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Abstract: Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, charac-
terized by irreversible visual impairment resulting from microvascular abnormalities. Since the
global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research
interest. The development and progression of DR encompass a complex interplay of pathological
and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses,
vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled
the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present,
extensive research explores the potential of biomarkers such as cytokines, molecular and cell thera-
pies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as
anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β
inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review
article aims to introduce the recent molecular research on DR and highlight the current progress in
the field, with a particular focus on the emerging and experimental treatment strategies targeting the
immune and redox signaling pathways.

Keywords: diabetic retinopathy; oxidative stress; reactive oxygen species; epigenetic changes; anti-
VEGF drugs; corticosteroids

1. Introduction

Diabetic retinopathy (DR) is a serious complication of diabetes mellitus and has
become one of the leading causes of blindness in adults worldwide [1]. The current
epidemiological studies have estimated that more than 500 million individuals worldwide
grappled with diabetes in 2021 [2]. Remarkably, approximately one-third of the diabetic
population potentially faces the threat of DR [3]. The projections suggest that, by 2045, the
global diabetic population may surge to a staggering 700 million [4,5]. The hallmarks of DR
encompass pathological transformations in retinal microvessels, including microaneurysms,
intraretinal microvascular abnormalities (IRMAs) and neovascularization resulting in
hemorrhages, hard exudates, and cotton-wool spots [6]. As the disease advances, it may
give rise to severe complications such as macular edema, retinal detachment, vitreous
hemorrhage, neovascular glaucoma, and, ultimately, irreversible blindness [7].

The pathophysiological mechanisms of DR are extraordinarily intricate, intimately
intertwined with a myriad of microenvironmental shifts within the body. Initially, the
heightened oxidative stress response to hyperglycemia triggers a cascade of effects, culmi-
nating in alterations to the signaling pathways, such as the protein kinase C (PKC) pathway,
advanced glycation end products (AGEs) pathway, activation of glycolytic polyol pathways,
and the overproduction of reactive oxygen species (ROS) [8,9]. These changes amplify
the signaling from proliferative growth factors, such as the vascular endothelial growth
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factor (VEGF), resulting in the increased production and release of highly oxidatively
reactive species, all contributing to the DR progression [10,11]. Second, the hyperglycemic
environment in diabetes detrimentally affects the vascular endothelial cell function [12].
At the same time, changes in the retinal matrix and neural properties constitute pivotal
components of the DR progression [13]. Additionally, inflammation and immune responses,
including leukocyte adhesion, upregulation of chemokine expression, and heightened in-
flammatory factor production, play a pivotal role in DR development [14]. Furthermore, as
molecular research on DR intensifies, potential targets and biomarkers, such as cytokines,
chemokines, and growth factors, have come to the forefront. The influence of genetic and
epigenetic variations on the onset and progression of DR has garnered substantial attention
within the medical community [15].

Next to stringent blood sugar control and the optimization of the cardiovascular risk
factors, the current treatment strategies for DR, such as stringent blood sugar and blood
pressure control, laser photocoagulation, vitrectomy, intravitreal injections of anti-VEGF
epidermal growth factor drugs, and intravitreal glucocorticoid therapy, all possess specific
limitations and are unable to achieve the complete reversal of the disease [16]. In pursuit
of overcoming these limitations, novel treatment avenues are explored. The purpose of
the present article is to present the recent treatment approaches that target the redox and
immune signaling pathways.

2. Molecular Mechanisms of Diabetic Retinopathy

Sustained hyperglycemia, oxidative stress, and other pathological factors trigger
inflammatory responses within the retinal environment. This cascade of events initiates the
activation, adherence, and infiltration of leukocytes, accompanied by the overexpression of
inflammatory cytokines. Within this context, two significant pathophysiological phases
of DR emerge, an initial non-proliferative stage followed by a subsequent proliferative
stage. The former denotes an early disease phase marked by the loss of pericytes from
the retinal capillaries, leading to the formation of acellular capillaries, increased vascular
permeability, and disruption of the inner endothelial BRB [12]. The latter stage represents an
advanced phase where fragile and tortuous blood vessels develop, ultimately culminating
in the formation of fibrovascular epiretinal membranes, vitreous hemorrhage, and retinal
detachment, ultimately resulting in visual impairment [12].

2.1. Oxidative Stress Induced by Hyperglycemia

Over the years, researchers have consistently identified elevated blood glucose levels
as a pivotal factor in the pathogenesis of DR, causing retinal damage through a variety of
direct and indirect mechanisms. In the following paragraphs, we present the most relevant
pathomechanisms related to the oxidative stress occurring during DR.

2.1.1. Mitochondrial Dysfunction

Mitochondria are the main source of intracellular ROS in humans [17]. Hyperglycemia
induces mitochondrial dysfunction, exacerbating the electron leakage within the mitochon-
drial electron transport chain (ETC), resulting in the overproduction of ROS [18]. Specif-
ically, chronic hyperglycemia triggers an overload of the reduced form of nicotinamide
adenine dinucleotide (NADH) and the flavin adenine dinucleotide (FADH2) produced by
the tricarboxylic acid cycle, subsequently leading to a high mitochondrial membrane po-
tential and causing a slowdown of the ETC in complex III due to the challenging transfer of
the electrons and protons carried by coenzyme Q downstream of the respiratory chain [19].
Moreover, in animal models of DR, elevated levels of the superoxide anion (O2

•−) have
been detected, accompanied by decreased expression of manganese (Mn) superoxide dis-
mutase (SOD), also known as SOD2, one of the most relevant antioxidant enzymes in the
human body, which is associated with retinal neuron apoptosis in DR [8]. In this context,
utilizing a rodent model of diabetes, Du and colleagues reported an increased production
of retinal O2

•− primarily related to mitochondria, with a smaller portion produced by



Antioxidants 2024, 13, 594 3 of 29

NOX [20]. This research group further demonstrated in the same animal model an en-
hanced production of O2

•− specifically in the photoreceptor layer of both light-adapted and
dark-adapted diabetic eyes [21]. Additionally, mitochondria also exhibit, under conditions
of high serum glucose, mtDNA damage and morphological alterations, such as swelling,
along with altered permeability [18,22].

Collectively, mitochondrial dysfunction is recognized as a significant pathophysio-
logical driver capable of increasing ROS formation and thus responsible for the damaging
events leading to the development of DR.

2.1.2. Activation of the Protein Kinase C Pathway and Stimulation of NOX

The activation of PKC is recognized as one of the primary pathophysiological mech-
anisms driving DR. Hyperglycemia triggers the activation of PKC, notably the PKC-β
isoform, by elevating the intracellular diacylglycerol (DAG) levels. Once PKC is activated,
it modulates blood vessel permeability by the upregulation of VEGF, ultimately leading
to retinal edema [19,23,24]. Consistent with these findings, an investigation conducted by
Aiello and colleagues in diabetic patients demonstrated that the pharmacological inhibition
of PKC-β via the oral administration of ruboxistaurin improved the diabetes-related retinal
hemodynamic alterations [25]. PKC also influences the adhesion proteins, thereby affecting
cell migration [8,24]. These changes may predispose the retina to neovascularization, a
defining characteristic of advanced-stage DR. Importantly, several experimental studies
have demonstrated that PKC can induce an increase in the NADPH oxidase (NOX) activity,
favoring ROS generation in various vascular cells, including endothelial cells, dendritic
cells, erythrocytes, smooth muscle cells, and pericytes [26–29]. Mechanistically, the pro-
duction of O2

•− occurs through the addition of a single electron to molecular oxygen via
the adenosine triphosphate (ATP) redox chain in mitochondria, catalyzed by the NOX in
macrophages [30,31]. All NOX isoforms share a common domain comprising six trans-
membrane α helices chelating two iron-containing hemes, the flavin adenine dinucleotide
(FAD), and the dehydrogenase domain (DH) of the NADPH substrate. Two electrons from
the NADPH substrate are conveyed to FAD to form FADH2 [30]. FADH2 then transfers
an electron to heme, subsequently transmitted to molecular oxygen to generate superox-
ide [30,32].

