following: (a) Division
1, (b) Partition q450.658, (c) Divison 3, (d) Partition q417.005, (e) Divison 2, (f) Partition q411.899.

(a) Data Table (b) Partition q411.899

Figure 8. Screenshots from the Gephi analysis tool.
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7.5. Facebook Social Circles Network

In Figures 9 and 10, we present two examples of how our method can detect building
blocks in larger network structures. Figure 9 shows an analysis of a Facebook friend list
network [62] of 4039 nodes, while Figure 10 presents an analysis of a Government Facebook
structure with 7057 nodes.

(a) a = 1 (b) a = 3 (c) a = 6

(d) a = 13 (e) a = 26 (f) a = 50

Figure 9. Detected building blocks in the Facebook network [62]. The set of six graphs depict the
results obtained through Algorithm 1, which detects an increasing number of communities over the
iterations, denoted by variable a. Link weight value w = 0.075 is used in the figures.

(a) w = 0.04 (b) w = 0.05 (c) w = 0.06

Figure 10. Cont.
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(d) w = 0.07 (e) w = 0.08 (f) w = 0.09

Figure 10. Detected building blocks of the Government Facebook network [63].

We generated the graph layouts using the Fruchterman–Reingold algorithm, which
exerts a force between any two nodes and minimises the energy of the system by moving
the nodes and changing the forces between them. It is worth noting that the algorithm is not
specifically designed for community detection, but it can be used for the visualisation and
analysis of network structures. Figure 9 depicts the detected building blocks of a Facebook
network. Communities are indicated by colours and node locations were determined inde-
pendently by the Fruchterman–Reingold algorithm in the Gephi software [64]. In addition,
links between nodes are visualised by colours also determined by the Gephi software.

In Figure 9, we present another visualisation of the model’s output. As previously
mentioned, Algorithm 1 identifies different ways of dividing a network into two factions.
Each such division represents two communities. The number of discovered building blocks
increases with the number of detected communities. Figure 9 illustrates the building blocks
as a function of detected communities, or variable a, in Algorithm 1. In the graphs, building
blocks are highlighted by different colours.

The results show that there are separate node groups that form one building block,
which we can call as alliances between these groups. If these alliances are optimal solutions
for the quality function in Equation (3), they also constitute a community. The same
phenomenon was observed in the analysis of small networks in Sections 7.1 and 7.2.
When link weights decrease, the cohesion in the network decreases as well. As a result,
these alliances can break up into smaller building blocks or communities. Examining the
formation and breaking up of alliances when link weights change is one way of analysing
community formation in networks.

We have arranged the results based on the quality function value in Equation (3). The
first division shown in Figure 9a with a = 1 represents the strongest division. The second
graph, shown in Figure 9b, displays the incrementally formed building blocks for the third
iteration with a = 3. To save space, we have omitted the graph corresponding to the second
detected division with a = 2 corresponding to a small building block. Here, we demonstrate
only the formation of larger building blocks. However, in some applications, the more
granular changes may also be of interest. Finally, the last graph in Figure 9f displays the
results after fifty optimal solutions of Equation (3) are found. Here, we set a stopping rule
for the maximum number of detected communities at a = 50 in our calculation.

Some large building blocks are seen to emerge after a large number of iterations.
Because the results were sorted according to the quality function value, the last solutions
include communities that are weak. For instance, Figure 9d,e show that the building
block which is coloured blue in the upper right corner of the image split into orange and
blue building blocks at this late stage. Iteration a = 26 is the first graph where all large
building blocks are detected with the link value w = 0.0075. With higher link values, the
number of detected communities decreases, and thus the number of detected building
blocks also decreases.
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7.6. Government Facebook Network

In this example, we discuss a structure of a Government Facebook network [63]. The
network consists of mutually liked Facebook pages. Nodes represent the pages and links
that are mutual likes among them. The network has 7057 nodes and 89455 links.

To demonstrate the different methods of using our model, we present the detected
building blocks as a function of link weight w. In Figure 10, we can observe that the number
of detected building blocks decreases as the link weight increases. The cohesion of the
network increases, resulting in fewer optimal solutions or communities being detected in
the network.

