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Abstract: This research paper presents a comprehensive study on optimizing the critical artificial
intelligence (AI) factors influencing cost management in civil engineering projects using a multi-
criteria decision-making (MCDM) approach. The problem addressed revolves around the need to
effectively manage costs in civil engineering endeavors amidst the growing complexity of projects
and the increasing integration of AI technologies. The methodology employed involves the utilization
of three MCDM tools, specifically Delphi, interpretive structural modeling (ISM), and Cross-Impact
Matrix Multiplication Applied to Classification (MICMAC). A total of 17 AI factors, categorized
into eight broad groups, were identified and analyzed. Through the application of different MCDM
techniques, the relative importance and interrelationships among these factors were determined. The
key findings reveal the critical role of certain AI factors, such as risk mitigation and cost components,
in optimizing the cost management processes. Moreover, the hierarchical structure generated through
ISM and the influential factors identified via MICMAC provide insights for prioritizing strategic
interventions. The implications of this study extend to informing decision-makers in the civil
engineering domain about effective strategies for leveraging AI in their cost management practices.
By adopting a systematic MCDM approach, stakeholders can enhance project outcomes while
optimizing resource allocation and mitigating financial risks.

Keywords: artificial intelligence; cost management; civil engineering projects; Delphi; interpretive
structural modeling; MICMAC; multi-criteria decision-making

1. Introduction

Effective cost management is a critical issue in civil engineering projects, especially
given the increasing complexity and scale of construction activities. As economic conditions
fluctuate, robust cost management strategies are essential to avoid cost overruns and delays,
which can undermine project success and stakeholder satisfaction [1]. These issues often
arise from inadequate cost management, and addressing them is crucial for ensuring the
viability and sustainability of civil engineering projects. This research aims to optimize AI
factors to improve cost efficiency, reduce financial risks, and ultimately enhance project
outcomes. This aligns with the broader goal of ensuring that civil engineering projects are
successful and sustainable. The need for innovative methodologies to boost cost manage-
ment and reduce financial risks is more pressing than ever. With the rapid advancements
in AI technologies, AI applications like predictive analytics, machine learning, and au-
tonomous systems offer new ways to improve traditional cost management practices [2].
These AI tools can provide real-time monitoring, detect potential cost overruns early, and
support proactive decision-making to mitigate risks. By leveraging these technologies,
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civil engineering projects can enhance their cost management strategies and improve their
overall project performance.

Integrating AI factors into the cost management frameworks in civil engineering
remains a complex and evolving challenge. This complexity arises from the multifaceted
interactions among stakeholders, technical specifications, environmental considerations,
and regulatory requirements [1,2]. Furthermore, uncertainty and ambiguity in project data,
along with the dynamic nature of construction, complicate AI’s implementation in cost
management. To address these challenges, this research proposes a novel methodology: the
fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach [3]. This approach
combines fuzzy sets, the Delphi method, ISM, and MICMAC to optimize the AI factors in
civil engineering cost management. By incorporating this hybrid approach, this research
aims to overcome the inherent complexities in and contribute valuable insights to the field.

Civil engineering projects are complex, involving various factors like material costs,
labor, equipment rentals, and compliance with regulations. The addition of AI technologies
introduces further intricacies. To effectively navigate these complexities, a systematic
approach is needed to optimize AI’s role in cost management. The rapid development of
AI offers opportunities to improve cost estimation, budget allocation, and resource manage-
ment through predictive analytics, machine learning, and autonomous systems. Given this
potential, this research aims to develop methods that fully leverage AI in cost management.
With growing competition and pressure to complete projects on time and within budget,
there is a rising demand for innovative cost management strategies in civil engineering.
This research seeks to meet those demands by providing practical tools and methodologies
to optimize AI factors for better cost efficiency and project outcomes. In summary, the
motivation of this research is the need to address civil engineering complexities, harness
AI’s potential, advance industry knowledge, and fulfill the demand for innovative cost
management solutions.

Incorporating fuzzy sets into the Delphi-ISM-MICMAC framework allows for man-
aging uncertainties and imprecise data in real-world decision-making. This combination
of fuzzy logic with Delphi, ISM, and MICMAC analyses offers a novel way to optimize
AI factors in cost management. This research aims to advance MCDM knowledge and
create innovative methodologies to tackle the real-world challenges in civil engineering.
By integrating these MCDM tools, this study provides a structured framework to identify,
evaluate, and prioritize the AI factors relevant to cost management in civil engineering [3,4].
This research takes a holistic approach that considers the interdependencies and dynamic
interactions between AI factors, aiming to offer insights into using AI technologies strategi-
cally for cost optimization in civil engineering projects. This hybrid methodology helps
bridge the gap between theoretical AI advancements and practical cost management in
civil engineering [4]. The findings of this study could guide decision-makers, practition-
ers, and researchers, contributing to the advancement of cost management practices in
civil engineering.

This research is significant for its theoretical insights and practical applications, provid-
ing industry practitioners with a roadmap to manage the complexities of cost management
in an AI-driven world [5]. By linking theory with practical application, it offers a transfor-
mative framework poised to redefine cost management in the civil engineering sector. This
study represents a pioneering effort to revolutionize cost management practices through a
fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach [2,3]. The research
addresses the urgent need for improved cost optimization strategies in civil engineering
projects. By creating a structured approach to optimize the AI factors involved in cost
management, this hybrid model not only advances theoretical knowledge but also delivers
practical solutions to real-world industry challenges. This research is a significant step
toward enhancing cost management efficiency, reducing financial risks, and promoting
innovation within the civil engineering field, setting the stage for sustainable project success
in the future [6]. Let us now explore the potential implications of this research across several
key areas:
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• This research presents a systematic approach to optimizing the AI factors in civil
engineering cost management by combining fuzzy sets, the Delphi method, ISM, and
a MICMAC analysis. This hybrid approach offers decision-makers a comprehensive
framework to improve cost management’s efficiency and effectiveness.

• By utilizing MCDM techniques, this research helps stakeholders make informed
choices about selecting, prioritizing, and implementing AI technologies in cost man-
agement. The proposed approach takes into account the interdependencies among AI
factors, aiding strategic decision-making.

• Optimizing key AI factors also contributes to reducing the financial risks of civil engi-
neering projects. Effective cost management ensures project viability, profitability, and
stakeholder satisfaction. The proposed method identifies cost-saving opportunities,
predicts potential cost overruns, and proactively addresses financial risks, ultimately
leading to better project outcomes.

• Integrating fuzzy sets, the Delphi method, ISM, and MICMAC represents a novel ap-
plication of MCDM for optimizing the AI factors in civil engineering cost management.
This research contributes to the field by showcasing the effectiveness of this hybrid
approach in tackling complex decision-making challenges in real-world settings.

• The research findings have practical implications for industry practitioners, including
project managers, engineers, and policymakers in civil engineering. By offering action-
able insights and recommendations, this study provides stakeholders with tools and
methodologies to effectively use AI for cost optimization in civil engineering projects.

Problem Statement

The key issue addressed by this research is the challenge of effectively managing costs
in civil engineering projects, especially with their growing integration of AI technologies.
These projects are complex, with many variables such as material costs, labor expenses,
equipment rentals, and unforeseen circumstances like weather or regulatory changes.
Traditional cost management relies on experience-based decisions, historical data, and
standardized cost estimations. However, these methods often fall short due to the dynamic
nature of construction, leading to cost overruns and delays [7]. The rapid advancement of
AI technologies presents potential solutions through its predictive capabilities, data-driven
insights, and automation of routine tasks. AI applications like machine learning, predictive
analytics, and autonomous machinery can optimize cost management, improve project
efficiency, and reduce financial risks. Despite these benefits, the effective integration of
AI into cost management frameworks remains a challenge. Selecting, prioritizing, and
implementing AI technologies in civil engineering requires careful consideration of their
relevance, impact, and interdependencies. The problem statement, therefore, calls for
a systematic methodology to optimize the AI factors involved in the cost management
of civil engineering projects [8]. This approach must consider the complex interactions
among AI factors, the uncertainties in project data, and the ever-changing construction
environment. Additionally, it should offer decision-makers actionable insights for strategic
interventions and resource allocation. To address these challenges, the proposed research
introduces a fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach, pro-
viding stakeholders with a comprehensive framework to improve cost management’s
efficiency and effectiveness in civil engineering projects [9]. This research aims to leverage
AI technologies to optimize cost management practices and deliver practical solutions to
industry stakeholders.

2. Literature Review

Effective cost management in civil engineering projects is crucial for project success,
stakeholder satisfaction, and profitability. The recent spread of AI technologies across
various sectors has fueled the interest in using AI to improve cost management in civil
engineering [10]. This literature review explores key concepts, methodologies, and past
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studies that relate to optimizing AI factors for cost management in civil engineering,
emphasizing the fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach.

According to Song et al. [11], cost management is paramount in civil engineering
projects to ensure that projects are completed within budget constraints and deliver value
for stakeholders. Liao et al. [12] stated that effective cost management practices are crucial
for achieving project objectives, meeting client expectations, and optimizing resource
allocation. Studies by Qiang et al. [13] emphasized the significance of cost management
in enhancing project efficiency and mitigating financial risks. Various cost estimation
techniques are employed in civil engineering projects to forecast project expenses accurately.
Zarei et al. [14] outlined a parametric estimation that utilizes mathematical models and
historical data to estimate costs based on project parameters. Wakjira et al. [15] discussed
analogous estimating that involves the use of past similar projects as benchmarks for cost
estimations. These techniques are vital for providing early cost projections and guiding
budgetary decisions. Budgeting and cost control are essential components of effective
cost management in civil engineering projects. Ahsan [16] emphasized the importance of
budgeting in allocating financial resources to project activities. Sahoo et al. [17] described
cost control parameters, which involve monitoring project expenses, identifying variances,
and implementing corrective actions to maintain adherence to the budget.

Civil engineering projects also face various challenges in cost management, including
inaccurate cost estimations, scope changes, and material price fluctuations. Khazaelpour
and Zolfani [18] highlighted the challenge of accurately estimating costs due to uncer-
tainties and dynamic project conditions. Son and Khoi [19] discussed the complexities of
managing costs in large-scale infrastructure projects, emphasizing the need for proactive
risk management strategies. Technological advancements have transformed cost manage-
ment practices in civil engineering. Abualigah et al. [20] studied the integrated project
management systems that streamline the cost estimation and budgeting processes by cen-
tralizing project data and facilitating collaboration among stakeholders. Khademian [21]
demonstrated Building Information Modeling (BIM), which enhances cost management by
providing accurate 3D models for cost estimations and project visualization. Sustainability
considerations and lifecycle costing have gained prominence in civil engineering projects
as well. Song et al. [22] advocated for sustainable construction practices to minimize envi-
ronmental impact and promote long-term economic viability. Khodabakhshian et al. [23]
highlighted the importance of lifecycle costing in assessing the total cost of ownership over
a project’s lifecycle, including construction, operation, and maintenance costs.

In summary, cost management is a critical aspect of civil engineering projects, influ-
encing project outcomes, stakeholder satisfaction, and project sustainability. Effective cost
management practices rely on accurate cost estimation, proactive budgeting, and robust
cost control measures. Technological advancements, sustainability considerations, and
lifecycle costing have reshaped the cost management practices in civil engineering, offering
new opportunities for improving project outcomes and stakeholder satisfaction.

2.1. The Role of Artificial Intelligence in Cost Optimization

AI has attracted considerable interest for its role in cost optimization across various
industries, including civil engineering, where cost management is vital for project success
and profitability. This literature review explores key concepts, methodologies, and prior
studies on AI’s impact on cost optimization. AI comprises a spectrum of technologies like
machine learning, natural language processing, and predictive analytics, all of which can
be used to optimize costs across multiple industries [12]. In civil engineering, AI offers
the potential to transform cost optimization practices by delivering data-driven insights,
predictive capabilities, and the automation of routine tasks [9,10]. AI algorithms can process
large volumes of project data, detect patterns, and produce accurate cost estimates, allowing
project managers to make more informed decisions and reduce financial risks [13].