NOX is widely distributed in immune cells, with prominent isoforms including NOX1,
NOX2, NOX3, NOX4, and NOX5. During the phagocytosis-mediated destruction of bac-
teria, NOX activation yields copious superoxide, subsequently converted to peroxide by
SOD [33]. The excessive production of ROS overwhelms the antioxidant defense mecha-
nisms, culminating in oxidative stress [8]. Figure 1 provides a schematic overview of the
molecular structure and mechanism of action of NOX, as well as mitochondrial dysfunction
and ROS generation, while antioxidant molecules work to counteract these pathomechanisms.

Two important enzymes of the vascular endothelium regulating the endothelial func-
tion in the retina include nitric oxide synthase (NOS) and cyclooxygenase (COX) [34]. NOS
comprises three isomers: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial
NOS (eNOS) [35]. The overproduction of ROS also triggers the activation of the retinal
redox-sensitive transcription factor NF-κB [18]. In response, NF-κB amplifies the release of
pro-inflammatory cytokines and the potent oxidant nitric oxide (NO). Under the catalytic
influence of NOS, NO gives rise to a range of formidable oxidants [36]. These powerful
oxidants can inflict cellular damage through the nitration of the tyrosine and phenylalanine
residues in proteins [37]. In essence, the escalation of free radicals and the disturbance
in the antioxidant system result in retinal cell DNA impairment, oxidative protein and
lipid damage, functional perturbations in cells, and may even lead to the demise of retinal
nerve cells. In addition, hyperglycemia triggers vascular endothelial dysfunction leading
to impaired vasodilation [38]. These processes culminate in the eventual onset of retinal
ischemia and neovascularization [10,11,39].
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Figure 1. Overview of the molecular structure and mechanism of action of NOX, as well as regarding
mitochondrial dysfunction and ROS generation. FAD: flavin adenine dinucleotide; Fe: heme group
containing Fe atom; NADPH: nicotinamide adenine dinucleotide phosphate; NOX: NADPH oxidase;
O2: oxygen; O2

•−: superoxide anion; ROS: reactive oxygen species.

2.1.3. Activation of the Polyol Pathway

An excess intracellular concentration of O2
•− triggers the enzymatic action of PARP,

leading to the subsequent consumption of nicotinamide adenine dinucleotide (NAD+) [40].
Consequently, the activity of the glycolytic enzyme glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) significantly decreases, suppressing the glycolysis process [41]. Under
these conditions, the polyol pathway experiences heightened activity and involves two
principal steps [8]. First, glucose is reduced to sorbitol through the action of aldose reduc-
tase, utilizing nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor [42].
The sorbitol is subsequently oxidized to fructose by sorbitol dehydrogenase (SDH), con-
verting the cofactor NAD+ to NADH [43]. As sorbitol has limited membrane permeability,
it accumulates intracellularly, resulting in increased osmotic pressure and cellular damage,
while the depletion of NAD+ correlates with the increased generation of ROS, due to the
excess of NADH used as a substrate for NOX, contributing to the generation of intracellular
O2

•− in retinal cells [8,44].
A study by Dagher and colleagues determined that blocking aldose reductase, the

rate-limiting enzyme in the polyol pathway, protected against the early activation of the
complement in the wall of retinal blood vessels in diabetic rats, as well as the later apoptosis
of vascular pericytes and endothelial cells and the development of acellular capillaries [45].
The same study showed that both rat and human retinal endothelial cells display aldose
reductase immunoreactivity, suggesting that an excess of aldose reductase activity can be a
mechanism for human diabetic retinopathy [45]. Interestingly, the C106T polymorphism
of the aldose reductase gene is linked with the severity of retinopathy in type 2 diabetes
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mellitus [46]. Moreover, the data suggest that the suppression of aldose reductase activity
diminishes the neuronal apoptosis, glial response, and retinal neoangiogenesis in DR [47].

Additionally, fructose can be phosphorylated to fructose-3-phosphate and subse-
quently decomposed to 3-deoxyglucosone, eventually used as a precursor involved in
the generation of advanced glycation end products (AGEs) through glycosylation [8,43].
Moreover, the increased compensatory action of the glucose monophosphate shunt leads
to the excessive consumption of NADPH, thereby inducing a loss of the cofactors available
for the synthesis of glutathione (GSH), ultimately exacerbating the oxidative stress due to a
lack of endogenous antioxidant activity [18].

Altogether, the hyperglycemia-related activation of the polyol pathway dramatically
alters the intracellular tonicity of the retinal capillaries, along with generating precursors of
AGEs, culminating in an overabundance of ROS and the establishment of oxidative stress.

2.1.4. Activation of the Hexosamine Biosynthetic Pathway

The hexosamine levels are elevated in the retinal tissues of diabetic patients [48].
The hexosamine biosynthetic pathway becomes hyperactive when there is excessive gly-
colytic intermediate fructose-6-phosphate that cannot be metabolized in glycolysis [49].
Under these circumstances, fructose-6-phosphate is converted to N-acetylglucosamine 6-
phosphate (GlcNAc-6-P) by the enzymatic action of fructose-6-phosphate aminotransferase
(GFAT), the rate-limiting enzyme in the hexosamine biosynthetic pathway [48–50]. GlcNAc-
6-P is then converted to N-acetylglucosamine-1, 6-phosphate, and uridine 5′-diphospho-N-
acetyl-d-glucosamine (UDP-GlcNAc) [48]. Consequently, in chronic hyperglycemia, the
glucose flux through the hexosamine biosynthetic pathway increases, leading to enhanced
production of UDP-GlcNAc, a pivotal donor substrate for the enzyme O-GlcNAc transferase
(OGT). O-GlcNAcylation, mediated by OGT, is found to be elevated in diabetic animals
and humans, causing the dysregulation of the signaling cascades and transcription [48,51].
For example, O-GlcNAcylation leads to modifications in transcription factor Sp1, which
induces the expression of glucose-responsive gene plasminogen activator inhibitor-1 in
vascular smooth muscle cells, contributing to DR [52,53]. Additionally, GlcNAc-6-P induces
retinal pericyte loss and the generation of acellular capillaries by suppressing VEGFR2 and
Ang2 in the normal retina [54]. Furthermore, elevated O-GlcNAcylation induces retinal
ganglion cell death in diabetic murine models by affecting the NF-κB p65 subunit, while the
enhanced O-GlcNAcylation of p53 is associated with increased retinal pericyte apoptosis,
resulting in early DR vascular dysfunction [55]. Importantly, Kim et al. determined that
the hexosamine pathway tends to increase retinal neuronal cell death by suppressing the
neuroprotective effect of the insulin/Akt signaling pathway [56].

Critically, high levels of GlcNAc-6-P are known to cause an excess of ROS by reducing
NADPH-dependent GSH production, leading to increased H2O2 levels [57,58], thereby af-
fecting the mitochondrial respiration, further exacerbating oxidative stress, and promoting
increased vascular permeability as well as neoangiogenesis [8].