The nodes’ colour in the figure was automatically determined by the number of nodes in
building blocks by the Gephi software. This results in changing colours from image to image.
As we can see, peripheral groups tend to persist as separate structures in the network. In all
graphs of Figure 10, there is one large community with a high internal cohesion. For lower
link-weight values, this community can also break into smaller communities.

8. Discussion

We developed a technique to identify communities and their substructures in a net-
work structure. To do this, we used a probability matrix that measured the strength of
the influence between all pairs of nodes in the network. With the help of that matrix, we
defined an objective function, which served as a quality measure for communities in the
network. Our approach is highly adaptable and can be used with a wide range of network
models and quality functions to suit various applications.

Various network flow and network connectivity models can be used to generate the
probability matrix. If the goal is to study influence spreading, the matrix is called an
influence-spreading matrix [29]. If we are interested in network connectivity, the matrix is
called a connectivity matrix. We use a detailed topological model of the network structure
in both cases, and the links between nodes are modelled bidirectionally. Probabilistic
modelling is used to define all measures with physically interpretative quantities, including
centrality measures, a cohesion measure, and quality functions for community detection.
These measures can be expressed as a function of time or can be calculated for a stationary
state where time approaches infinity T → ∞ [55].

In this study, we used equal link weights to provide a clear understanding of the
method’s general concepts and characteristics, such as overlapping communities, quality
functions, building blocks, and cohesion. We also developed detailed models of network
connectivity and influence spreading with directed link weights, which describe node-
level spreading in network structures. These models [16,55,58] can be used to generate
probability matrices that serve as inputs for the community detection method described in
this study.

In our influence-spreading model, we calculated the quality function value by aver-
aging the out-centrality and in-centrality values for all nodes within communities. This
assumption is reasonable if the strength of social ties between individuals on average are
symmetric. Our quality function does not consider the direct influence between different
communities, which is also a common feature in other community detection methods [4].
Different applications may require the use of different forms of quality functions. For
instance, in the case of network connectivity, a similar form to ours can be used, or a form
based on the connectivity between all pairs of nodes within the candidate communities.
In addition, we showed that a normalisation based on the size of communities could give
communities different rankings, although the normalisation did not affect which commu-
nities were detected. That is, the existence of communities and the classification of their
characteristics can be considered separately.

We illustrated our method with the Zachary’s Karate Club social network which
has been used as a test network in many other studies of community detection. Another
example network is the Les Misérables network, because the same network has been
analysed by information-theoretic methods [17]. Therefore, these results can be compared
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with our results. The results of the information-theoretic model were almost similar to
those provided by our model. In addition, we presented results for the dolphin social
network and the American football games network. These results can be compared with
the corresponding ground-truth communities and many results from other studies in the
literature. Our model produced results similar to those obtained in these studies.

We tested two larger networks and found that local maxima of the quality function
could be identified in the network structures, including substructures. These networks
represented two different network structures of egocentric social circles and page link
connections on Facebook. To visualise these lower-scale structures of the networks, we
used the Gephi analysis tool [64]. Layouts of the networks were generated independently
by the analysis tool, and information about detected community structures from our model
was added to these graphs. In this way, we showed the usefulness and validity of our
model in cases where no ground-truth communities are known.

The identified local maxima indicate groups of nodes that may consist of multiple
sub-communities with lower link weights or a lower cohesion of the network. However,
it should be noted that not all of these groups are communities, despite what the Gephi
visualisations may suggest. Whether a group of nodes is detected as a separate community
depends on whether or not it is a local maximum of the quality function. This is a crucial
aspect of our model.

Our model can be used to detect the main divisions into communities as a special
case, when we increase the strength of social ties or link weights. This leads to only one or
few solutions for the optimal community quality function. However, if the link weights
are known and interpreted as probabilities, the model can detect several overlapping
communities. This is a common scenario as people usually participate in numerous social
activities related to work and hobbies.

We acknowledge that there are some limitations and deficiencies in the current state
of our work. While we provide some preliminary tests in Appendix C.2 and discuss some
optimisation methods, the software code is not yet fully optimised. We believe that most of
the optimisation can be achieved by using functions of the programming language more
efficiently, which is not directly related to the method itself. In the future, producing a
software product is a possible task. To pinpoint obvious optimisation targets, we pro-
vided a pseudoalgorithm in Algorithm 1. However, our method and algorithm can be
compared with the widely used method of maximising modularity in other community de-
tection methods. As the optimisation of our proposed quality function and the modularity
measure [8] are similar, we conclude that the computational complexity of both methods
is comparable, and similar optimisation methods can be used to improve accuracy and
efficiency in both cases.