Machine learning algorithms like regression analyses, decision trees, and neural
networks are extensively used for cost estimation in civil engineering projects [21]. They



Information 2024, 15, 280 5 of 34

analyze historical project data—such as project specifications, materials, labor costs, and
project durations—to predict future costs [22]. These models learn from past data to identify
cost drivers, estimate project budgets, and optimize resource allocation, thereby enhancing
cost efficiency and project outcomes [9]. Predictive analytics techniques, including risk
modeling and Monte Carlo simulation, are used to evaluate and mitigate the financial risks
in civil engineering projects [7,8]. These techniques examine project variables and external
factors, such as market conditions, regulatory changes, and weather patterns, to forecast
potential cost overruns and schedule delays [21]. By identifying risks early in the project
lifecycle, predictive analytics helps project managers develop risk mitigation strategies,
allocate contingency funds, and improve project planning and execution [13].

AI technologies automate the routine tasks in cost optimization, including data col-
lection, analysis, and reporting [15]. Natural language processing (NLP) can extract the
relevant information from project documents, contracts, and reports, streamlining cost
estimation and budgeting [16]. Robotic Process Automation (RPA) tools further enhance
efficiency by automating repetitive tasks like invoice processing and payment tracking,
reducing manual errors [17,18]. The integration of AI with Building Information Modeling
(BIM) presents new avenues for cost optimization in civil engineering projects [13,14]. BIM
models contain detailed information about project components, materials, and quantities,
which AI algorithms can use for cost estimations, quantity takeoff, and value engineer-
ing [19]. This combination of BIM data with AI-driven analytics allows project stakeholders
to optimize costs, improve decision-making, and enhance project collaboration and com-
munication [20,21].

In conclusion, AI is crucial for cost optimization in civil engineering projects, providing
advanced analytics, predictive capabilities, and the automation of routine tasks. Machine
learning algorithms, predictive analytics, and automation tools help project managers
optimize costs, reduce risks, and improve project outcomes. Integrating AI with Building
Information Modeling (BIM) enhances these practices, offering stakeholders actionable
insights and enabling data-driven decision-making in civil engineering projects.

2.2. Previous Studies Involving the Fuzzy Integrated Delphi-ISM-MICMAC Hybrid
MCDM Model

Previous studies involving the fuzzy integrated Delphi-ISM-MICMAC hybrid MCDM
model have demonstrated its effectiveness in addressing complex decision-making prob-
lems across various domains. Fuzzy sets are a mathematical approach that the handles
uncertainty and imprecision in decision-making processes by assigning degrees of mem-
bership to linguistic terms [23]. In the context of MCDM, fuzzy sets enable decision-makers
to express subjective preferences and uncertainties in a quantitative manner, facilitating
the integration of qualitative and quantitative criteria in decision-making models [24].
Studies by Zhan et al. [25] have highlighted the applicability of fuzzy sets in handling
vagueness and ambiguity in decision-making problems. The first method, Delphi, is a
structured communication technique used to gather and distill the knowledge and opinions
of experts on a particular subject [17]. In the context of MCDM, the Delphi method is often
employed to elicit expert judgments and preferences regarding decision criteria, weights,
and alternatives [8]. Previous studies by Onyelowe et al. [2] demonstrated the effectiveness
of the Delphi method in achieving consensus among experts in decision-making processes.

Yenugula et al. [2] applied the Delphi technique to elicit expert judgments on multi-
criteria decision-making in the context of environmental management and discussed the
integration of the Delphi method with an Analytic Hierarchy Process (AHP) for decision-
making in complex systems. Wang et al. [4] utilized the Delphi method to determine the
weights for criteria in a fuzzy AHP framework for supplier selection and also evaluated
the effectiveness of the Delphi method in achieving consensus among experts during
decision-making processes within healthcare management. Abbasnejad et al. [5] conducted
a systematic review assessing the reliability and validity of the Delphi method in various
fields, including business, healthcare, and education. They also discussed the application
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of the Delphi method in technology forecasting and innovation management, highlight-
ing its utility in addressing uncertainties and eliciting expert opinions. Al Awadh and
Mallick [6] explored the use of the Delphi method in healthcare research, emphasizing its
role in synthesizing diverse perspectives and generating consensus among stakeholders.
They examined the application of the Delphi method in urban planning, demonstrating its
effectiveness in eliciting expert judgments for decision-making in complex urban environ-
ments. Ünal et al. [7] proposed modifications to the traditional Delphi method, including
the use of online platforms and statistical convergence criteria, to enhance its efficiency
and reliability. They introduced the Policy Delphi method, which incorporates structured
feedback and iterative rounds of expert consultation to address complex policy issues and
decision-making challenges.

The next method, ISM, is used to analyze complex systems and identify the hierarchical
relationships among elements [13]. In the context of MCDM, ISM enables decision-makers
to visualize and understand the interdependencies among criteria or factors influencing
a decision problem [14,15]. Studies by Saglam [26] demonstrated the application of ISM
in structuring decision problems and identifying driving and dependent factors. They
applied ISM to analyze the factors influencing sustainable supply chain management prac-
tices, highlighting its utility in identifying key drivers and relationships. In subsequent
research, Saglam [26] also utilized ISM to model the interrelationships among critical
success factors for implementing Total Quality Management (TQM) in manufacturing
organizations. Nalluri and Chen [27] employed ISM to understand the complex interac-
tions among factors affecting sustainable business performance in the context of green
supply chain management. The authors proposed an extension of ISM called fuzzy ISM,
which incorporates fuzzy sets to handle the uncertainty and vagueness in the modeling
process. Nalluri and Chen [27] also introduced an integrated approach, combining ISM
with an Analytic Network Process (ANP) to analyze the interdependencies among critical
success factors for sustainable supply chain management. Alshahrani et al. [24] conducted
a comparative study of ISM and DEMATEL (Decision-Making Trial and Evaluation Labora-
tory) techniques for analyzing the factors influencing lean manufacturing implementation,
highlighting the strengths and limitations of each approach. Mahdiraji et al. [28] proposed
a hybrid approach, combining ISM with graph theory and entropy-based weight deter-
mination to prioritize the factors influencing sustainable manufacturing practices. They
applied ISM to model the complex relationships among factors influencing the adoption
of cloud computing technology in the manufacturing industry, providing insights for
decision-makers to prioritize adoption strategies. Kumar et al. [29] presented a case study
on the application of ISM to analyze the factors affecting employee engagement in the
healthcare sector, demonstrating its effectiveness in identifying key drivers and formulating
actionable strategies.

The third technique, MICMAC analysis, is a technique used to assess the relative
influence and interactions among factors in a decision-making problem [8]. In the con-
text of MCDM, a MICMAC analysis helps identify driving and dependent factors and
their impact on the overall decision problem [8–10]. Previous studies by Zabihi et al. [1]
demonstrated the application of a MICMAC analysis in understanding the dynamics of
complex decision problems. They applied a MICMAC analysis to identify the key drivers
and barriers influencing the adoption of renewable energy technologies in rural areas,
highlighting its utility in understanding the dynamics of sustainable energy transitions.
Sharma and Kumar [8] utilized a MICMAC analysis to explore the interrelationships
among factors affecting innovation capabilities in small and medium enterprises (SMEs),
providing insights for enhancing innovative management practices. They proposed an
extension of the MICMAC analysis called fuzzy-MICMAC, which incorporates fuzzy sets
to handle the uncertainty and imprecision in the assessment of factor interdependencies.
Chen et al. [9] introduced a hybrid approach, combining MICMAC analysis with AHP
for the prioritizing factors influencing sustainable supply chain management practices,
enhancing the robustness of decision-making. Sahoo et al. [10] conducted a compara-
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tive study of MICMAC analyses and the DEMATEL (Decision-Making Trial and Eval-
uation Laboratory) technique for analyzing the factors influencing corporate social re-
sponsibility (CSR) performance, highlighting the strengths and limitations of each ap-
proach. They also proposed an integrated framework combining a MICMAC analysis
with ISM for analyzing the interrelationships among the factors influencing sustainable
manufacturing practices, providing a comprehensive understanding of the factor dynamics.
Tushar et al. [30] presented a case study on the application of a MICMAC analysis to
assess the factors influencing the adoption of green building technologies in the construc-
tion industry, facilitating informed decision-making for sustainable construction practices.
Nalluri et al. [31] used a MICMAC analysis to understand the dynamics of the factors
affecting the consumer adoption of electric vehicles, providing insights for policymakers
and industry stakeholders to promote sustainable mobility solutions.

Overall, the fuzzy-enabled Delphi-ISM-MICMAC hybrid MCDM model combines
fuzzy sets, the Delphi method, ISM, and a MICMAC analysis together to address com-
plex decision-making problems [32]. This hybrid model combines the strengths of each
methodology, enabling decision-makers to handle uncertainty, elicit expert opinions, an-
alyze interdependencies, and assess relative influences effectively. Previous studies by
Lianto [32] demonstrated the applicability and effectiveness of the hybrid model in various
decision-making contexts, including supply chain management, environmental sustain-
ability, and technology adoption. Zhao et al. [33] applied a fuzzy hybrid MCDM model
to evaluate renewable energy technology adoption in the agricultural sector, demonstrat-
ing its effectiveness in addressing sustainability challenges. Jain et al. [34] utilized this
hybrid concept to prioritize green manufacturing practices in the automotive industry,
highlighting its utility in promoting environmental sustainability and competitiveness.
Khan et al. [35] proposed an extension of the hybrid model through the integration of
fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) for supplier
selection in sustainable supply chain management, enhancing decision robustness and ac-
curacy. Pekkaya et al. [36] introduced a novel variant of the hybrid model by incorporating
Bayesian networks to analyze the uncertainties and dependencies among the factors influ-
encing green product development decisions. Sahoo et al. [37] conducted a comparative
study of the hybrid model and traditional decision-making approaches for evaluating eco-
friendly packaging alternatives, demonstrating its superiority in handling complexity and
uncertainty. Sánchez-Garrido et al. [38] proposed a hybrid approach integrating the hybrid
model with multi-objective optimization techniques for sustainable land use planning, pro-
viding decision-makers with optimal solutions considering their economic, environmental,
and social objectives. Gupta et al. [39] presented a case study on the application of the
hybrid model to assess sustainable transportation alternatives in urban areas, facilitating
informed decision-making for urban mobility planning. Khalilzadeh et al. [40] used the
hybrid model to prioritize sustainable practices in the food processing industry, supporting
stakeholders in identifying opportunities for improving their environmental performance
and competitiveness.

2.3. Advantages and Drawbacks of the Adopted MCDM Tools

MCDM has been an effective tool for making precise decisions for decades. The hybrid
MCDM concept, combining the Delphi method, ISM, and a MICMAC analysis, integrates
diverse perspectives from experts, stakeholders, and decision-makers, ensuring a compre-
hensive approach to the various factors and relationships affecting the decision problem.
The incorporation of fuzzy sets into the hybrid MCDM model addresses the uncertainties
and ambiguities in decision-making [4], allowing for a qualitative assessment of the criteria
and factors, even amid the imprecision in expert judgments and preferences. The Delphi
method promotes consensus-building among experts through iterative feedback, enhanc-
ing the credibility of their decisions. ISM helps analyze the structural aspects of decision
problems by identifying the hierarchical relationships among factors [41], providing in-
sights into which factors drive or depend on others. This hierarchy aids decision-makers in
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prioritizing actions and allocating resources effectively. A MICMAC analysis examines the
relative influence and interactions among factors, distinguishing between driving and de-
pendent factors [5]. This analysis helps us understand the complexity of decision problems,
allowing decision-makers to focus on the critical factors that significantly impact outcomes.