2.1.5. Formation of Advanced Glycation End Products

Elevated glucose levels give rise to the increased formation of AGEs within the polyol
pathway. AGEs represent stable compounds formed via non-enzymatic catalysis, resulting
from the covalent bonding of sugar molecules to proteins, lipids, or nucleic acids [59]. Once
accumulated, AGEs activate various cell signaling pathways by binding with their receptor
for advanced glycation end products (RAGE). This activation leads to oxidative stress,
intensified inflammatory responses, and even influences gene expression, contributing to
the damage in retinal cells and tissues [8,18,50].

The AGEs/RAGE axis induces NF-κB activation, thereby causing the pericyte apop-
tosis in the retina and overexpression of VEGF, which increases the vascular endothelial
permeability [35]. The current literature reports that administering AGEs to normal rats up-
regulates RAGE and ICAM-1, leading to retinal hyperpermeability and leukostasis [60–62].
Moreover, hyperglycemia-related AGE formation induces the hyperactivation of the un-
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folded protein response and autophagy via endoplasmic reticulum stress, which also
promotes pericyte apoptosis [63].

Importantly, experimental studies have demonstrated that the binding of AGEs with
RAGE triggers NOX, thereby increasing the intracellular ROS formation [64]. Furthermore,
the existing literature highlights that AGEs can also induce ROS generation through the
mitochondrial electron transport chain [65]. Conversely, ROS excess is involved in AGE
formation and RAGE expression, establishing a positive feedback loop [8,66,67]. Figure 2
summarizes the main pathways leading to oxidative stress in DR.
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Figure 2. Schematic representation of the pathogenesis of DR leading to a disruption of the redox
homeostasis in the eye. Hyperglycemia triggers oxidative stress responses through multiple pathways,
ultimately leading to DR. In this context, PKC inhibitors, NOX inhibitors, and antioxidant agents
antagonize the effect of oxidative stress. AGE: advanced glycation end products; GlcNAc-6-P: N-
acetylglucosamine 6-phosphate; GSH: glutathione; H2O2: hydrogen peroxide; PKC: protein kinase C;
NADPH: nicotinamide adenine dinucleotide phosphate; NOX: nicotinamide adenine dinucleotide
phosphate oxidase; O2

•−: superoxide anion; MnSOD: manganese superoxide dismutase.

2.2. Inflammatory Response

The pathogenesis of DR involves a multitude of factors, with the inflammatory re-
sponse emerging as a crucial contributor to its progression [14]. In this context, it is
noteworthy to describe two fundamental steps of the inflammatory events occurring in DR,
the recruitment and activation of immune cells.

The capture and rolling of leukocytes are orchestrated by a family of cell adhesion
proteins known as selectins. The three recognized selectin members (L-, E-, and P-selectin)
exhibit similar structural topologies and bind to sialyl-Lewisx carbohydrate ligands [68].
Under hyperglycemic conditions, vascular endothelial cells initiate the expression of a
spectrum of adhesion molecules, and the selectin family of molecules is recognized to
facilitate the initial rolling of leukocytes along the endothelium [69]. In particular, L- and
E-selectin may play a role in the development of DR [69–71].

A distinct set of adhesion molecules intervenes to decelerate the leukocyte rolling and
firmly anchor the leukocytes to the endothelial surface. The step of adhesion is mainly
mediated by molecules of the immunoglobulin superfamily, such as the intercellular ad-
hesion molecule ICAM-1 and the vascular cell adhesion molecule VCAM-1, expressed on
endothelial cells. VCAM-1, in particular, has been found to be specifically associated with
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microvascular complications in DR [69]. The adhesion molecules expressed on the endothe-
lial surface bind integrins, a class of transmembrane receptors expressed on leukocytes.
The suppression of this interaction has been reported to prevent the formation of leakage
in DR [72].

Once secure adhesion to the endothelial surface is achieved, adhesion proteins like
vascular adhesion protein-1 (VAP-1), localized at the endothelial cell–cell junctions, facilitate
the extravasation of the leukocytes between the endothelial cells along the intercellular
junctions [73]. This process allows the leukocytes to traverse the vascular wall and infiltrate
the retinal tissue, thereby inciting a localized inflammatory response.

Simultaneously, hyperglycemia can induce the activation of neutrophils, macrophages,
and other immune cells while also triggering the release of the retinal redox-sensitive
transcription factor NF-κB [14,74]. Notably, NF-κB has been demonstrated to instigate a
pro-apoptotic program in response to the elevated glucose stress within retinal pericytes via
the IL-1β pathway [75]. In this context, various pro-inflammatory cytokines are released,
including tumor necrosis factor-α (TNF-α), along with chemokines such as monocyte
chemoattractant protein-1 (MCP-1) [14,76]. These inflammatory factors can exacerbate the
damage to vascular endothelial cells, disrupt the permeability of retinal vessels, and initiate
retinal macular edema, which stands as a primary driver of the clinical manifestations of
DR [14].

Altogether, the inflammatory response of the retina is a key link in the pathogenesis
of DR, and an in-depth understanding of it will help to find new therapeutic targets
and optimize the treatment strategies. Figure 3 offers an overview on the processes of
leukocyte recruitment and activation, leading to pericyte apoptosis and the production of
pro-inflammatory cytokines during DR. Anti-inflammatory drugs act to antagonize these
pathways, for example, by suppressing the action of specific cytokines.
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2.3. Cellular and Molecular Changes
2.3.1. Endothelial Cell Damage

DR is fundamentally a microvascular disease, and its primary pathophysiological
mechanism revolves around the dysfunction of retinal vascular endothelial cells [77].
These crucial cells are responsible for maintaining vascular integrity and homeostasis,
orchestrating the exchange of blood and nutrients, as well as the migration of the cells
and molecules within the bloodstream [49]. In the diabetic state, persistent hyperglycemia,
coupled with the systemic and local factors related to diabetes, such as arterial hypertension,
dyslipidemia, elevated AGE levels, oxidative stress, and inflammatory agents, lead to
impaired retinal vascular endothelial cell function, promoting the development of DR [39].
Specifically, dysfunctional vascular endothelial cells undergo various pathophysiological
alterations, including increased permeability, decreased apoptosis and proliferation rates, as
well as the increased expression of adhesion molecules and chemokines [14]. Consequently,
the homeostasis of retinal microvessels is disrupted, resulting in vascular occlusion and
increased permeability, the thickening of the capillary matrix, the development of macular
edema, and the formation of new blood vessels, which are typical pathological features of
DR [12].

The initial non-proliferative stage of DR is characterized by the loss of pericyte function,
leading to microvascular abnormalities such as an increase in microvascular permeability
and the apoptosis of endothelial cells. This contributes to the obstruction of retinal mi-
crovessels, exacerbates retinal edema, diminishes oxygenation capacity, and gives rise to
non-perfused and hypoxic regions [78]. Hypoxia, in turn, stimulates the overexpression
of growth factors such as VEGF, fostering the formation of new microvessels in the retina,
which characterize the advanced proliferative phase [78]. However, owing to the damage
inflicted by high blood sugar on endothelial cells, the structure of these newly formed
microvessels often assumes an abnormal configuration, featuring thin walls, heightened
permeability, and susceptibility to rupture and bleeding [79]. Hence, retinal edema and
hemorrhage ensue, further exacerbating the visual impairment and serving as the primary
pathological hallmark of advanced DR [80]. Hereby, strategies aimed at inhibiting VEGF,
including the utilization of anti-VEGF antibodies and VEGF receptor antagonists, have
become a cornerstone in the treatment of DR [81,82].