One limitation of the model is that we do not know the exact link weight value in
advance, especially if we are not using a probabilistic model or empirical observations
to evaluate it. One way to determine suitable link weight values is to experiment with
different values. We can start with a high value and gradually decrease it until communities
begin to emerge; there is no need to finish the computation. Depending on the application,
we can then analyse the network with a few lower link values, as we did in this study.

The structure of the quality function is a topic of research in itself. There are different
ways to consider cross-terms between two or more factions of a division, particularly in
network spreading models where they may be ignored or accounted for. We justified our
proposed quality function by showing that maximising the quality function was equivalent
to minimising the cross-term effects in the network. This is analogous to the definition of
modularity that is used in other models. In a more detailed model than the one presented
in this study, some effects between communities could be included in the quality function
with a lower weight, as in practice, communities are not entirely isolated and tend to
interact with each other.
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9. Conclusions

We proposed a new method for detecting communities and their building blocks in
a network structure. This method relied on a probability matrix and local maxima of a
quality function. We defined communities as optimal solutions of the quality function
and building blocks as the communities themselves and all possible intersections of the
detected communities. Communities were formed by combining these building blocks.
The probability matrix showed the strength of influence between all pairs of nodes in the
network, while the quality function measured the quality of detected communities. Our
model was designed to be flexible and can be implemented with various network models
and quality functions that suit different applications.

Our proposed method enables the division of the problem of identifying communities
within network structures into separate, independent problems. This approach makes it
possible to analyse and compare different network models while keeping the community
detection model consistent. Vice versa, different community detection methods can be
compared while keeping the same network model.

In our study, we found that our influence-spreading model, which included full
breakthrough effects and network community connectivity models, resulted in much the
same community structures and building blocks. This is primarily because our model
is based on the local maxima of a quality function, which means that communities usu-
ally emerge for low link values. When link values are low, the specific network flow
model has only a minor effect on spreading probabilities, except in the neighbourhood of
source nodes.

We defined a measure of cohesion that was a generalisation of the quality function.
This measure can analyse network structures beyond detecting communities in networks,
offering a broader perspective. The measure of cohesion applies to any set of nodes,
including those with high link weights. Communities and building blocks emerge when
there is a decrease in cohesion in the network or a specific part of it. In real social networks,
this decrease in cohesion is caused by weaker ties in social relationships, which have a clear
and direct interpretation.

As has been noted in the literature, the search for communities on networks is gener-
ally not a well-defined problem. In this study, we discussed the possibility of developing
separate models for network structure, network flow, and community detection. Our
method of using a probability matrix was proposed as a technique to combine network
models and community detection models and help specify the community detection prob-
lem more consistently. In addition, we discussed the role of quality functions and their
applications in community detection methods. Quality functions can be used to specify
accurate community detection methods, but the most commonly used modularity function
fails to detect small communities in large networks, and many of the proposed community
detection algorithms are not based on quality functions or use approximate techniques to
enhance computing efficiency. In this study, we proposed a novel quality function based
on the probability matrix that can be used to analyse non-overlapping and overlapping
community structures. The method was demonstrated with several social networks to
show its usefulness and validity.

Although the problem of detecting communities has been extensively studied in
numerous scientific articles, we believe that our approach adds significant value to the
ongoing discussions. Our proposed method is a novel and consistent way to detect and
quantify overlapping communities and their building blocks. Our work emphasises the
complexity of the community detection problem, which may have been overlooked by
traditional network analysis methods that rely on simple phenomenological models, use
only local information of a network, or try to detect only one or a few communities. We
believe that our approach offers a possible solution to these issues.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Appendix A