The hybrid MCDM concept is flexible and adaptable, suiting various decision contexts
and problem domains. It accommodates a wide range of criteria, factors, and decision
alternatives, making it useful across fields like civil engineering, environmental manage-
ment, and healthcare. By integrating multiple decision-making methodologies, this hybrid
concept leverages the strengths of each approach, resulting in more comprehensive and
accurate decisions. This hybrid approach enhances decision quality by considering mul-
tiple perspectives, factors, and uncertainties [6]. It reduces the reliance on any single
methodology, thereby increasing the robustness and reliability of the decision-making
process. Combining different techniques mitigates the limitations and biases of individual
methods, leading to more robust outcomes [42]. The flexibility of the hybrid approach
allows decision-makers to customize the process to fit specific requirements, based on the
problem’s complexity, available data, and stakeholder preferences. The hybrid concept can
address various aspects of decision-making, such as criteria selection, weighting, ranking,
and sensitivity analyses. This comprehensive view helps decision-makers make well-
rounded choices. Additionally, the hybrid approach exploits the synergy between different
methodologies, yielding better insights, more accurate predictions, and improved decision
recommendations. This flexibility and adaptability cater to diverse decision-making needs,
boosting stakeholders’ confidence in the process and the reliability of the results.

Given the stated benefits, the authors found it appropriate to use the Delphi, ISM, and
MICMAC decision-making models for the current analysis. No other alternative MCDM
tools can replace these models [5,6]. The hybrid approach built with these models enables
consensus building through iterative feedback, establishes the hierarchical relationships
among factors, identifies driving and driven factors, and effectively handles the imprecision
and uncertainty in expert judgments.

Despite these advantages, the hybrid model has limitations. Combining multiple
methodologies like Delphi, ISM, MICMAC, and fuzzy sets can be time-consuming and
create a complex framework. Implementing this hybrid approach requires considerable
expertise and resources, posing challenges for its users [4,5]. The reliance on expert judg-
ments in Delphi and ISM can introduce subjectivity and bias into the decision-making
process, leading to results influenced by individual opinions. The effectiveness of this
hybrid approach depends on the availability of accurate and reliable data. Obtaining such
data, especially for fuzzy set-based components, may be challenging and potentially affect
decision accuracy. Analyzing the interrelationships among factors with ISM and MICMAC
can be computationally complex, particularly with many factors, limiting the scalability
of this hybrid concept to larger problems. Additionally, parameterizing fuzzy set-based
components, like membership functions and fuzzy rules, requires careful calibration and
validation, making it difficult to determine accurate parameter values [41,42]. Despite
these drawbacks, the benefits are compelling, motivating the authors to adopt these tools
for the ongoing analysis. Its advantages in consensus-building, structured analysis, and
the handling of uncertainty make the hybrid concept a valuable approach, despite its
complexities and challenges.

2.4. Research Gaps and the Novelty of the Research

The existing literature shows that fuzzy integrated hybrid MCDM models have been
used in various domains like supply chain management, environmental sustainability,
and technology adoption. However, there is a lack of research applying these models
specifically to cost management in civil engineering projects. Additionally, no prior studies
have combined the Delphi, ISM, and MICMAC methods to tackle a decision-making
problem. Moreover, previous research has not extensively explored the integration of AI
factors into decision-making processes, indicating that there is a gap in our understanding
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of how AI can optimize cost management in civil engineering. The proposed research aims
to fill this gap by integrating AI factors into a fuzzy hybrid model designed specifically
for the cost management of civil engineering projects. This approach acknowledges AI’s
growing role in construction and its potential to enhance cost optimization. The focus on
civil engineering includes unique challenges such as project scope, resource allocation, and
regulatory constraints. The research also explores innovative techniques to integrate AI
into the decision-making framework, including new algorithms and models to analyze
AI’s impact on cost management decisions, enhancing accuracy and efficiency.

To address the noted gaps and improve the cost management practices in civil engineer-
ing, the authors formulated research questions, guiding this investigation into developing
and applying this hybrid model. This article aims to answer these questions and contribute
to advancing cost management within the field.

Q1: What are the key AI factors that influence cost management in civil engineering projects?
Q2: How can expert opinions and consensus be elicited to determine the significance of AI
factors in cost management within the civil engineering domain using the fuzzy integrated
Delphi method?
Q3: What are the interrelationships among the AI factors relevant to cost management in
civil engineering, and how can ISM be employed to analyze these interdependencies?
Q4: Which AI factors are identified as driving forces and which ones are dependent factors
influencing cost management, and how can a MICMAC analysis facilitate
their identification?

Apart from the above research questions, the following research also intended to eluci-
date the practical implications of the proposed approach to enhancing cost management
efficiency and mitigating financial risks in civil engineering projects. Furthermore, the
following study also delves into the potential challenges and limitations associated with
the implementation of the proposed approach, and also ensures its successful adoption
in practice.

2.5. Objectives of the Study

Following the four research questions discussed previously, the authors have antici-
pated fulfilling the following set of objectives:

1. To identify and analyze the key AI factors relevant to cost management in civil
engineering projects.

2. To utilize the fuzzy integrated Delphi method to solicit expert opinions and consensus
on the significance of AI factors in cost management within the civil engineering
domain.

3. To analyze the interrelationships among the AI factors relevant to cost management
in civil engineering projects using ISM.

4. To employ a MICMAC analysis to identify the driving forces and dependent factors
among the AI factors influencing cost management in civil engineering projects.

By achieving these objectives, this research aims to contribute to the advancement
of cost management practices in civil engineering projects by offering a systematic and
holistic approach to integrating AI factors into decision-making processes.

3. Materials and Methods

In this section, the systematic approach adopted to optimize the AI factors influencing
cost management in civil engineering is described. All the computational steps are elab-
orately described to ensure the clarity, transparency, and reproducibility of this study’s
findings. The first step is to form a panel of experts and conduct a brainstorming session
to identify potential factors. Following several meetings with the experts, the chosen
parameters are refined through a Delphi managerial session followed by an ISM analysis,
to establish the hierarchical relationship among the factors, and a MICMAC analysis, to
identify the driving and dependent nature of the aspects related to cost optimization in
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civil engineering projects [43,44]. Let us start with a step-by-step analysis of each model in
the subsequent section, one by one.

3.1. Brainstorming Session with the Experts

The brainstorming session marked the beginning of the study, bringing together in-
dustry experts and researchers to discuss the AI applications affecting cost management in
civil engineering projects. This in-person session fostered dynamic discussions and idea
exchanges. Cost management in civil engineering involves planning, estimating, budgeting,
and controlling financial resources throughout a project’s lifecycle. Despite its importance,
the industry often faces cost overruns and budget deviations, leading to delays, disputes,
and poor project outcomes. Recently, AI’s integration has emerged as a promising way
to improve cost management in civil engineering. AI technologies, including machine
learning, predictive analytics, and data-driven decision-making, offer opportunities to
optimize cost-related processes. Optimizing AI factors for the cost management of civil
engineering involves identifying the key AI applications and strategies used to tackle
cost-related challenges. This requires multidisciplinary collaboration, with teams of civil
engineers, data scientists, project managers, and domain experts. A team of 10 highly quali-
fied experts was formed to identify the potential AI factors influencing cost management in
civil engineering. These experts, associated with various respected government and private
organizations, have years of practical experience in their respective fields. Identifying
the right team for the brainstorming session involves selecting individuals with diverse
expertise to ensure a comprehensive evaluation of multiple criteria. Our step-by-step guide
explains how this expert team was assembled for the current analysis:

Step 1 (define the scope and objectives): Begin by establishing the goals and scope of
the MCDM analysis. Conduct a needs assessment to define the problem and understand
the project’s objectives and requirements.

Step 2 (identify relevant disciplines): identify the key disciplines relevant to the
decision. This study focuses on civil engineering projects in the construction sector.

Step 3 (identify key stakeholders): Determine the stakeholders who have a vested in-
terest in the decision, such as subject matter experts, decision-makers, end-users, customers,
and affected communities. Stakeholder mapping helps ensure all relevant participants
are included.

Step 4 (assess expertise and experience): Evaluate the stakeholders’ expertise, qual-
ifications, and experience. Consider their educational background, professional history,
specialized skills, and track record in the relevant fields.

Step 5 (criteria alignment): match the expertise of the team with specific decision
criteria to ensure the group collectively addresses each factor effectively.

Step 6 (ensure diversity): aim for diversity in expertise, perspectives, and backgrounds
within the team to foster robust discussions and innovative solutions.

Step 7 (consider interdisciplinary collaboration): MCDM benefits from interdisci-
plinary collaboration, allowing for a broader analysis of complex decision problems. Seek
experts from various disciplines to offer unique insights.

Step 8 (engage decision-makers and end-users): involve both decision-makers and end-
users in the brainstorming session to ensure that practical considerations and preferences
are addressed.

Step 9 (facilitate communication and collaboration): encourage open communication
and collaboration among team members during the brainstorming process, promoting
active participation and constructive feedback.

Step 10 (select facilitators and moderators): appoint facilitators or moderators to guide
the brainstorming session, keeping discussions focused and inclusive.

Step 11 (review and refine team composition): periodically reassess and adjust the
team composition as needed, being open to adding or replacing members to meet evolving
needs or address new challenges.
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To create a well-equipped team for a successful MCDM brainstorming session, the
authors conducted interviews and verbal communication with several experts, ultimately
selecting 10 individuals with diverse backgrounds in construction and civil engineering.
The team demographics are detailed in Table 1. These experts used the Scopus and WOS
databases to access relevant research articles in the field, allowing them to identify the
most pertinent studies. After several in-person meetings, the team identified 17 key factors
likely to impact cost management optimization in civil engineering, which are listed
in Table 2 and depicted in Figure 1. Following the brainstorming session, the authors
developed a structured questionnaire based on the insights gathered, aiming to evaluate
the importance of each identified AI application area. This questionnaire used a Likert
scale, allowing participants to rate each factor’s significance from “not important” to
“extremely important”. The factors included areas like algorithm selection, risk analysis,
resource optimization, and compliance monitoring. This structured approach ensured
consistent data collection and enabled a quantitative analysis of the responses, facilitating a
comprehensive assessment of AI’s role in the cost management of civil engineering projects.

Table 1. Demographic details of the brainstorming session experts.

Designation Company Experience (In Years) Number of Experts

General manager Reliance Infrastructure Ltd. 21 1
Site in-charge Larsen & Toubro Ltd. 14 1

Professor IIT Kharagpur 23 2
Project manager Macrotech Developers Pvt. Ltd. 17 1

Architect Dilip Buildcon Ltd. 12 1
Civil engineer Hindustan Construction Co. Ltd. 13 2

Construction engineer Shapoorji Pallonji & Co. Ltd. 15 2

(Source: author’s own elaboration).

Table 2. List of factors identified by the panel of experts.

Symbol Factors Internal Factors Designation

F1 AI Algorithms and Models Algorithm Selection F11
Model Development F12

F2 Cost Estimation and
Prediction

Cost Components F21
Temporal Considerations F22

F3 Risk Management
Risk Identification F31

Risk Analysis F32
Risk Mitigation F33

F4 Resource Allocation
Resource Optimization F41
Resource Constraints F42

F5 Sustainability Considerations Environmental Impact F51
Social Impact F52

F6 Regulatory Compliance Regulatory Requirements F61
Compliance Monitoring F62

F7
Integration with
Existing Systems

System Compatibility F71
User Interface F72

F8
Ethical and

Social Implications
Equity and Fairness F81

Privacy and Data Security F82
(Source: expert panel members).
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Figure 1. Categorization of AI factors into different groups (source: author’s own elaboration).

3.2. The Critical AI Factors Identified by the Experts

Several factors are crucial in managing cost-related issues in civil engineering projects.
In this study, “AI factors” refer to various aspects of AI technology that can influence
the cost management practices in these projects. These factors encompass different AI
technologies, methodologies, strategies, or considerations that affect how cost management
is conducted, optimized, and improved. The importance of these critical AI parameters in
cost management lies in their ability to enhance decision-making, optimize resource allo-
cation, and increase project efficiency [41,45]. After several in-person meetings, the panel
identified 17 AI factors that significantly influence cost management in civil engineering,
which were further categorized into eight groups, as shown in Figure 1. Understanding
these factors is essential because they guide the optimization of cost management practices
in civil engineering. Here is the list of the selected factors and their relevance to cost
management in civil engineering projects:

1. AI algorithms and models (F1): AI algorithms and models are crucial for accurate cost
estimations, real-time budget monitoring, optimized resource allocation, and effective
risk assessment, leading to better budget adherence and financial efficiency in civil
engineering projects [20–22,33,34,42].