2.3.2. Extracellular Matrix Remodeling

The retinal matrix and vascular basement membrane consist of a diverse array of cells
and extracellular matrix (ECM) components, such as collagen IV, fibronectin, perlecan,
and laminin, which can undergo structural and functional changes under persistent hy-
perglycemia [83]. The processes of glycosylation, oxidation, and the crosslinking of ECM
proteins can occur during DR, leading to a thickening of the basement membrane [84].
These modifications not only impact the structural and functional aspects of the matrix but
also influence the cellular behavior by activating a myriad of signaling pathways, includ-
ing cell proliferation, migration, secretion, and apoptosis [85]. Hence, these pathogenetic
events dramatically affect the vascular homeostasis and neural functionality of the retina.
For example, collagen IV cross-linking can trigger the thickening of the retinal capillary
walls, impeding blood permeability and fluidity, ultimately contributing to edema [83].
Furthermore, changes in the matrix proteins can influence cell adhesion and migration,
thereby promoting neovascularization [84,86]. Additionally, high levels of matrix metal-
loproteinases (MMPs), which belong to the endopeptidase family responsible for ECM
degradation or remodeling, have been found in DR, and appear to be implicated in the
retinal revascularization during the late stages of DR [87–89].

2.4. Retinal Neurodegeneration

Recent studies have unveiled the role of retinal neurodegeneration in the pathogenesis
of DR [90,91]. Several investigations have demonstrated progressive retinal thinning and
visual dysfunction in individuals affected by diabetes, prior to the occurrence of DR or in
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the very early stages of DR [92], with retinal imaging revealing vascular remodeling and
choroidal changes [93–98]. Additionally, studies on animal models of diabetes have shown
that diabetes directly impacts the retinal neural and glial cells, supporting the notion that
diabetic retinal neurodegeneration occurs early in the disease [99–106].

Pathogenetically, damage to retinal neurons manifests as the degeneration of cell bod-
ies and synapses, resulting in the impaired transmission of visual signals. This disruption
of the synaptic connections among the retinal nerve cells affects the retinal neurovascular
coupling, contributing to the atrophy and occlusion of retinal blood vessels [90,107]. This
process stands as a significant cause of the early visual impairment in DR. Subsequently,
the survival and functionality of retinal neurons are contingent upon the blood and oxygen
supply from retinal blood vessels [108]. In DR, the dysfunction of vascular endothelial cells
and the increase in ROS levels result in retinal ischemia and hypoxia, leading to ischemic
injury to neurons [90,91]. Neuronal damage, in turn, exacerbates the progression of DR
by impairing the light sensing and signal conduction within the retina, thereby leading to
diminished vision. Moreover, neuronal damage can precipitate structural alterations in the
retina, including the detachment of the nerve fiber layer and thinning of the ganglion cell
layer, further intensifying the course of the disease [13].

Retinal glial cell dysfunction may be intricately linked to the development and amplifi-
cation of the retinal inflammation in DR [109]. The retina houses various types of glial cells,
including astrocytes, Müller cells, and microglia. Astrocytes are the largest subtype of glial
cells and are responsible for blood–brain barrier formation, the regulation of blood flow,
and the modulation of synapse formation and transmission [110]. Müller cells are radial
cells that extend through all the retinal layers, further accounting for approximately 90% of
the retinal glia population, with fundamental trophic activity [111]. Microglia belong to the
immune system and represent the resident tissue macrophages, crucial for retinal homeosta-
sis and recovery from damage [112]. Injury to these cellular subpopulations compromises
their roles in neuroprotection, blood–brain barrier maintenance, and antioxidant defense.
Under the stress of hyperglycemia, microglia and Müller cells become activated, resulting
in the heightened production and release of inflammatory molecules such as TNF-α, IL-6,
MCP-1, and VEGF, accompanied by increased secretion of MMPs [113]. In a hyperglycemic
environment, Müller cells generate greater quantities of inflammatory factors like NO and
COX [91,114]. Moreover, this environment may induce Müller cells to augment intermedi-
ate filament synthesis, culminating in the formation of a dense fibrotic layer enveloping the
retina and impeding its pathways [91]. Furthermore, the aforementioned neurodegenera-
tive changes intersect with various responsive processes in the high-glucose environment,
although the specific mechanisms warrant further investigation.

Figure 4 illustrates the pathogenetic events triggered by the oxidative stress during DR,
comprising inflammation, apoptosis, neoangiogenesis, and neuroglial anomalies. These
processes are mitigated by antioxidants, anti-inflammatory drugs, anti-VEGF agents, and
the strategies of cell therapy.

2.5. Genetic and Epigenetic Alterations

While internal environmental factors such as glycemic control, blood pressure, and
lipid levels have an important impact on the onset and progression of DR, the significant
differences in the susceptibility and severity of DR among individuals suggest that genetic
factors also play a role in this process [15].

For example, numerous studies have identified associations between gene polymor-
phisms and the occurrence and progression of DR. For instance, the polymorphisms in
genes such as VEGF, involved in angiogenesis, TNF-α, related to inflammation, and eNOS,
associated with endothelial cell function, have been closely linked to DR development [115].
In addition, the genes implicated in diabetic complications, such as AKR1B1, the recep-
tor for AGE (RAGE), and eNOS genes, have shown associations with DR [116]. These
genetic variations may impact the expression or activity of related proteins, subsequently
influencing the DR pathogenesis [23].
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Figure 4. Oxidative stress activates various pathogenetic events. In terms of blood vessels, retinal
endothelial cell damage, changes in retinal blood flow pattern, and glial dysfunction will all promote
increases in vascular permeability, ischemia, and hypoxia and lead to insufficient perfusion, and
eventually induce neoangiogenesis. Parallelly, processes of inflammation and apoptosis lead to
chronic immune reactivity and to loss of neural cells. ECM: extracellular matrix; ICAM-1: intercellular
adhesion molecule-1; IL-1β: interleukin-1 beta; IL-6: interleukin-6; iNOS: nitric oxide synthases;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; ROS: reactive oxygen species;
TNF-α: tumor necrosis factor alpha; VEGF: vascular endothelial growth factor.

In parallel, epigenetic modifications also play a role in the course of DR. The persistent
adverse effects of hyperglycemia on the progression of diabetic complications, even after
achieving glycemic control, demonstrate a phenomenon known as the “metabolic memory”
of diabetes, potentially attributed to the epigenetic changes in specific cells under diabetic
conditions [15]. Therefore, the significant occurrence of epigenetic modifications in the
development and progression of metabolic memory during DR becomes a substantial factor
in the pathophysiology of this disorder [117].

In fact, in the hyperglycemic environment, various mechanisms, including DNA
methylation, histone modification, non-coding RNA regulation, and others, can modulate
the gene expression without altering the DNA sequence [118]. For example, studies have
revealed epigenetic modifications of SOD2 during DR development. The methylation of
lysine 20 of histone H4 (H4K20) at the promoter and enhancer regions of SOD2 increases in
hyperglycemic conditions, a finding supported by observations in the retinas of human
donors with DR [119,120]. DNA methylation primarily occurs on cytosine–phosphate–
guanine (CpG) islands, and elevated blood sugar levels activate DNA methyltransferases
(DNMTs). S-adenosyl-l-methionine (SAM), a common methyl donor for DNMTs, plays a
role in this process. Oxidatively damaged methyl-CpG sequences induce epigenetic changes
in the chromatin organization by disrupting the interaction between methyl-CpG sites and
the binding domain of methyl-CpG-binding protein 2 (MeCP2) [15]. Histone modifications,
including methylation, acetylation, acylation, and ubiquitination, can either activate or
repress genes depending on the number of methyl groups added, the specific histone
residue modified, and its location in the N-terminal region of H3 or H4. Histone acetylation
predominantly occurs on lysine residues in the amino-terminal tail and is regulated by
histone acetyltransferases (HATs), whose activity is responsive to the intracellular high-
glucose environment [121].