A Simple Example of Circular Effects in the Influence-Spreading Model

Here, we provide a simple example of a network with three nodes 1, 2, 3. Three
bidirectional links 1 ↔ 2, 1 ↔ 3, and 2 ↔ 3 connect the three nodes. We calculate the
spreading probability from node 1 to node 3 in the complex contagion model, where loops
are allowed, and in the simple contagion model, where loops are not allowed (only self-
avoiding paths). We assume that all link weights are w = 0.5. In the simple contagion
model, only paths 1 − 2 and 1 − 3 − 2 are allowed, and by the rule of non-exclusive
events, we obtain C(1, 2) = 0.5 + 0.52 − 0.5× 0.52 = 0.625. In the complex contagion
case, we combine the paths 1− 2, 1− 3− 2, 1− 3− 1− 2, 1− 3− 1− 3− 2, . . .. We process
these paths in the descending order of the longest common prefix [29]. For the four
paths mentioned above, we obtain by the rule of non-exclusive events the result in three
steps. In the first step, we combine paths 1− 3− 1− 2 and 1− 3− 1− 3− 2 and obtain
0.52(0.5 + 0.52 − 0.5× 0.52) = 0.15625. In the second step, we combine path 1− 3− 2
and obtain 0.15625 + 0.52 − 0.52 × 0.15625/0.5 = 0.328125. In the third step, we obtain
C(1, 2) = 0.5 + 0.328125 − 0.5 × 0.328125 = 0.6640625. If we continue the series, we
obtain more correct decimals. As expected, the probability is higher for the complex
contagion case.

Our model considers paths that have path lengths of L ≤ Lmax, where Lmax is a
parameter of the model. This makes our model a “global” type of model when compared
to some “local” models found in the literature. Typically, local detection methods build a
community around a seed node and add nodes until a local optimum is reached, which is
computationally efficient [1]. We developed an efficient algorithm for computing influence-
spreading probabilities in [29]. Although the effects decrease rapidly as a function of path
length for low link weights, computing the influence-spreading matrix elements for high
link weights and large networks can be time-consuming. This is because longer path lengths
must be included in the calculations. However, in community detection applications, low
link weights are typical because networks with high link weights have a high cohesion
where no communities are detected, as explained in this study.

1 1 1 2 

1 3 

W1,2 

W3,1 

W2,3 

W2,1 

W1,3 

W3,2 

Figure A1. Illustration of the influence-spreading model with full breakthrough effects and the
method of combining influence probabilities through alternative routes, using a network structure of
three nodes.

Appendix B

Division into Three Communities in Zachary’s Karate Club

In Figure A2, we present the results of our community detection model for detecting
three distinct communities. To obtain a division into three communities, we set the element
values of the influence-spreading matrix to zero for one of the communities detected in
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Figure 2, indicated by the white colour in Figure A2. This scenario can be explained as
communities emerging step by step, where the first division into two communities occurs
first, and then one of the two communities further splits into two communities. Using this
procedure, we identified two different divisions in Figure 2b, three divisions in Figure 2c,
and one division in Figure 2f. However, no communities were detected corresponding to
Figure 2a,d,e.

In Figure A3, we display the building blocks of the three communities deduced from
Figure A2. This can be compared with the corresponding Figure 2l of the building blocks
of two communities. There are minor differences concerning nodes 10, 28, and 34. Node 34
is one of the central nodes, and it has moved to the other community in Figure A2b.

An alternative approach would be to assume that the three communities emerge
simultaneously. To achieve this, we need to modify the quality function in Equation (3) for
three communities (or to any number of communities). However, we must exercise caution
because the quality function excludes an increasing number of interactions as the number
of communities increases due to the omission of cross-terms. This is a common weakness
in community detection methods in the literature. Nevertheless, this issue is not as relevant
when dividing into two factions is considered.

Figure A2. Communities from Zachary’s Karate Club network with link weights w = 0.05. Divisions
into three communities are displayed with three colours. Figures (a–f) show the detected divisions in
the order of the quality function values. Building blocks collected together from the above graphs are
shown in Figure A3.

Figure A3. Building blocks from Zachary’s Karate Club network with link weights w = 0.05.
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Appendix C

Appendix C.1. An Introductory Example from the Literature

We refer to the work presented in [20] as an example of many similar studies in the
literature. The authors of the article compared the same example networks of Zachary’s
Karate Club, dolphin network, and college football network by using the modularity and
NMI measures. They compared three community detection algorithms from the literature
with their proposed community detection model for overlapping communities. These
results can be compared with our results, particularly concerning the overlapping nodes
predicted by the models.