• Algorithm selection (F11): Selecting the right algorithm is key to accurate cost
estimation and resource allocation. Proper algorithm choices ensure an efficient
use of project resources, reduce financial risks, and enhance the likelihood of
project success within budget constraints [21,22,46].

• Model development (F12): Developing robust models creates frameworks that
accurately reflect project dynamics, facilitating precise cost estimation and re-
source allocation. Well-constructed models improve project planning, reduce
financial risks, and contribute to the successful completion of civil engineering
projects within budgetary limits [33,34,42,47].

2. Cost estimation and prediction (F2): Cost estimation is key for budget planning,
resource allocation, and project decision-making. Accurate estimates enable proactive
budget control, reduce the risk of cost overruns, and ensure financial feasibility,
leading to successful project delivery within budgetary constraints. AI enhances cost
estimation by using historical data, project parameters, and other factors to produce
accurate cost forecasts. AI techniques like regression analysis, time series analysis, and
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machine learning can analyze large datasets and identify patterns that human experts
might miss, increasing the accuracy and reliability of cost predictions. AI-driven
systems can adapt and improve over time [5,6,8,9].

• Cost components (F21): Understanding the cost components allows for the al-
location of resources to specific project elements, aiding in accurate budgeting
and cost control. Analyzing these components helps optimize resource utiliza-
tion, reduce financial risks, and improve the efficiency and profitability of civil
engineering projects [5,6,48].

• Temporal considerations (F22): Temporal considerations address the fluctuating
nature of costs over time, facilitating effective planning and budget allocation. By
accounting for these fluctuations, project managers can anticipate cost variations,
manage financial risks, and maintain budget compliance throughout the project’s
lifecycle [6,8,9,49].

3. Risk management (F3): Risk management involves identifying, assessing, and miti-
gating potential threats to project budgets and timelines. Effective risk management
strategies address risks like unexpected weather, supply chain disruptions, or reg-
ulatory changes, reducing cost overruns and ensuring project stability, ultimately
leading to project success and stakeholder satisfaction. AI improves risk management
by identifying, assessing, and mitigating risks more effectively. AI algorithms can
analyze various datasets to detect potential risks, predict future events, and recom-
mend mitigation strategies. Machine learning techniques enable risk models to adapt
to changing conditions, enhancing their predictive accuracy and responsiveness. AI-
driven risk management systems can detect anomalies, anticipate threats, and support
informed decisions to minimize risks and maximize project success [20–24,38–40,43].

• Risk identification (F31): Risk identification allows for the early recognition of
financial uncertainties, enabling proactive mitigation strategies to ensure budget
adherence. It helps minimize cost overruns, optimize resource allocation, and
improve the overall financial performance of civil engineering projects [20–23,43,48].

• Risk analysis (F32): Risk analysis assesses potential uncertainties and quantifies
their impact on project finances, aiding informed decision-making. This process
identifies cost drivers, helps mitigate financial risks, and ensures project success
within budgetary limits [24,38].

• Risk mitigation (F33): Risk mitigation involves implementing strategies to mini-
mize the impact of identified uncertainties on project finances, ensuring budget
compliance and project success. Effective risk mitigation helps control costs, opti-
mize resource allocation, and safeguard the financial viability of civil engineering
projects [39,40,43].

4. Resource allocation (F4): Resource allocation is key to civil engineering cost manage-
ment, and it involves the effective distribution of labor, materials, and equipment to
optimize project outcomes within budget. Proper resource allocation reduces waste;
enhances productivity; and contributes to cost savings, timely project delivery, and
an improved overall performance in civil engineering. AI helps optimize resource
allocation by analyzing project requirements, constraints, and objectives to allocate re-
sources efficiently. AI-based optimization algorithms consider multiple factors—cost,
time, availability, and utilization rates—to create optimal resource plans. Machine
learning can learn from historical data to predict resource demands and dynamically
adjust allocation strategies. AI-driven systems can maximize productivity, minimize
waste, and improve outcomes with limited resources [12,17–21,44,47].

• Resource optimization (F41): Resource optimization focuses on allocating mate-
rials, labor, and equipment efficiently to minimize costs and maximize project
outcomes. This leads to effective budget utilization, reduced waste, and im-
proved project efficiency and profitability [12,18,44].
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• Resource constraints (F42): Resource constraints involve planning and allocating
limited resources to meet project objectives within budget limits. Understanding
resource constraints helps identify potential bottlenecks, optimize resource use,
and ensure project success while maintaining financial stability [19,20,44,49].

5. Sustainability considerations (F5): Sustainability in civil engineering cost management
promotes environmentally responsible practices, minimizes long-term operational
costs, and enhances project resilience. By incorporating sustainable design principles
and materials, projects can reduce their lifecycle costs, mitigate their environmental
impact, and meet regulatory requirements, leading to improved financial viability,
stakeholder satisfaction, and long-term value in civil engineering. AI aids in sus-
tainability by enabling data-driven decision-making and optimization strategies. AI
algorithms can analyze environmental data, energy consumption, and resource usage
to identify sustainability opportunities. Machine learning models can optimize energy
usage, reduce waste, and lower environmental impact, leading to more sustainable
civil engineering practices. AI-driven sustainability efforts allow organizations to
meet environmental goals while maintaining their project’s cost-effectiveness and
efficiency [36–39,45,46].

• Environmental impact (F51): Considering environmental impact in civil engineer-
ing cost management is crucial for compliance, minimizing ecological harm, and
avoiding costly penalties. Addressing environmental impact fosters long-term
project viability, community goodwill, and reduces the financial risks associated
with environmental liabilities [36,37,45].

• Social impact (F52): Social impact focuses on community engagement, stake-
holder satisfaction, and reduced project disruptions, ultimately contributing to
project success. Considering social impact supports sustainable development,
mitigates reputational risks, and ensures positive outcomes for both the project
and surrounding communities [39,41,42,46].

6. Regulatory compliance (F6): Regulatory compliance is crucial in civil engineering cost
management as it ensures that projects meet legal requirements, permits, and stan-
dards. Non-compliance can lead to costly fines, delays, and legal disputes, affecting
budgets and timelines. By prioritizing regulatory compliance, projects avoid unnec-
essary expenses, maintain stakeholder trust, and reduce the risk of costly setbacks,
contributing to successful project delivery within budget. AI assists in compliance by
automating monitoring, reporting, and documentation. AI algorithms can analyze
regulatory requirements, legal documents, and industry standards to ensure adher-
ence to laws and regulations. Natural language processing (NLP) can extract and
interpret regulatory information, allowing organizations to proactively identify com-
pliance gaps and take corrective action. AI-based compliance management systems
enhance transparency, accountability, and regulatory oversight in civil engineering
projects [3,5,9,23,24].

• Regulatory requirements (F61): Adhering to regulatory requirements avoids
costly fines, legal disputes, and delays, ensuring that projects remain within
budget. Understanding these requirements enables proper planning, risk mitiga-
tion, and efficient resource allocation, contributing to the success and financial
viability of civil engineering projects [9,23,24].

• Compliance monitoring (F62): Compliance monitoring ensures adherence to
regulatory standards, reducing legal risks and preventing penalties, thereby
maintaining budget integrity. It allows for the timely identification and resolution
of non-compliance issues, promoting project success while upholding legal and
ethical standards [3,24,48,49].

7. Integration with existing systems (F7): Integration with existing systems is crucial
in civil engineering cost management, as it allows seamless collaboration and data
exchange among various project phases and stakeholders. By integrating cost man-
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agement systems with existing project management, accounting, and procurement
systems, organizations can streamline their workflows, improve data accuracy, and
enhance their decision-making processes. This integration facilitates efficient resource
allocation, accurate cost-tracking, and timely budget adjustments, leading to better
project cost control and outcomes in the civil engineering sector. AI supports this
integration by providing interoperability, scalability, and compatibility with diverse
technologies and platforms. AI-driven integration solutions can connect disparate
systems, databases, and applications, promoting smooth data exchange, commu-
nication, and collaboration among project stakeholders. AI algorithms can handle
data from multiple sources, enabling their seamless integration with existing work-
flows. This AI-based approach enhances efficiency, interoperability, and data-driven
decision-making in civil engineering projects [33,34,47,48].

• System compatibility (F71): System compatibility ensures the seamless integra-
tion of software tools and data platforms, improving project efficiency and reduc-
ing operational costs. It facilitates smooth data exchange and communication,
fostering collaboration among project stakeholders and ultimately optimizing
cost management within budget constraints [33,47].

• User interface (F72): A user-friendly interface promotes ease of use, reduces train-
ing time, and encourages the effective utilization of cost management software
among stakeholders. An intuitive interface streamlines data entry, analysis, and
reporting, leading to informed decision-making and optimal cost management
practices within the project’s budget [41–44,48,49].

8. Ethical and social implications (F8): The ethical and social considerations in civil
engineering cost management ensure responsible decision-making and sustainable
practices. Issues like fair labor practices, community engagement, and environmen-
tal impact assessments are critical to maintaining ethical standards and fostering
positive social outcomes. Prioritizing these considerations helps projects mitigate
reputational risks, build stakeholder trust, and achieve cost management objectives
while contributing to societal well-being. AI introduces ethical and social challenges
that require attention to ensure the responsible and equitable use of AI technolo-
gies. Ethical concerns include fairness, transparency, accountability, privacy, bias,
and discrimination in AI-driven decisions. The social implications cover broader
issues like job displacement, inequality, and autonomy concerns due to AI’s adop-
tion. Ethical AI frameworks, guidelines, and governance mechanisms are crucial for
managing risks, fostering trust, and promoting ethical practices in civil engineering
projects [43,45,47,49].

• Equity and fairness (F81): Equity and fairness ensure transparent decision-
making, foster stakeholder trust, and reduce potential conflicts. Emphasizing
these values in cost management encourages accountability and stakeholder par-
ticipation and supports the social responsibility of civil engineering
projects [45,46,49].

• Privacy and data security (F82): Privacy and data security protect sensitive project
information, reduce the risk of data breaches, and maintain stakeholder trust.
Ensuring privacy and data security prevents unauthorized access, preserves
confidentiality, and supports compliance with legal and regulatory requirements,
enhancing the integrity of cost management in civil engineering [33,40,45,46,49].

3.3. Fuzzy-Delphi Analysis

Fuzzy-Delphi analysis combines the principles of the Delphi method with fuzzy sets
to address the uncertainty and ambiguity in decision-making processes. Originating from
the Delphi method as indicated in the flow diagram shown in Figure 2, it gathers expert
opinions through iterative rounds of feedback, fuzzy-Delphi extends this approach by
incorporating fuzzy sets into the method to quantify subjective judgments and handle
imprecision [31,32,50]. By integrating these methodologies, fuzzy-Delphi analysis provides
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a systematic framework for eliciting and aggregating expert opinions in situations where
traditional Delphi methods may encounter challenges due to vagueness or uncertainty.

Figure 2. Flow diagram of Delphi-ISM-MICMAC hybrid model (source: author’s own elaboration).

As is evident from Table 3, each of the ten expert panel members provided their
judgements regarding the relevancy of the seventeen parameters shown in Figure 1 to
the ongoing problem in linguistic terms. This was followed by their quantification into
numeric values and finally into Triangular Fuzzy Numbers (TFNs); this conversion was
performed according to the scale given in Table 4 [24,25,51]. The conversion scale presented
in Table 4 has been decided on by the expert team from their years of experience. The
value 4.113 calculated in Table 4, following the Fuzzy Geometric Mean Value (FGMV)
and defuzzification operation using Equations (1) and (2), which is meant to serve as an
acceptance degree level, means that all the chosen parameters have to achieve a minimum
score of 4.113 to qualify for the next stage of analysis.

The FGMV of ‘k’ fuzzy numbers, such that {
∼
Z1 = (l1, m1, u1),

∼
Z2 = (l2, m2, u2). . .. . .