Furthermore, chromatin modifications are not solely governed by these epigenetic
marks but also influenced by non-coding RNAs. Both small non-coding RNAs (microRNAs)
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and long non-coding RNAs (lncRNAs) exhibit altered expression in diabetic patients.
MiRNAs, for example, can repress transcription or degrade target mRNAs by binding
to them. The research indicates that the downregulation of miRNAs contributes to the
elevation of VEGF and NF-κB in the DR progression [15]. Nonetheless, it is important
to note that, while these molecular mechanisms shed light on the pathogenesis of DR,
they do not provide a complete explanation of the entire pathological process. Therefore,
further research is necessary to comprehensively understand the pathogenesis of DR and
to identify more potential therapeutic targets.

3. Ongoing and Cutting-Edge Research in DR Care

Over recent decades, the advancements in research have substantially deepened
our understanding of numerous eye diseases. Notably, significant progress has been
achieved in elucidating the molecular pathomechanisms underlying debilitating ocular dis-
orders [122–125]. Regarding DR, these breakthroughs transcend the mere comprehension
of its molecular mechanisms, extending to the identification of novel therapeutic, diag-
nostic, and preventive strategies that have transitioned into clinical trials. These include
promising modalities such as genetic therapy and stem cell therapy, offering new avenues
for treatment and management.

3.1. Discovery of Biomarkers

While the diagnosis and clinical staging of DR primarily rely on fundus examina-
tion, this approach is constrained by equipment and technology limitations and is unable
to achieve early detection and precise staging. Consequently, the identification of DR
biomarkers carries significant clinical value. Diabetes triggers systemic metabolic dis-
turbances, affecting protein, lipid, and nucleic acid metabolism, leading to changes in
metabolites’ concentrations in body fluids. For instance, increased levels of glycosylated
hemoglobin (HbA1c), an indicator of hyperglycemia, are directly associated with the risk of
DR [126]. Additionally, the concentrations of VEGF and ICAM-1 in the serum and vitreous
fluid of diabetic patients exhibit notable elevation [127]. TNF-α, a potent inflammatory
cytokine, plays a significant role in the DR pathology, making it a proposed biomarker
candidate [128,129]. Recently, novel biomarkers such as retinal nerve growth factor (NGF)
and retinal neuron-specific neurofilament light chain (NFL) have been discovered, and
changes in their concentrations can predict the status of retinal neuronal injury [77,130].
Monitoring the changes in these biomarkers offers the potential for early DR diagnosis and
the monitoring of disease progression, representing a clinically valuable approach.

Presently, many researchers are considering biomarkers in the development of new
drugs. For example, anti-VEGF drugs have been utilized to treat macular edema and
neovascularization in DR [131].

3.2. Advances in Molecular Therapy

Molecular therapy predominantly targets the key signaling pathways implicated in
DR, leading to the development of numerous innovative therapeutic strategies.

3.2.1. Anti-VEGF Molecules

Anti-VEGF drugs are specifically formulated to impede the formation of new blood
vessels by counteracting the effects of VEGF, with a primary focus on reducing the antiper-
meability to alleviate fluid accumulation and edema. Among these drugs, ranibizumab
stands out as the sole approved one for proliferative diabetic retinopathy. This synthetic
antibody binds to VEGF, disrupting its interaction with the receptors and thereby inhibiting
angiogenesis [132]. Additional anti-VEGF drugs have been applied for diabetic retinopathy,
including aflibercept, faricimab, conbercept, bevacizumab, and brolucizumab. Notably,
conbercept and brolucizumab have gained approval for intravitreal treatment in diabetic
macular edema [133]. Faricimab, in particular, emerges as a promising therapeutic agent
for diabetic macular edema. This drug combines anti-VEGF therapy with the inhibition of
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angiopoietin-2, resulting in reduced inflammation and improved vascular permeability, as
demonstrated in a murine model of retinal neovascularization and ischemia/reperfusion
following dual inhibition [134,135]. The primary objective of anti-VEGF use in this context
is to treat DR to prevent complications and disease progression [136]. However, despite the
evident efficacy of anti-VEGF drugs for numerous DR patients, challenges persist. Some
individuals exhibit inadequate responses to treatment, and the inconvenience of regular
intraocular injections remains a notable concern.

Numerous clinical trials have been conducted in recent years on the use of anti-VEGFs
to manage DR [137,138]. Specifically, recent investigations have evaluated the efficacy and
safety of various anti-VEGFs, such as ranibizumab, aflibercept, and bevacizumab, in man-
aging DR, reporting benefits in improving patient outcomes [131,139–145]. Interestingly,
recent studies, including network meta-analyses, have shed light on the effectiveness of
biologic drugs by comparing dedicated clinical trials for treating DR. Fallico and associates
reported limited evidence of comparable efficacy in terms of the neovascularization regres-
sion between pan-retinal photocoagulation and anti-VEGF therapy alone or in combination
with pan-retinal photocoagulation. However, better visual outcomes were associated with
the use of anti-VEGFs [146]. Consistent with these findings, another network meta-analysis
by Zhang and collaborators compared the efficacy of ranibizumab, ranibizumab + laser,
aflibercept, laser alone, and pan-retinal photocoagulation, demonstrating the best visual
score improvement with ranibizumab alone [147]. A recent study by Wang et al. focused on
determining the optimal timing for administering anti-VEGF, specifically conbercept, as an
adjuvant to pars plana vitrectomy for treating DR, revealing that preoperative intravitreal
conbercept is an effective adjuvant [148].

3.2.2. Anti-Inflammatory Drugs

Nonsteroidal anti-inflammatory drugs (NSAIDs) function by inhibiting COX enzymes,
thereby reducing the synthesis of inflammatory mediators, including prostaglandins. Cer-
tain ophthalmic-specific NSAIDs have proven to be effective in mitigating macular edema
and enhancing vision. Notable examples include ketorolac, a potent COX-1 inhibitor, and
bromfenac, a potent COX-2 inhibitor [149–152].

The main pathways regulating the signal transmission for many cytokines are the Janus
kinase (JAK) or signal transducer and activator of transcript (STAT) signaling pathways. The
cytokines and growth factors involved in diabetic retinal complications, such as VEGF, IL-6,
and IL-17a, are all controlled by these pathways [153,154]. The experiments involving JAK1
inhibitors, such as Tofacitinib, in mice with type II diabetes revealed increased expression
of PJAK1 in the retina, suggesting that JAK inhibitors can enhance blood–retina barrier
function, subsequently reducing the blood vessel penetration and inflammation. These
findings offer new potential strategies for treating diabetic retinal complications [155].

The inflammatory cytokine IL-6 is widely recognized for promoting increased vascular
endothelial monolayer permeability and disrupting the vascular barrier in inflammatory
diseases [156]. Studies indicate that the channels related to DR will amplify and prolong
the effects of the inflammatory cytokine IL-6 under high-glucose conditions [157]. A meta-
analysis conducted by Yao and associates determined that IL-6 is generally elevated in
patients with DR, probably being further linked with the severity of the disease [158].