For Zachary’s Karate Club network, nodes 3 and 10 were detected as overlapping
nodes. In another study [6], node 3 was misclassified in an analysis of the hierarchical
clustering method. We can compare these results with our results in Figure 2 for the case
with link weight w = 0.05. Although this case has a more complex structure, node 3
remains a special case.

For the dolphin network, three nodes were detected as overlapping nodes, and this
again can be compared with our complex structure in Figure 5. Finally, for the college
football network, only two nodes were detected as overlapping nodes. In our study,
Figure 6a shows eight single grey nodes, and two yellow and two purple nodes that can be
classified as overlapping nodes.

Appendix C.2. Computing Times

In our study, we identified multiple optimal divisions of a network determined by
the local maxima of Equation (3). We did not conduct LFR benchmarks with synthetic
networks [38]. Such benchmarks are more appropriate for detecting a small number of
communities, or their method for comparing overlapping nodes is different from our
approach. Additionally, the normalised mutual information (NMI) is biased [42] and
differs from our proposed measure of Equation (3). Moreover, in large networks, there is
a resolution limit in optimising modularity, which would make the method fail to detect
small communities [9]. Therefore, comparisons with other methods, based on modularity,
may not provide informative results.

In Figure A4, we explore the impact of network sizes, detected building blocks, link
weight, and optimisation methods on computing times. We experimented with four
different optimisation methods for selecting the initial setting of nodes or controlling the
processing order of nodes in searches. First, we computed row sum vectors AS and column
sum vectors AR of the probability matrix M for each column and row, respectively. Then,
we sorted the array AS by setting pointers from 1 to N in the array IS and sorted the array
AR by setting pointers from 1 to N in the array IR.

We divided nodes into two sets by using one of the following four methods:

1. On line 9 of Algorithm 1, we picked columns from IS for the iterations and then set
V(i) = 1 or V(i) = 0 i = 1, . . . , N by using the sorted row values of M. On line 12 of
Algorithm 1, we moved nodes in the order determined by vector IS.

2. Same as method 1, but with the roles of columns and rows exchanged.
3. Randomised vector V on line 12 of Algorithm 1.
4. Same as method 1, but on line 12 of Algorithm 1, we moved nodes in the order of the

highest change in the quality function value in Equation (3).

Methods 1 and 2 rely on the out-centrality and in-centrality values of nodes. Method 3,
on the other hand, does not use matrix M’s information. Method 4 involves moving nodes
between the two divisions of the network by optimising the quality function. We also
explored modifying method 1 and method 2 by using vectors IR and IS, respectively, to
move nodes on line 12 of Algorithm 1. This had no significant impact on computing times
because out-centrality and in-centrality values are correlated. Despite their numerical
values being different, typically their ordering is almost the same. In Figure A4a, the
method is denoted by m and link weight by w.
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From Figure A4, we can draw the following conclusions:

1. Optimising the initial setting of iterations and the order of processing nodes can
significantly enhance the performance of Algorithm 1 (see Figure A4a–c)

2. Method 3 shows the worst performance since no optimisation is utilised. However,
when used for small networks, more divisions can be detected, which significantly
enhances the performance of Algorithm 1 (see Figure A4a–c).

3. Utilising the quality function of Equation (3) for selecting optimal node moves be-
tween division of the network can significantly enhance the performance of
Algorithm 1 (see Figure 3b,c).

4. Combining different optimisation methods can enhance the performance of
Algorithm 1 and ensure that all important divisions are detected (see Figure 3a,c).

5. The essential divisions are detected quickly, but searching for weaker divisions mea-
sured by Equation (3) can take a long time (see Figure 3a–d).

6. For larger networks, the computing time increases approximately linearly as a function
of detected divisions (see Figure 3a,c,d).

7. The link weight value w has a minor impact (see Figure 3a,c), but larger values can
decrease the number of optimal solutions of Equation (3) and reduce the performance
(see Figure 3a).
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(c) Government Facebook network (w = 0.007)
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Figure A4. Computing times for example networks. Effects of network sizes, optimisation methods
m, link weights w, and the number of detected communities.

It is important to note that the software code and the used functions of the program-
ming language were not optimised. Future studies should focus on planning, developing,
and testing different optimisation techniques. We can see that optimisation methods and
techniques can be distinct for traditional community detection and for searching all or most
of the maxima of a quality function.
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