∼
Zk = (lk, mk, uk)}, can be computed as
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∼
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3
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Table 3. Expert’s judgements from Delphi analysis.

Expert
1

Expert
2

Expert
3

Expert
4

Expert
5

Expert
6

Expert
7

Expert
8

Expert
9

Expert
10 FGMV Score Status Anno-

tation

F11
MHI HI VHI MHI VHI HI EHI MLI VHI HI (5.887,

6.850,
7.790)

6.843 Accept A1(5,6,7) (6,7,8) (7,8,9) (5,6,7) (7,8,9) (6,7,8) (9,9,9) (3,4,5) (7,8,9) (6,7,8)

F12
MLI MLI LI VLI VLI MI ELI VLI LI LI (1.762,

2.653,
3.478)

2.631 Reject -
(3,4,5) (3,4,5) (2,3,4) (1,2,3) (1,2,3) (4,5,6) (1,1,1) (1,2,3) (2,3,4) (2,3,4)

F21
HI EHI EHI VHI VHI VHI VHI HI EHI HI (7.207,

7.962,
8.688)

7.952 Accept A2(6,7,8) (9,9,9) (9,9,9) (7,8,9) (7,8,9) (7,8,9) (7,8,9) (6,7,8) (9,9,9) (6,7,8)

F22
ELI MI ELI LI ELI MLI VLI MI LI MLI (1.888,

2.431,
2.908)

2.409 Reject -
(1,1,1) (4,5,6) (1,1,1) (2,3,4) (1,1,1) (3,4,5) (1,2,3) (4,5,6) (2,3,4) (3,4,5)

F31
VHI EHI MI EHI VHI VHI VHI VHI MI EHI (6.749,

7.544,
8.299)

7.531 Accept A37,8,9) (9,9,9) (4,5,6) (9,9,9) (7,8,9) (7,8,9) (7,8,9) (7,8,9) (4,5,6) (9,9,9)

F32
MLI HI VHI MHI HI HI EHI MHI EHI HI (5.945,

6.840,
7.699)

6.828 Accept A4(3,4,5) (6,7,8) (7,8,9) (5,6,7) (6,7,8) (6,7,8) (9,9,9) (5,6,7) (9,9,9) (6,7,8)

F33
MHI VHI EHI EHI MI EHI VHI VHI VHI MHI (6.673,

7.465,
8.219)

7.452 Accept A5(5,6,7) (7,8,9) (9,9,9) (9,9,9) (4,5,6) (9,9,9) (7,8,9) (7,8,9) (7,8,9) (5,6,7)

F41
HI HI MLI MHI MHI EHI EHI MLI EHI VHI (5.776,

6.632,
7.432)

6.613 Accept A6(6,7,8) (6,7,8) (3,4,5) (5,6,7) (5,6,7) (9,9,9) (9,9,9) (3,4,5) (9,9,9) (7,8,9)

F42
MHI VHI HI HI EHI HI HI HI MI EHI (6.231,

7.103,
7.946)

7.093 Accept A7(5,6,7) (7,8,9) (6,7,8) (6,7,8) (9,9,9) (6,7,8) (6,7,8) (6,7,8) (4,5,6) (9,9,9)

F51
EHI VHI HI VHI HI HI EHI MHI EHI HI (6.862,

7.634,
8.373)

7.623 Accept A8(9,9,9) (7,8,9) (6,7,8) (7,8,9) (6,7,8) (6,7,8) (9,9,9) (5,6,7) (9,9,9) (6,7,8)

F52
MLI VLI MI LI LI VLI MI MLI LI ELI (2.024,

2.908,
3.728)

2.886 Reject -
(3,4,5) (1,2,3) (4,5,6) (2,3,4) (2,3,4) (1,2,3) (4,5,6) (3,4,5) (2,3,4) (1,1,1)

F61
MLI LI VLI MLI ELI VLI ELI VLI LI ELI (1.431,

2.024,
2.531)

1.995 Reject -
(3,4,5) (2,3,4) (1,2,3) (3,4,5) (1,1,1) (1,2,3) (1,1,1) (1,2,3) (2,3,4) (1,1,1)

F62
EHI EHI VHI VHI VHI VHI VHI VHI EHI EHI (7.740,

8.386,
9.000)

8.375 Accept A9(9,9,9) (9,9,9) (7,8,9) (7,8,9) (7,8,9) (7,8,9) (7,8,9) (7,8,9) (9,9,9) (9,9,9)

F71
MHI MHI EHI MI MHI EHI MLI HI MHI MHI (5.322,

6.231,
7.103)

6.218 Accept A10(5,6,7) (5,6,7) (9,9,9) (4,5,6) (5,6,7) (9,9,9) (3,4,5) (6,7,8) (5,6,7) (5,6,7)

F72
HI EHI HI VHI EHI HI EHI VHI HI EHI (7.277,

7.950,
8.586)

7.938 Accept A11(6,7,8) (9,9,9) (6,7,8) (7,8,9) (9,9,9) (6,7,8) (9,9,9) (7,8,9) (6,7,8) (9,9,9)

F81
LI VLI MI ELI LI MI LI LI MLI MLI (2.169,

3.028,
3.837)

3.011 Reject -
(2,3,4) (1,2,3) (4,5,6) (1,1,1) (2,3,4) (4,5,6) (2,3,4) (2,3,4) (3,4,5) (3,4,5)

F82
VHI MLI HI VHI EHI MHI HI MI VHI VHI (5.847,

6.817,
7.762)

6.809 Accept A12(7,8,9) (3,4,5) (6,7,8) (7,8,9) (9,9,9) (5,6,7) (6,7,8) (4,5,6) (7,8,9) (7,8,9)

(Source: expert panel members).
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Table 4. Linguistic scale for conversion.

Qualitative Measures Notations Quantitative Measures TFN Values

Extreme low
importance ELI 1 (1,1,1)

Very low importance VLI 2 (1,2,3)
Low importance LI 3 (2,3,4)

Medium low
importance MLI 4 (3,4,5)

Moderate importance MI 5 (4,5,6)
Medium high

importance MHI 6 (5,6,7)

High importance HI 7 (6,7,8)
Very high importance VHI 8 (7,8,9)

Extreme high
importance EHI 9 (9,9,9)

Fuzzy geometric mean value (3.292, 4.147, 4.901)
Acceptance degree 4.113

(Source: author’s own elaboration).

FGMVs have been calculated for each of the chosen factors using Equation (1), followed
by their defuzzification using Equation (2) in Table 3 to check which factors are able to
pass the Delphi screening test. In Table 3, the factors achieving a value more than 4.113 are
selected for further analysis, whereas the factors with scores below 4.113 are rejected. It is
clearly evident from Table 3 that, in the end, 12 parameters out of 17 qualified for the next
stage of analysis, ISM, while 5 parameters were rejected, since these were considered to be
inferior to the others.

3.4. Interpretive Structural Modeling (ISM)

Following the flow diagram in Figure 2, next method is ISM, which is used to ana-
lyze and understand the complex interrelationships among factors or variables within a
system. Originating from operations research and systems theory, ISM provides a struc-
tured approach to model and visualize the hierarchical relationships among factors, al-
lowing decision-makers to gain insights into the system’s structure, dynamics, and key
drivers [28,30–32]. By identifying and interpreting hierarchical relationships, ISM enables
effective decision-making, strategic planning, and problem-solving in diverse domains
such as engineering, management, and policy analysis. ISM uses several steps to analyze
and understand the hierarchical relationships among the factors influencing a complex
system [42]. Below are the typical steps involved in ISM.

It begins by identifying and listing all the factors or elements relevant to the problem
or system under study. These factors could include variables, components, activities, or
concepts that contribute to the overall system.

Step 1—defining relationships: Determine the relationship among the identified factors
to construct a Structural Self-Interaction Matrix (SSIM), as prescribed by the board members
in Table 5. The SSIM is used to assess how each factor influences or is influenced by other
factors in the system [52]. These relationships can be based on expert judgment or empirical
data obtained by studying past research and brainstorming sessions. Table 5 shows the
SSIM matrix and the letters V, A, X, and O represent the nature of the influences shown in
Table 6. In Table 5, the evaluations provided by the board members were aggregated using a
systematic approach to build consensus. The consensus-building process involved multiple
rounds of discussion, deliberation, and refinement to reach agreement on their evaluations.
In this process, the experts iteratively reviewed and revised their judgments based on
feedback from other members until a consensus was reached. However, to build the SSIM
matrix, input from each decision-maker regarding their perceptions of the relationships
among the identified factors has been gathered. The relationships denoted by the letter in
each cell are finalized according to the majority of the votes provided by the 10 experts.
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For example, ‘A’ has been allotted to cell12 (i.e., A1-A2) due to the fact that six experts
have recommended ‘A’, three experts have recommended ‘V’, and only one expert has
recommended ‘O’ for cell12. In this case, since the majority of expert members voted for
letter ‘A’ in cell12, ‘A’ has been allotted in cell A1-A2. Likewise, depending on the expert
recommendations, the relationships of all other cells have been established as depicted in
Table 5.

Table 5. SSIM matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 1 A A V A A A A X A X X
A2 1 V V A X V V O A O O
A3 1 V A V V A V O A A
A4 1 A A A A X A A X
A5 1 V V V V A V X
A6 1 V A O X O O
A7 1 A X A A A
A8 1 X X V V
A9 1 O A A

A10 1 O X
A11 1 A
A12 1

(Source: expert panel members).

Table 6. Significance of the letters used in the ISM analysis.

Symbol Significance Explanation

V ‘i’ leads to the achievement of ‘j’ If cell rij = V, then rij = 1 and rji = 0
A ‘j’ leads to the achievement of ‘i’ If cell rij = A, then rij = 0 and rji = 1
X ‘i’ and ‘j’ both will help to achieve each other If cell rij = X, then rij = 1 and rji = 1
O ‘i’ and ‘j’ do not have any relation with each other If cell rij = O, then rij = 0 and rji = 0

(Source: author’s own elaboration).

Step 2—constructing an initial reachability matrix: Create a reachability matrix based
on the relationships identified in the previous step, as shown in Table 7. Replace the letters
V, A, X, and O with ‘1’ or ‘0’, accordingly, from Table 6 to create the initial reachability
matrix according to Equation (3). The reachability matrix is a binary matrix that indicates
whether there is a direct or indirect relationship between pairs of factors.

Ri (ni × nj) =


1 r12 · · · r1j

r21 1 · · · r2j
· · · · · · · · · · · ·
ri1 ri2 · · · 1

 (3)

Step 3—deriving a Digraph: Use the reachability matrix to construct a directed graph
(digraph) representing the relationships between factors. In the digraph, each factor is
represented as a node, and the relationships between factors are represented as directed
edges or arrows, as shown in Figure 3.

Step 4—identifying strongly connected components: Analyze the digraph to identify
strongly connected components (SCCs). SCCs help to identify clusters of factors that are
mutually influential or interdependent within the system. In an ISM analysis, SCCs are
essential because they help reveal the interdependencies and relationships among the
factors being studied within a complex system. SCCs represent subsets of factors where
every factor within the subset is connected to every other factor through direct or indirect
relationships. These components represent clusters of factors that are closely interconnected.
SCCs are indispensable in ISM analyses as they offer a systematic way to uncover core
relationships, understand system dynamics, prioritize interventions, simplify complexity,



Information 2024, 15, 280 20 of 34

and facilitate decision-making within complex systems. By identifying and analyzing these
components, ISM analyses provide valuable insights into the underlying structure and
behavior of the systems under study, enabling informed decision-making and effective
intervention strategies.

Table 7. Initial reachability matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 1 0 0 1 0 0 0 0 1 0 1 1
A2 1 1 1 1 0 1 1 1 0 0 0 0
A3 1 0 1 1 0 1 1 0 1 0 0 0
A4 0 0 0 1 0 0 0 0 1 0 0 1
A5 1 1 1 1 1 1 1 1 1 0 1 1
A6 1 1 0 1 0 1 1 0 0 1 0 0
A7 1 0 0 1 0 0 1 0 1 0 0 0
A8 1 0 1 1 0 1 1 1 1 1 1 1
A9 1 0 0 1 0 0 1 1 1 0 0 0

A10 1 1 0 1 1 1 1 1 0 1 0 1
A11 1 0 1 1 0 0 1 0 1 0 1 0
A12 1 0 1 1 1 0 1 0 1 1 1 1

(Source: author’s own elaboration).