Mechanistically, the IL-6 signaling pathway is classically activated through the bind-
ing of IL-6 with its membrane-bound IL-6 receptor, known as “classical signaling” [159].
However, IL-6 signaling is also observed in cells lacking the membrane-bound IL-6 receptor
due to the presence of a soluble IL-6 receptor (sIL-6R), termed “trans-signaling” [159]. The
current literature suggests that IL-6 classical signaling is predominantly anti-inflammatory,
whereas IL-6 trans-signaling elicits the pro-inflammatory effects of IL-6 [160–162]. Inter-
estingly, Robinson and colleagues demonstrated in a murine model of early DR that the
inhibition of Interleukin-6 trans-signaling prevents oxidative stress [163].

The pleiotropic effects of IL-6 are mainly observed in
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(1). The activation of vascular endothelial cells leading to the production of IL-6, IL-
8, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1
(ICAM-1), and C5a receptor, as well as the induction of vascular endothelial cadherin
disassembly [164].

(2). Binding to the receptor complex, allowing gp130 to activate the tyrosine kinases of the
JAK kinase family, including Jaks, Jak1, Jak2, and Tyk2 [159]. The phosphorylation of
STAT3 by JAK promotes the growth arrest and differentiation of macrophages, result-
ing in the persistent loss of endothelial barrier function [165,166]. In this context, an
in vitro study by Valle and colleagues in human retinal endothelial cells demonstrated
that a blockade of the IL-6 trans-signaling prevents inflammation and endothelial
barrier disruption, decreasing the phosphorylation of STAT3 [167].

(3). IL-6 stimulation also activates the mitogen-activated protein kinase (MAPK) cas-
cade and the phosphatidylinositol-3-hydroxykinase (PI3K) cascade by binding to the
signaling molecule protein, tyrosine phosphatase 2 (SHP2) [168].

The humanized IL-6 receptor antibody, tocilizumab, exhibits the capability to block
the IL-6-mediated signaling pathways by inhibiting the binding of IL-6 to soluble and
membrane-bound forms of the IL-6 receptor. This provides new insights for the study and
treatment of the complications associated with DR [168]. Figure 5 provides a schematic
illustration of the main molecular pathways activated by the binding between IL-6 and
its receptor.

Antioxidants 2024, 13, x FOR PEER REVIEW 14 of 30 
 

treatment of the complications associated with DR [168]. Figure 5 provides a schematic 
illustration of the main molecular pathways activated by the binding between IL-6 and its 
receptor. 

 
Figure 5. The IL-6 signaling pathway and the mechanism of action of tolicizumab. Through a recep-
tor composed of signal transduction subunit glycoprotein 130 (gp130) and the auxiliary transmem-
brane protein IL-6 receptor (IL-6R), IL-6 activates the JAK/STAT axis, while the MAPK cascade and 
the PI3K/Akt axis are activated by the domain SHP2. Tolicizumab antagonizes the subunit gp130. 
Akt: Ak strain transforming (also known as protein kinase B, PKB); IL-6: interleukin-6; IL-6R: IL-6 
receptor; gp130: glycoprotein 130; JAK: Janus kinase; MAPK: mitogen-activated protein kinase; 
PI3K: phosphoinositide 3-kinases; SHP2: src homology phosphotvrosvlphosphatase 2; STAT: signal 
transducer and activator of transcription. 

3.2.3. Antioxidant Therapy 
As previously discussed, oxidative stress and endothelial dysfunction play pivotal 

roles in promoting the complications related to DR [169]. ROS, particularly O2•−, adversely 
affect the vasorelaxation and endothelial protective factor NO by uncoupling eNOS. In a 
hyperglycemic environment, the increased electron leakage in the mitochondrial electron 
transport chain leads to ROS overproduction, triggering an oxidative stress response in-
volving various biomarkers. The NOX family serves as the enzymatic source of oxidative 
stress, intensifying the endothelial inflammation and cellular damage. Consequently, in-
vestigating various antioxidant drugs becomes a promising therapeutic avenue. Antioxi-
dant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase, 
along with their cofactors, form the primary cellular antioxidant defense system. Effective 
antioxidants, such as coenzyme Q10, have demonstrated potential in ameliorating visual 
impairment in DR [18]. Many plants are rich in antioxidants, such as flavonoids, polyphe-
nols, and carotenoids, with compounds like lutein showing promise in mitigating the neu-
rodegenerative effects caused by the local oxidative stress in the diabetic retina [18]. 

Sulodexide, a glycosaminoglycan mixture composed of low-molecular-weight hepa-
rin and dermatan sulfate, exhibits a diverse range of biological effects on the vasculature. 
These include antithrombotic, profibrinolytic, anti-inflammatory, and endothelial protec-
tion [170–172]. In an oxygen-induced retinopathy (OIR) mouse model, the antiangiogenic 
effect of sulodexide was evident, enhancing the glycocalyx of diabetic retinal arterioles, 
reducing the vascular permeability, and inhibiting the retinal neovascularization in vivo 

Figure 5. The IL-6 signaling pathway and the mechanism of action of tolicizumab. Through a receptor
composed of signal transduction subunit glycoprotein 130 (gp130) and the auxiliary transmembrane
protein IL-6 receptor (IL-6R), IL-6 activates the JAK/STAT axis, while the MAPK cascade and the
PI3K/Akt axis are activated by the domain SHP2. Tolicizumab antagonizes the subunit gp130.
Akt: Ak strain transforming (also known as protein kinase B, PKB); IL-6: interleukin-6; IL-6R: IL-6
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PI3K: phosphoinositide 3-kinases; SHP2: src homology phosphotvrosvlphosphatase 2; STAT: signal
transducer and activator of transcription.

3.2.3. Antioxidant Therapy

As previously discussed, oxidative stress and endothelial dysfunction play pivotal
roles in promoting the complications related to DR [169]. ROS, particularly O2

•−, adversely
affect the vasorelaxation and endothelial protective factor NO by uncoupling eNOS. In
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a hyperglycemic environment, the increased electron leakage in the mitochondrial elec-
tron transport chain leads to ROS overproduction, triggering an oxidative stress response
involving various biomarkers. The NOX family serves as the enzymatic source of oxida-
tive stress, intensifying the endothelial inflammation and cellular damage. Consequently,
investigating various antioxidant drugs becomes a promising therapeutic avenue. An-
tioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase,
along with their cofactors, form the primary cellular antioxidant defense system. Effec-
tive antioxidants, such as coenzyme Q10, have demonstrated potential in ameliorating
visual impairment in DR [18]. Many plants are rich in antioxidants, such as flavonoids,
polyphenols, and carotenoids, with compounds like lutein showing promise in mitigating
the neurodegenerative effects caused by the local oxidative stress in the diabetic retina [18].

Sulodexide, a glycosaminoglycan mixture composed of low-molecular-weight hep-
arin and dermatan sulfate, exhibits a diverse range of biological effects on the vascula-
ture. These include antithrombotic, profibrinolytic, anti-inflammatory, and endothelial
protection [170–172]. In an oxygen-induced retinopathy (OIR) mouse model, the antian-
giogenic effect of sulodexide was evident, enhancing the glycocalyx of diabetic retinal
arterioles, reducing the vascular permeability, and inhibiting the retinal neovasculariza-
tion in vivo [173]. The glycocalyx is a layer of adhesive material that covers the lumen of
vascular endothelial cells. It plays a crucial role in maintaining the dynamic balance of the
vasculature, controlling vascular permeability, microvascular tone, preventing microvascu-
lar thrombosis, and regulating leukocyte adhesion. The hyaluronate glycosaminoglycan,
a main component of the glycocalyx, is essential for maintaining the endothelial barrier
properties of plasma macromolecules [174]. Experiments involving isolated pig retinal
arterioles exposed to sulodexide and hyperglycemia demonstrated that sulodexide pro-
tects retinal arterioles from the oxidative stress and endothelial dysfunction induced by
hyperglycemia [38]. Remarkably, sulodexide prevented the overexpression of the oxidative
stress-related proteins NOX 4 and NOX 5 in retinal arterioles exposed to a high glucose
concentration. These findings suggest that sulodexide may prevent the excessive ROS pro-
duction and endothelial dysfunction in the retinal arterioles exposed to hyperglycemia [38].
In aged human retinal endothelial cells under hyperglycemic conditions, sulodexide re-
duced the IL-6 and VEGF-A secretion, decreased the expression of the senescent protein
p53 gene, and increased the transendothelial resistance. The reduced transendothelial
resistance values during hyperglycemia reflect glycocalyx damage and increased vessel
wall permeability. This evidence indicates that sulodexide delays the impact of a high
glucose concentration on human retinal endothelial cell damage and aging [171]. Fur-
thermore, sulodexide, with its high oral bioavailability and demonstrated tolerability and
safety in clinical studies [170], represents a promising therapeutic option in the treatment
of diabetic retinopathy.