Figure 3. ISM directed graph (source: author’s own elaboration).

Step 5—constructing a final reachability matrix {Rf = (ni × nj)}: In this step, the
transitivity has to be checked to identify that a direct or indirect relationship exists among
the chosen factors. The ‘0’ has been replaced by ‘1*’ in some cells to represent the indirect
relationship that exists between the factors. The final reachability matrix is depicted in
Table 8, using to Equation (4).

Rf (ni × nj) =


1 r f

12 · · · r f
1j

r f
21 1 · · · r f

2j
· · · · · · · · · · · ·
r f

i1 r f
i2 · · · 1

 (4)
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Table 8. Final reachability matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 DrRi Rank

A1 1 0 1 * 1 1 * 0 1 * 1 * 1 1 * 1 1 10 8
A2 1 1 1 1 0 1 1 1 1 * 1 * 1 * 1 * 11 6
A3 1 1 * 1 1 0 1 1 1 * 1 1 * 1 * 1 * 11 6
A4 1 * 0 1 * 1 1 * 0 1 * 1 * 1 1 * 1 * 1 10 8
A5 1 1 1 1 1 1 1 1 1 1 * 1 1 12 1
A6 1 1 1 * 1 1 * 1 1 1 * 1 * 1 1 * 1 * 12 1
A7 1 0 0 1 0 0 1 1 * 1 0 1 * 1 * 7 12
A8 1 1 * 1 1 1 * 1 1 1 1 1 1 1 12 1
A9 1 0 1 * 1 0 1 * 1 1 1 1 * 1 * 1 * 10 8
A10 1 1 1 * 1 1 1 1 1 1 * 1 1 * 1 12 1
A11 1 0 1 1 0 1 * 1 1 * 1 0 1 1 * 9 11
A12 1 1 * 1 1 1 1 * 1 1 * 1 1 1 1 12 1

DpPj 12 7 11 12 7 9 12 12 12 10 12 12
Rank 1 11 8 1 11 10 1 1 1 9 1 1

(Source: author’s own elaboration).

Step 6: A level partitioning operation has been carried out to define the levels of each
factor. The iteration process computed in Table 9 is carried out until all the parameters have
been allotted certain levels. The reachability set identified during the iteration process in
Table 9 represents all the factors which may influence other factors, whereas the antecedent
set contains all the factors being influenced by other factors. Moreover, the intersection set
are the common set of factors that are present both in the reachability and the antecedent
set. When the factors in the reachability set and the intersection set exactly match with
each other, their level has been allotted. If we consider the first row, A1, in Table 9, the
10 factors under the reachability set represent the fact that A1 influences all 10 of these
factors; similarly, A1 is also influenced by all the 12 factors under the antecedent set. This
also represents that the driving power (reachability) of A1 is 10 and the dependence power
(antecedent) of A1 is 12, as can be seen from Table 8. Removing the common factors from
these two reachability and antecedent sets leaves the intersection set, as presented in Table 9.
It is evident from Table 9 that, in the first round of the iteration process, the intersection set
exactly matches the reachability set for A1; hence level 1 has been allotted. Likewise, for all
the other factors, the reachability and antecedent sets have been determined from Table 8
and their levels have been allotted upon determining their condition. The factors whose
level has been determined are eliminated from the next round of iteration. This iteration
process continues until and unless all the factors have been assigned to hierarchical levels.

Step 7—building the ISM hierarchy: This involves arranging the factors into the hier-
archical structure depicted in Figure 4 based on the relationships identified in the digraph
and the SCCs. Factors with higher levels of influence or control are placed at higher levels
in the hierarchy, while factors with lower levels of influence are placed at lower levels. In
ISM, both SCCs and hierarchical levels contribute to the understanding of the interrela-
tionships among factors within a complex system. Both of them also provide insights into
the structure of the relationships among factors within the system. SCCs reveal clusters
of factors that are tightly interconnected, while hierarchical levels depict the influence
hierarchy among factors. In ISM analyses, SCCs are often integrated into hierarchical levels
to create a comprehensive understanding of the system’s structure. Factors within the
same SCC may be grouped together at the same hierarchical level if they exhibit similar
levels of influence and dependency. The relationship between SCCs and hierarchical levels
helps analysts interpret the complexity of the system. SCCs highlight clusters of factors
that exhibit mutual influences, while hierarchical levels provide a structured framework
for understanding the flow of influence and dependency among factors. Integrating SCCs
and hierarchical levels enables better decision-making by providing a holistic view of the
system’s structure and dynamics. Decision-makers can use this information to prioritize
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actions, allocate resources, and develop intervention strategies that address the underlying
relationships and dependencies identified through the ISM analysis.

Table 9. Determination of levels in ISM hierarchy.

1st iteration

Factors Reachability Antecedent Intersection Levels

A1 1,3,4,5,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,3,4,5,7,8,9,10,11,12 Level 1
A2 1,2,3,4,6,7,8,9,10,11,12 2,3,5,6,8,10,12 2,3,6,8,10,12
A3 1,2,3,4,6,7,8,9,10,11,12 1,2,3,4,5,6,8,9,10,11,12 1,2,3,4,6,8,9,10,11,12
A4 1,3,4,5,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,3,4,5,7,8,9,10,11,12 Level 1
A5 1,2,3,4,5,6,7,8,9,10,11,12 1,4,5,6,8,10,12 1,4,5,6,8,10,12
A6 1,2,3,4,5,6,7,8,9,10,11,12 2,3,5,6,8,9,10,11,12 2,3,5,6,8,9,10,11,12
A7 1,4,7,8,9,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,4,7,8,9,11,12 Level 1
A8 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 Level 1
A9 1,3,4,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,3,4,6,7,8,9,10,11,12
A10 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,8,9,10,12 1,2,3,4,5,6,8,9,10,12
A11 1,3,4,6,7,8,9,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,3,4,6,7,8,9,11,12 Level 1
A12 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 1,2,3,4,5,6,7,8,9,10,11,12 Level 1

2nd iteration

Factors Reachability Antecedent Intersection Levels

A2 2,3,6,9,10 2,3,5,6,10 2,3,6,10
A3 2,3,6,9,10 2,3,5,6,9,10 2,3,6,9,10 Level 2
A5 2,3,5,6,9,10 5,6,10 5,6,10
A6 2,3,5,6,9,10 2,3,5,6,9,10 2,3,5,6,9,10 Level 2
A9 3,6,9,10 2,3,5,6,9,10 3,6,9,10 Level 2
A10 2,3,5,6,9,10 2,3,5,6,9,10 2,3,5,6,9,10 Level 2

3rd iteration

Factors Reachability Antecedent Intersection Levels

A2 2 2,5 2 Level 3
A5 2,5 5 5

4th iteration

Factors Reachability Antecedent Intersection Levels

A5 5 5 5 Level 4

(Source: author’s own elaboration).

Figure 4. ISM hierarchy (source: author’s own elaboration).

Step 8—interpreting the ISM hierarchy: We interpret the ISM hierarchy to understand
the hierarchical relationships among factors and analyze how factors at different levels of
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the hierarchy influence each other and the overall system [50–52]. We identify key driving
factors and dependent factors that play critical roles in shaping the system.

3.5. Cross-Impact Matrix Multiplication Applied to Classification (MICMAC)

MICMAC analysis is a method used in decision-making and strategic planning to
assess the relative influence and interactions among factors within a complex system. Orig-
inating from operations research and systems theory, MICMAC analysis helps identify
driving factors that have a high impact on the system and dependent factors that are
influenced by others [8,23,28,29]. By analyzing the interactions among factors, a MICMAC
analysis provides insights into the structure and dynamics of the system, aiding in prioritiz-
ing actions and resources for effective decision-making and problem-solving. A MICMAC
analysis consists of the following steps:

Step 1: Calculate the driving (DrRi) and the dependent power (DpPj) of each alterna-
tive using Equation (5), as shown in Table 8, to determine the driving ability as well as the
dependence tendency of the parameters considered in this ongoing analysis.DrRi = ∑n

j=1 r f
ij

DpPj = ∑n
i=1 r f

ij

(5)

Step 2: Prepare a scatter diagram by plotting the driving power against the dependence
power of the factors shown in Figure 5. In a MICMAC analysis, the scatter plot diagram
is divided into four quadrants, each representing different characteristics of the factors
within the system. The coordinates of the horizontal and vertical error lines separating the
four quadrants can be established in various ways depending on the nature of the problem
and the current situation. In this specific instance, the decision-makers decided to position
both lines precisely at the midpoint between the highest driving and dependence powers,
which is 6 for each line, since the maximum value in both scenarios is 12. However, it
is also true that, in some instances, previous researchers have decided the coordinates of
the horizontal and vertical error lines by finding the average of the driving power and
dependence power. This method may not be suitable in this case, as the coordinates of the
error lines were found to be 10.667 based on the averages of the driving and dependence
powers of the factors. Now, if the error lines are set at 10.667, then the scenario of Figure 5
will be that A2, A5, A6, and A10 will belong to independent quadrant-IV; A3, A8, and
A12 will belong to linkage quadrant-III; A1, A4, A7, A9, and A11 will belong to dependent
quadrant-II; and autonomous quadrant-I will remain empty as usual. Such situations
are completely unjustified within Figure 4, where it can be clearly seen that all twelve
factors act completely as linkage factors and none of the factors behave like dependent
or independent factors. Therefore, placing the error lines exactly at the mid-points of the
maximum values perfectly aligns with the present condition.

• Autonomous Factors (Quadrant I): Factors located in Quadrant I have low driving
power (Y-axis) and low dependence (X-axis). These factors are considered independent
factors as they have minimal influence on the other factors in the system and are not
significantly influenced by external factors. They may represent peripheral or less
critical aspects of the system that have limited impact on overall system dynamics.

• Dependent Factors (Quadrant II): Factors located in Quadrant II have low driving
power (Y-axis) and high dependence (X-axis). These factors are considered dependent
factors as they are strongly influenced by other factors in the system but have minimal
influence on other factors themselves. They represent the outcomes, consequences,
or dependent variables of the system and are influenced by the interactions among
higher-level factors.

• Linkage Factors (Quadrant III): Factors located in Quadrant III have both high driving
power (Y-axis) and high dependence (X-axis). These factors are considered linkage
factors as they have a strong influence on other factors in the system and are also
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influenced by external factors. They serve as mediators or connectors between different
parts of the system and play a critical role in facilitating interactions among factors.

• Independent Factors (Quadrant IV): Factors located in Quadrant IV have high driving
power (Y-axis) and low dependence (X-axis). These factors are considered autonomous
as they have a significant influence on other factors in the system but are not signifi-
cantly influenced by external factors. They are key drivers that play a central role in
shaping the system’s dynamics and outcomes.

By categorizing factors into these four quadrants based on their driving power and
dependence, the scatter plot diagram in the MICMAC analysis provides insights into
the relative influence and interactions among the factors within the system, aiding in
prioritizing actions and resources for effective decision-making and problem-solving.

Figure 5. Diagraph of MICMAC analysis (source: author’s own elaboration).

4. Results

The fuzzy integrated Delphi-ISM-MICMAC hybrid multi-criteria approach facilitated
the identification of seventeen AI factors influencing cost management in civil engineering
projects. These factors were categorized into the eight broad groups listed in Table 2.
Initially, these seventeen chosen factors were processed through a Delphi screening test to
check their relevancy to the ongoing decision-making problem, and the qualifying factors
finally entered into the ISM and MICMAC analyses. The ISM analysis unveiled the intricate
relationships and dependencies among the core aspects of the system under scrutiny. This
section delves into the findings derived from the ISM hierarchy, elucidating the hierarchical
structure, its interconnections, and the implications for decision-making.