Resveratrol is a non-flavonoid polyphenolic compound rich in red wine, which ex-
erts antioxidant, anti-inflammatory, and protective cardiovascular effects [175,176]. This
molecule was shown to inhibit the (MAPK)/ERK1/2 cascade to protect retinal ganglion
cells and blood vessels from hydrogen peroxide-induced apoptosis [176–178]. In the context
of a high glucose concentration, resveratrol also mitigates the oxidative stress damage in
retinal capillary endothelial cells by activating the AMPK/Sirt1/PGC-1α pathway [35,179].

The recent research has focused extensively on resveratrol in DR. Notably, resveratrol
treatment in diabetic rats reduces retinal cell apoptosis by regulating the expression of RNA-
dependent-protein-kinase associated protein X (RAX)/phosphorylated RNA-dependent-
protein-kinase (RAX/P-PKR) [180]. Moreover, resveratrol inhibits the expression of VEGF,
ACE, and matrix metalloproteinase (MMP)-9 mRNA, protecting the retina [10,181,182].
Some cytological experiments have also demonstrated the protective effect of resveratrol on
the retina. Resveratrol treatment can significantly reduce the expression levels of acetylated
NF-κB p65 and p53 proteins, thereby inhibiting oxidative damage, inflammation, and apop-
tosis [183]. In addition, resveratrol intervention in high-glucose environments prevents
oxidative stress and phenotypic modifications of the retinal endothelial cells by inhibit-
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ing the PKC pathway, thus attenuating endothelial-to-mesenchymal cell transformation
(EndMT) and reducing the occurrence of DR-related fibrosis [184].

Diabetes can lead to the transcriptional upregulation of many genes related to the
intrinsic apoptosis pathway. As an antioxidant, trans-resveratrol can upregulate intrinsic
apoptosis pathway-related proteins, such as caspase-9, caspase-3, and ERK1, and normalize
the MAPK signal transduction in diabetic rats [185]. Furthermore, resveratrol demonstrates
the capacity to diminish vascular lesions and curb the activity of NF-kB and TNF-α [186].
Intriguingly, the oxidative stress induced in the RPE by a high-glucose environment can
hinder the retinoic acid metabolic pathway, yet the short-term intervention with trans-
resveratrol demonstrates an ameliorative effect. However, prolonged exposure yields
contrasting results [187]. Additionally, under resveratrol intervention, the retinal cells in a
high-glucose environment exhibit the inhibition of VEGF, TGF-β1, COX-2, IL-6, and IL-8
accumulation, as well as the suppression of PKC activation and the degradation of connexin
43, along with gap junction intercellular communication, in a dose-dependent manner.
Resveratrol also significantly mitigates the retinal vascular permeability and VEGF levels
in diabetic rats while improving the diabetes-related indicators. This effect is speculated
to occur through AMPK activation, leading to reduced VEGF accumulation [188], and by
inhibiting transforming growth factor-β2 (TGF-β2)-induced endothelial-to-mesenchymal
transition, thereby suppressing the VEGF expression in adult RPE cells [189].

Additionally, resveratrol activates the sirtuin (SIRT) pathways in DR treatment, mod-
ulating the inflammatory responses, insulin sensitivity, and sugar metabolism [190]. It
effectively prevents high glucose-induced senescence in endothelial cells by upregulating
SIRT3, SIRT4, and SIRT5 expression [179].

Paraoxonase (PON), an enzyme associated with the high-density lipoprotein (HDL)
and low-density lipoprotein (LDL), possesses antioxidant properties and has been impli-
cated as a potential risk gene for DR lesions. Resveratrol restores the PON1 expression and
activity, indicating its potential through PON1 to mitigate visual DR lesions [191].

Despite its hydrophilic nature, resveratrol can enter the retina. Efforts to improve its
oral administration include microencapsulation in polymers, enabling efficient delivery
near the nucleus of human retinal pigment epithelial cells [192]. Moreover, gold nanopar-
ticles synthesized from plant extracts have shown promise in reducing the inflammatory
markers in diabetic rats, offering new avenues for the effective intraocular delivery of
resveratrol [193].

Betulinic acid emerges as a bioactive compound wielding potent anti-lymphocytic
leukemia properties alongside anti-inflammatory, antioxidant, and anti-reperfusion injury
capabilities [194]. Our experimental investigations have substantiated that betulinic acid
serves as a protective agent, averting the retinal ganglion cell loss and axonal damage in the
optic nerve while concurrently curbing the generation of ROS in retinal vessels following
I/R. This dual action not only safeguards against the retinal damage resulting from the I/R
events but also underscores the potential of betulinic acid as a therapeutic intervention for
preserving retinal health [195].

The pentacyclic triterpenoids represented by betulinic acid have significant regulatory
effects on glucose absorption and uptake, insulin secretion, diabetic vascular dysfunction,
and retinopathy [196]. Furthermore, they prevent apoptosis and attenuate the ROS produc-
tion in human Müller cells treated with glutamate, potentially through the modulation of
the Akt/MAPK signaling cascade [197]. The interaction of betulinic acid with α-glucosidase
suggests a potential therapeutic avenue for managing postprandial hyperglycemia, a signif-
icant risk factor for cardiovascular disease in patients with diabetes mellitus and DR [198].
Thus, the study of betulinic acid presents a promising direction for the therapeutic research
in DR.

High blood glucose levels promote the production of AGEs with following activation
of the RAGE in retinal cells to induce ROS production. The RAGE has been reported to
accelerate the cell decay in bovine retinal pericytes by the induction of oxidative stress [35].
Furthermore, a close association between a high-fat diet, obesity, insulin resistance, and
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diabetes, where a high-fat diet induces an oxidative stress response in the ocular arteries,
has been found. This is achieved by RAGE-induced ROS production, suggesting that
a high-fat diet triggers hypercholesterolemia and hyperglycemia, culminating in ROS
generation and endothelial dysfunction in ocular arteries in mice [199]. The activation
of the RAGE initiates a cascade of events, including the interaction between its ligand
and the extracellular domain of the RAGE. This leads to the production of ROS, ERK,
JAK/STAT, and MAPK cascade reactions, as well as the activation of transcription factors
(AP-1 and NF-κB) and the Rho family [200]. Consequently, drug studies targeting the
RAGE, such as RAGE antagonists and blockers binding to RAGE ligands, show promise.
The emerging research directions, such as the small molecule RAGE inhibitor TTP488
(azeliragon), are considered promising therapeutic approaches to inhibit RAGE-mediated
signaling [30,201,202].