4.1. Core Outcomes from the Delphi Technique

The Delphi method was used to collect and synthesize expert opinions to reach a
consensus on the importance and relevance of AI factors in cost management. This iterative
process helped refine the initial list and assign weights based on expert judgments, ensuring
that the selected factors were comprehensive and aligned with domain requirements. The
Delphi technique was also employed to further refine the selected parameters and remove
irrelevant ones. Only factors that passed the Delphi screening would advance to the
next stage of ISM and MICMAC analyses. As shown in Table 3, five factors—model
development, temporal considerations, social impact, regulatory requirements, and equity
and fairness—scored lower than 4.113 and were thus excluded from further analyses. After
multiple sessions, the experts agreed that these five factors had minimal impacts on cost-
related civil project issues and could be eliminated without affecting the ongoing study.
Consequently, twelve factors successfully passed the Delphi screening test and moved
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on to the ISM and MICMAC analysis stages. The authors aim to explore these factors to
understand why the excluded ones had little impact on cost-related civil project issues.

Model development (F12), temporal considerations (F22), social impact (F52), reg-
ulatory requirements (F61), and equity and fairness (F81) are essential aspects of civil
engineering projects, but their direct impact on project costs can vary. Model development
often uses pre-existing standardized tools and methodologies, reducing the need for ex-
tensive new development, especially in established industries. Temporal considerations,
crucial for scheduling and project planning, may not significantly impact costs, particularly
with flexible timelines and advanced project management techniques like CPM scheduling.
Social impact, while important for community engagement and sustainability, generally
incurs lower costs than other project expenses. Proactively addressing social concerns can
even lead to cost savings by avoiding delays and disputes. Similarly, regulatory require-
ments, though vital for compliance and risk management, may not substantially affect costs
in well-established regulatory frameworks where compliance costs are predictable. Equity
and fairness, which promote social cohesion and public trust, typically have a limited
direct impact on project costs, as they are often part of broader governance frameworks
rather than direct financial considerations. However, emphasizing equity and fairness
can enhance project success by fostering stakeholder engagement and reducing conflicts.
In summary, while these five factors are crucial for responsible and sustainable project
management, their direct influence on project costs is generally lower compared to factors
like resource constraints or risk analysis.

Although the mentioned factors—model development, temporal considerations, social
impact, regulatory requirements, and equity and fairness—are important in civil engineer-
ing projects, their direct impact on project costs can vary depending on the project context,
regulatory environment, and stakeholder priorities. Thus, excluding these factors from
the cost management analysis can be justified, as their influence on project costs may
be lower than other factors. The Delphi method, a common research tool for building
consensus among experts on complex issues, has proven effective in refining opinions and
establishing agreement through iterative feedback and weighted judgments. It is known
for synthesizing diverse expert opinions into a cohesive set of priorities or factors. Studies
show that the iterative nature of Delphi, with multiple rounds of questions and feedback,
ensures a comprehensive set of factors that meets specific field requirements. The Delphi
method’s ability to filter out irrelevant factors and focus on those with significant impact
aligns with its documented use in research across various domains, including technology
and project management. The excluded factors mentioned above support previous studies
suggesting that some factors, while important for broader themes, may have a limited
influence on project costs. Research also indicates that social impact and regulatory re-
quirements, though essential for community engagement and compliance, typically incur
relatively minor costs, emphasizing the varying impact of these factors based on context
and implementation.

4.2. Core Outcomes from the ISM Analysis

The ISM analysis examined the complex interdependencies among factors to create
a hierarchical structure. This section discusses the ISM analysis results, focusing on key
factors of cost management for civil engineering projects. The aim was to identify fun-
damental, intermediate, and dependent factors to improve cost management practices.
The analysis revealed intricate relationships among these factors. Figure 3 shows the
ISM hierarchy, with the top level (Level 1) comprising six subordinate factors: algorithm
selection, risk analysis, resource constraints, environmental impact, user interface, and
privacy and data security. These factors are foundational and heavily rely on those at lower
levels. They establish the base for the entire system, guiding further analysis and helping
stakeholders understand key themes and interconnections. The ISM analysis helps clarify
specific dependencies, providing a framework for understanding the system’s dynamics
and informing decision-making in the cost management of civil engineering projects.
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The Level 2 factors in the ISM hierarchy are the dependent factors: risk identification,
resource optimization, compliance monitoring, and system compatibility. These factors
are influenced by those at lower levels but also impact the subordinate factors at Level
1. Although they derive their characteristics from the intermediate and fundamental
factors at lower levels, they also affect the top-level factors, playing a dual role in the
hierarchy. In ISM analyses, dependent factors represent specific elements within a system
and often interact with intermediate factors, indicating complex interdependencies and
hierarchical relationships. These dependent factors are critical for understanding the
system’s intricacies, serving as bridges between subordinate and intermediate factors.
Analyzing these dependent factors helps stakeholders identify key pathways, bottlenecks,
or leverage points, facilitating informed decision-making and strategic planning. Level 2
dependent factors are intermediate elements that contribute to the system’s structure and
dynamics. While more specific than the subordinate factors at Level 1, they are influenced
by intermediate factors at Level 3 and connect to broader themes. This unique position
allows them to shed light on specific processes and attributes affecting system performance.
Understanding their role helps stakeholders develop targeted strategies to improve system
resilience, performance, and sustainability.

Level 3 in the ISM hierarchy consists of the intermediate factor “cost components”.
These intermediate factors serve as bridges between the higher-level subordinate factors
and the lower-level fundamental factors, creating a level of abstraction that connects
broader themes with more specific elements. Cost components act as mediators, grouping
related dependent factors under common themes. This structure helps explore complex
interactions within the system, including specific processes, strategies, and attributes that
contribute to the system’s overall functioning. Intermediate factors are derived from
dependent factors but are influenced by broader fundamental factors. While they share
some characteristics with dependent factors, intermediate factors have more driving power,
whereas dependent factors are more reliant on others. Understanding intermediate factors
is crucial for gaining insights into the system’s dynamics and supporting strategic planning
and decision-making. By identifying and analyzing these elements, stakeholders can better
understand how different components interact and influence each other, leading to more
informed decisions.

Cost components, positioned at Level 3 in the ISM hierarchy, serve as the interme-
diate factors defining specific elements of the system’s cost structure. They are closely
connected to resource constraints, a Level 1 subordinate factor representing financial and
other resource limitations that shape the overall cost framework. Understanding these cost
components provides insight into how resource constraints impact the system’s financial
aspects. Cost components also relate to risk mitigation, a Level 4 fundamental factor, which
involves the strategies used to manage risks and allocate resources to address vulnerabil-
ities. By examining cost components, managers can assess the cost-effectiveness of risk
mitigation measures and determine the best resource allocation strategies to minimize risks.
Positioning cost components at Level 3 reflects their role as connectors, bridging broader
themes from Levels 1 and 4 while providing a detailed view of the cost structure. Although
influenced by risk mitigation, these components also impact resource constraints, helping
stakeholders understand the system’s cost-related dynamics. As intermediate factors, cost
components support a deeper exploration of cost issues and their interactions with other
system elements.

Risk mitigation, located at Level 4, is the root of the ISM hierarchy and serves as the
fundamental factor upon which the entire structure is based. As the only independent factor
in this analysis, risk mitigation directly or indirectly affects all other factors at higher levels.
Fundamental factors like risk mitigation are crucial because they are the basic building
blocks determining the system’s behavior and outcomes. These fundamental factors consist
of specific actions or conditions that impact system performance and are more granular than
subordinate factors, which cover broader themes. They are generally identified through
the analysis of dependent factors and their relationships. Risk mitigation, as a fundamental
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factor, helps us understand the mechanisms that drive system dynamics. Identifying funda-
mental factors is essential for implementing effective interventions, policies, and strategies
to improve system performance, resilience, and sustainability. Fundamental factors like risk
mitigation guide decision-making, offering insights into key drivers of system performance.
By focusing on these core elements, stakeholders can identify actionable steps to address
challenges, seize opportunities, and manage risks. This emphasis on fundamental factors
enables targeted changes and strategic planning to enhance system functionality.

Risk mitigation is crucial for system resilience and sustainability, as it focuses on
strategies to reduce the impact of identified risks. It is central to risk management and
aligns with the broader themes of risk analysis seen at Level 1, which involve identifying
and prioritizing risks. Risk mitigation turns this analysis into practical strategies to pro-
tect the system and influences strategic decisions regarding resource allocation, process
optimization, and contingency planning. Positioning risk mitigation at Level 4 highlights
its foundational role in enhancing system robustness. It is a continuous process requiring
ongoing monitoring, evaluation, and adaptation. This emphasis on risk mitigation points
to the need to integrate risk management into system governance and operations, fostering
a culture of continuous improvement and resilience. Proactively addressing risks strength-
ens the system’s adaptive capacity and builds stakeholder trust. Effective risk mitigation
aligns with organizational objectives related to compliance, performance, and strategic
goals. Ultimately, it contributes to system success and sustainability by protecting assets,
improving stakeholder confidence, and supporting broader organizational strategies.

The ISM analysis reveals complex relationships and dependencies among the factors
influencing system performance. It identifies algorithm selection, risk analysis, and resource
constraints as key top-level factors, indicating their central role in system dynamics. The
dependent factors—risk identification, resource optimization, compliance monitoring, and
system compatibility—are critical for implementing strategies within the system. The
intermediate factor, cost components, highlights the importance of considering economic
viability and resource allocation during decision-making. Balancing costs with performance
goals and risk management is essential for sustainable operations and optimal resource use.
Overall, the ISM analysis provides valuable insights into the system’s internal relationships
and dependencies, supporting informed decision-making and strategic planning. This
understanding contributes to enhanced performance, resilience, and sustainability.

ISM is valued for its ability to map complex interdependencies and establish clear
factor hierarchies. Studies often use ISM to structure complex issues, providing guidance
for decision-making. This aligns with research examining the factors that affect project costs
in civil engineering, such as resource constraints, risk analysis, and algorithm selection. The
focus on fundamental, intermediate, and dependent factors in cost management reflects
common practices in engineering cost optimization research. Risk mitigation, positioned
at the base of the ISM hierarchy, underscores its fundamental role in maintaining system
resilience, a concept supported by the literature on risk management, which emphasizes the
effective strategies to protect project integrity and reduce negative outcomes. The emphasis
on continuous risk monitoring and adaptation resonates with studies that advocate for
ongoing risk assessments in dynamic environments. Intermediate factors like cost com-
ponents, which bridge the higher and lower levels of the ISM hierarchy, are viewed as
crucial for connecting broader themes to specific elements, aiding strategic planning and
decision-making. This discussion on how an ISM analysis supports informed decision-
making, with a focus on performance, resilience, and sustainability, reflects earlier studies
that use ISM for the structured analysis of complex systems, enabling stakeholders to make
better decisions. In conclusion, the ISM analysis described for civil engineering projects is
consistent with the key themes in the academic literature, focusing on hierarchical structur-
ing, cost management, risk mitigation, and strategic planning—common themes in studies
addressing complex systems and effective management.
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4.3. Core Outcomes from the MICMAC Analysis

The MICMAC analysis has provided crucial insights into the interrelationships and
influences among the twelve factors considered. The MICMAC diagram shown in Figure 5
categorizes these factors based on their driving power (the extent to which a factor influ-
ences others) and dependence power (the degree to which a factor is influenced by others).
All twelve factors fall within the linkage quadrant, indicating their high driving power
and high dependence, which underscores their significant interconnectedness. This section
details the key outcomes from the MICMAC analysis and discusses their implications
for decision-making and strategic planning. The high driving power and dependence
among these factors suggest complex interdependencies, emphasizing the importance
of a holistic and integrated approach to system management. The results highlight the
need for strategies that consider these interconnected dynamics to effectively manage
and make informed decisions within the system. The key takeaways from this analysis
guide stakeholders in understanding these intricate relationships and planning strategic
interventions accordingly.

• Integrated planning: Decision-makers should adopt integrated planning approaches
that consider the interconnectedness of factors such as algorithm selection, risk analy-
sis, resource constraints, and user interfaces. This entails identifying synergies and
trade-offs to optimize system performance and resilience.

• Risk-informed strategies: Given the central role of risk analysis, decision-makers
should prioritize risk-informed strategies that proactively identify and address poten-
tial threats and vulnerabilities. This involves continuous monitoring, evaluation, and
adaptation to evolving risk landscapes.

• Resource optimization: Addressing resource constraints requires strategic resource
optimization strategies that balance competing demands and priorities. Decision-
makers should explore innovative approaches to resource allocation, utilization, and
management to maximize efficiency and effectiveness.

• User-centric design: The significance of user interfaces underscores the importance
of adopting user-centric design principles in system development. Decision-makers
should prioritize usability, accessibility, and user satisfaction to enhance system adop-
tion and acceptance.

• Data protection measures: Privacy and data security considerations should be inte-
grated into all aspects of systems’ design and operation. Decision-makers should
implement robust data protection measures, compliance monitoring mechanisms, and
user education programs to mitigate risks and safeguard sensitive information.

MICMAC analysis is a well-regarded method for understanding the interrelationships
and influences among factors in complex systems. It categorizes factors based on their
driving power (how much they influence others) and dependence power (how much they
are influenced by others). The referral of our factors to the linkage quadrant, indicating
high driving power and high dependence, aligns with studies that use MICMAC to identify
highly interconnected factors, emphasizing their significant interdependencies. Research on
MICMAC has shown its utility in strategic planning and decision-making through offering
a structured view of system dynamics. The highlighted complex interdependencies suggest
the need for integrated system management, resonating with the literature that advocates
for holistic approaches to complex systems. The integrated planning approach mentioned
in this research aligns with studies focusing on interconnected factors like algorithm
selection, risk analysis, and resource constraints. These studies often examine how to
balance synergies and trade-offs to enhance system performance and resilience.

Risk-informed strategies, we also noted, reflect the central role of risk analysis in man-
aging complex systems. Research supports the idea of continuous monitoring, evaluation,
and adaptation to evolving risk environments, consistent with its emphasis on proactive
risk management. Resource optimization strategies are discussed in the literature as a
way to address resource constraints by balancing competing demands and finding inno-
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vative approaches to resource allocation. This aligns with the need for effective resource
use in complex projects. User-centric design and data protection measures have gained
prominence in studies on system design and security. The literature emphasizes usability,
accessibility, and user satisfaction, in line with the present recommendations for enhancing
the system adoption. The research on data protection underscores the importance of pri-
vacy and compliance monitoring, echoing the call for robust data protection. Hence, the
ongoing discussion of the MICMAC analysis and its focus on integrated planning, risk-
informed strategies, resource optimization, user-centric design, and data protection reflects
the common themes found in studies on complex systems and effective management.

5. Discussions

In this section, the study findings and the implications have been explored within
the broader context of cost management in the civil engineering domain. This research
aimed to optimize the cost associated with civil projects by identifying the potential AI
factors that influence it. Through the in-depth analysis of the Delphi-ISM-MICMAC
hybrid model and an examination of the AI factors, the authors tried to align the valuable
insights gained from the present analysis with the research objectives in this section, as
follows. First of all, the study identified and analyzed seventeen key AI factors relevant
to cost management in civil engineering. These factors, categorized into eight groups
(as shown in Table 2), were gathered through a comprehensive literature review and
expert consultations. Secondly, the fuzzy integrated Delphi method helped us gather
expert opinions on the relevance of these AI factors in cost management. This process,
through structured questionnaires and iterative feedback, narrowed down the seventeen
factors to twelve significant ones, eliminating five factors (model development, temporal
considerations, social impact, regulatory requirements, and equity and fairness) from
further analysis, as they were less relevant to cost-related civil project issues. Moving
towards the third objective, the ISM analysis examined the interrelationships among the
twelve significant AI factors in cost management. This method established a hierarchical
structure (see Table 9 and Figure 4) that reflected their dependencies and interactions,
providing a clear framework for their impact on cost management practices. Finally, the
MICMAC analysis identified the driving and dependent forces among the twelve AI
factors, placing them in the linkage quadrant (Figure 5). This indicated that all factors had
both driving and dependent characteristics, with none being purely driving or dependent.
This analysis helped classify these factors based on their influence and importance in
decision-making.

This research addressed four objectives by offering insights into key AI factors and
employing methodologies like the fuzzy integrated Delphi method, ISM, and MICMAC
analyses. It successfully addressed several critical gaps in the literature, contributing to
advancements in civil engineering cost management. Previous studies have used fuzzy
integrated hybrid MCDM models in various domains, but their application to cost manage-
ment in civil engineering projects was lacking. By integrating AI factors into this hybrid
model, this research filled this gap, presenting a tailored approach to optimizing cost
management in the construction sector. In addition, this study uniquely combined the
Delphi, ISM, and MICMAC methods to create a cohesive framework for analyzing the
decision-making problems in cost management. This integration enhanced the comprehen-
siveness and effectiveness of the decision-making process in civil engineering. Moreover,
previous research had not extensively explored integrating AI factors into decision-making
processes. The proposed research focused on incorporating AI factors specifically to im-
prove cost management in civil engineering projects, addressing the increasing role of AI
in the construction industry. This approach acknowledged AI’s potential to improve cost
optimization practices. Although the hybrid model used various methodologies, there was
scope for further methodological enhancements. The study contributed to this by exploring
innovative techniques to incorporate AI factors, including using algorithms and models to
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analyze AI’s impact on cost management decisions, thereby enhancing the accuracy and
efficiency of the decision-making process.

In conclusion, the proposed research successfully addressed existing research gaps
by offering a novel approach to integrating AI factors into the fuzzy integrated hybrid
MCDM model for civil engineering cost management. Through these methodological
advancements and tailored solutions, this research contributed to addressing flaws in
the literature and paved the way for more effective cost management practices in the
construction industry.

Managerial Implications

This research work offers several key managerial implications for the stakeholders
involved in civil engineering projects. These implications are derived from the insights and
recommendations provided by the study and are aimed at enhancing cost management
practices through the integration of AI factors. Here are some of the managerial implications:

• Managers should adopt an integrated strategic planning approach that considers the
multifaceted relationships among the AI factors identified in the study. This involves
developing comprehensive strategies that leverage AI technologies to optimize cost
management practices while aligning with organizational goals and project objectives.

• Decision-makers should prioritize risk-informed decision-making processes, leverag-
ing insights from the risk analyses and mitigation strategies identified in this study.
By proactively identifying and addressing potential risks, managers can minimize
uncertainties and mitigate adverse impacts on cost management in civil engineer-
ing projects.

• Organizations should focus on optimizing resource allocation and utilization by lever-
aging AI-driven approaches such as resource optimization and demand forecasting.
This involves identifying opportunities for efficiency improvement, minimizing waste,
and maximizing the value of the available resources to enhance cost-effectiveness and
project outcomes.

• Managers should prioritize user-centric design principles in the development of civil
engineering projects, with a particular focus on the user interface. By enhancing the
usability, accessibility, and user experience of project interfaces, organizations can
improve stakeholder engagement, satisfaction, and overall project success.

• Organizations must prioritize data security and compliance with regulatory require-
ments, particularly concerning privacy and data protection. Managers should imple-
ment robust data security measures, compliance monitoring mechanisms, and user
education programs to mitigate risks and safeguard sensitive information.

• Managers should foster a culture of continuous improvement by encouraging feedback,
learning, and adaptation throughout the project lifecycle. By leveraging insights
from the study, organizations can identify areas for optimization, address emerging
challenges, and capitalize on opportunities for innovation and growth.

• Organizations should invest in training and skill development programs to enhance
the AI literacy and proficiency of project stakeholders. This involves equipping team
members with the necessary knowledge, skills, and tools to effectively leverage AI
technologies in cost management practices.

• Managers should promote collaboration and knowledge sharing among project stake-
holders, both within the organization and across industry sectors. By fostering an
environment of collaboration and information exchange, organizations can leverage
their collective expertise, insights, and best practices to drive continuous improvement
in cost management practices.

This research work offers valuable managerial insights for enhancing the cost man-
agement practices in civil engineering projects through the integration of AI factors. By
adopting these recommendations, organizations can optimize project outcomes, minimize
risks, and drive sustainable growth and success in the increasingly complex and dynamic
field of civil engineering.
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6. Conclusions

The ongoing research has yielded significant insights into the complex dynamics
of cost management in civil engineering projects. By integrating various methodologies
and techniques, including fuzzy-Delphi, ISM, and MICMAC, this study has provided a
comprehensive framework for understanding and optimizing the role of AI factors in cost
management within this domain. Through a systematic analysis, this study has identi-
fied the critical AI factors that exert a substantial influence on cost management in civil
engineering projects. These factors encompass algorithm selection, cost estimation, risk
management, resource allocation, sustainability, regulatory compliance, system integration,
and social implications. Understanding the interconnectedness and dependencies of these
factors is vital for devising effective strategies to optimize cost management practices.
The hierarchical structure revealed by the ISM analysis illustrates the relationships and
dependencies of these identified factors. This hierarchical perspective provides valuable
insights into the systemic dynamics shaping cost management in civil engineering projects.
Furthermore, the MICMAC analysis highlights the interconnected nature of the identified
factors, with all factors falling within the linkage quadrant. This underscores the need
for holistic and integrated approaches to optimize cost management practices. By consid-
ering the multifaceted relationships and influences among AI factors, shareholders can
develop proactive strategies to address challenges, leverage opportunities, and enhance
project outcomes.

Our research findings have significant implications for decision-makers and practition-
ers involved in cost management in civil engineering projects. By prioritizing risk-informed
strategies, resource optimization, user-centric design principles, and data protection mea-
sures, organizations can enhance their competitiveness, efficiency, and sustainability. In-
tegrated planning approaches that leverage synergies and address trade-offs effectively
are essential for achieving optimal outcomes in this complex and dynamic environment.
There are several avenues for future research, including the refinement of AI models and
methodologies, the exploration of emerging technologies, and the evaluation of the best
practices in cost management. Continued research and innovation will be critical to ad-
dressing the evolving challenges and opportunities in the field and driving sustainable
growth in the civil engineering industry. In conclusion, this research provides a robust
framework for enhancing cost management practices through AI integration. By leveraging
the insights and recommendations offered by this study, stakeholders can navigate the
complexities of cost management more effectively and achieve their project objectives with
greater efficiency and success.

Limitations and Future Work

The research may have a limited scope, focusing primarily on cost management in civil
engineering projects. Other aspects of project management or specific industry contexts
may not have been adequately addressed. The availability and quality of the data used in
the analysis may act as a barrier. Limited access to relevant data or reliance on secondary
sources could impact the accuracy and robustness of these findings. Moreover, the com-
plexity and novelty of the hybrid approach may introduce methodological challenges, such
as subjective judgments in the fuzzy-Delphi analysis or assumptions made in the ISM and
MICMAC analyses. These constraints could affect the validity and reliability of the results.
Additionally, the findings of the research may not be readily generalizable to all civil engi-
neering projects or organizational contexts. Factors such as project size, complexity, and
geographic location could influence the applicability of the proposed approach. Lastly, the
effectiveness of AI factors in cost management may be contingent upon the availability and
reliability of AI technologies. Rapid advancements in AI and changing market dynamics
may render certain findings obsolete over time.

Researchers may work on the above-stated limitations to extend the present research
in the future. Addressing the above limitations may be intriguing and validations of the
findings should be accomplished through empirical testing in real-world civil engineering



Information 2024, 15, 280 32 of 34

projects. The research could also be expanded to explore the applicability of the hybrid
approach to cost management in other industries beyond civil engineering. This would in-
volve adapting the methodology to address industry-specific challenges and opportunities.
Furthermore, this research could inform the development of decision support systems or
software tools that integrate AI factors to facilitate cost management decision-making in
civil engineering projects. These tools could offer practical guidance and insights to project
managers. Collaboration with experts from related disciplines, such as computer science,
economics, and business management, could also enrich this research domain and provide
interdisciplinary insights into the optimization of AI factors in cost management.
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