The inhibition of certain NOX isoforms associated with DR has also demonstrated effi-
cacy in preventing DR progression [203]. For example, lovastatin or carotenoids inhibiting
NOX-4 have been shown to reduce ROS generation and VEGF overexpression [204].

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating
the antioxidative defense system. Oxidative stress arises from an imbalance between ROS
generation and the antioxidant defense system, and the dysregulation of Nrf2 is linked to ox-
idative stress-related diseases, including diabetic retinopathy [18]. The modulation of Nrf2,
as exemplified by fenofibrate, has proven effective in ameliorating diabetic retinopathy by
reducing the ROS formation, retinal leukostasis, and vascular leakage [205]. In addition,
maslinic acid has demonstrated protective effects against streptozotocin-induced diabetic
retinopathy through the upregulation of Nrf2 and downregulation of NF-κB [206]. Other
agents, such as tricin or urolithin A, have also shown positive impacts on diabetic retinopa-
thy [207,208], highlighting Nrf2 as a promising therapeutic target in the management of
diabetic retinopathy.

Sulforaphane (1-isothiocyanate-4-methylsulfinyl butane) serves as an activator of Nrf
2 and is prominently present in cruciferous plants such as broccoli, Brussels sprouts, and
cabbage [209].Recognized for its epigenetic, antioxidant, and anti-inflammatory effects,
sulforaphane holds promise for neuroprotection in various retinal disease models [210].
Notably, the lipophilic nature of sulforaphane enables it to traverse cell membranes, cross
the blood–brain barrier through transmembrane diffusion, and activate Nrf2 signaling
in vivo. This attribute, coupled with a safer route of administration, suggests greater
clinical potential [211].In a recent experiment involving diabetic rats administered varying
sulforaphane doses, the ganglion cell thickness approached normal levels. Concurrently, the
production of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β significantly diminished,
while the activity of antioxidant enzymes GSH and SOD was augmented. Sulforaphane
facilitated the nuclear accumulation of Nrf2, amplifying the mRNA expression of two
crucial antioxidants downstream of Nrf2, namely heme oxygenase-1 (HO-1) and NAD(P)H
quinone oxidoreductase 1 (NQO1), within the damaged retina. The Nrf2 activation under
high-glucose conditions inhibited the inflammation, ROS production, protein kinase C, and
other pathways, thereby safeguarding the cells from the oxidative stress in humans in vivo.
Furthermore, sulforaphane demonstrated its ability to shield the retinal photoreceptor
cells [209]. Studies indicate that sulforaphane may suppress the AGE-RAGE axis and
inflammatory response by the MAPK pathway and NF-kB [212].

In the field of the clinical studies concerning the employment of antioxidants to treat
DR, there has been a growing interest in testing combined antioxidant therapy [213]. For
example, an investigation conducted by Garcia-Medina and associates in 105 diabetic
patients with non-proliferative DR, with a followup period of 5 years, evaluating an
antioxidant supplementation with lutein, vitamin C, alpha-tocopherol, niacin, beta-carotene,
zinc, and selenium, showed a delay in the DR progression but no effect on the visual
acuity [214].

In a 6-month randomized controlled clinical trial, Chous and colleagues administrated
a combination of vitamins C, D3 and E (d-alpha tocopherol), zinc oxide, eicosapentaenoic
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acid, docosahexaenoic acid, alpha-lipoic acid (racemic mixture), coenzyme Q10, mixed
tocotrienols/tocopherols, zeaxanthin, lutein, benfotiamine, N-acetyl cysteine, grape seed
extract, resveratrol, turmeric root extract, green tea leaf, and pycnogenol to 70 patients with
diabetes (NCT01646047), reporting an improvement in visual acuity. However, no changes
in retinal thickness were detected [215].

Remarkably, Lafuente and co-workers tested a combination of anti-VEGFs with an-
tioxidants in 55 patients afflicted by diabetes to manage diabetic macular edema for 3 years,
describing a lower macular thickness in the supplement group when compared to the
control group [216].

A recent systematic review by Alfonso-Muñoz et al. on the use of oral antioxidant
supplementation to treat DR in humans has concluded that improved clinical outcomes are
only observable after long followup periods, in terms of delaying the onset or reducing the
progression of DR [217]. Hence, the effectiveness of an antioxidant supplementation on
the visual acuity and macula edema in DR requires further investigation in the medium
term, while antioxidants display an early impact on the retinal function parameters even
after short followup periods, suggesting that they may be considered valuable prophylactic
adjuvant agents in the early stages of DR [217].

Collectively, according to the current literature and considering the encouraging
preclinical and clinical studies, antioxidants may be considered valuable supplements to
treat DR and for avoiding complications and the progression of the disease. However, their
efficacy appears to manifest as a particularly slowly progressive improvement in terms of
the visual patient outcomes.

3.2.4. Growth Factors and Other Therapies

Growth factor therapy emerges as a promising avenue in the treatment of DR. Beyond
the well-known VEGF, nerve growth factor (NGF) plays a crucial role in fostering nerve cell
growth and survival, potentially shielding against the neurodegenerative changes in DR,
and therefore potentially preventing the occurrence and progression of the disease [218].

Insulin-like growth factor-1 (IGF-1) exhibits pro-angiogenic and photoreceptor protec-
tive effects in ocular lesions [219]. A recent study revealed that IGF-1 stimulates retinal cell
proliferation via the activation of multiple signaling pathways, such as the PKC, MAPK,
and phospholipase C cascades [220]. Reduced levels of IGF-1 have been observed in the
eyes of DR patients, suggesting that exogenous IGF-1 supplementation could be a strategy
to restore normal retinal function [221].

Moreover, established antidiabetic therapies, such as glucagon-like peptide 1 receptor
agonists (GLP1RAs), have demonstrated benefits for DR. These therapies have demon-
strated to reduce neurodegeneration, inflammation, and oxidative stress [10]. Additionally,
GLP1R activation contributes to a decrease in the breakdown of the blood–retina bar-
rier and angiogenesis [222]. The application of sodium glucose cotransporter 2 (SGLT2)
inhibitors also presents an intriguing therapeutic avenue for DR. By reducing pericyte
swelling through the inhibition of sodium-dependent glucose entry and diminishing the
overexpression of the extracellular matrix, these inhibitors may preserve microvascular per-
fusion and prevent retinal ischemia [223]. In a diabetic mouse model, the SGLT2 inhibitor
empagliflozin demonstrated the inhibition of oxidative stress, apoptosis, and the ability
to restore tight junctions in diabetic retinas, highlighting the protective effects of SGLT2
inhibitors in DR [224].

3.3. Gene and Cell Therapy Advancements

In contemporary DR research, gene therapy strategies are directed towards modifying
the pathological environment of the retina by regulating the expression of VEGF and TNF-
α [225]. Alternatively, these strategies involve delivering therapeutic genes to retinal cells
through viral vectors [226]. Promisingly, studies have showcased the potential of gene
therapy in delaying or preventing retinal cell death, and potentially halting the progression
of DR. For example, a gene therapy named AAV2-sFLT01 gene therapy, currently in clinical
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trials, seeks to block VEGF signaling and inhibit the formation of new blood vessels and
retinal edema. By introducing a gene encoding this effect into the retina, this therapy aims
to enhance the retinal neuron survival [227,228]. In the realm of the clinical trials testing
gene therapy in vascular ocular disorders, important differences were observed in the
INFINITY trial (NCT04418427), where the patients affected by diabetic macular edema and
wet AMD treated with the AAV2.7m8 encoding aflibercept (ADVM-022) at the same dose
ultimately displayed dose-limiting toxicity in DR, while encouraging results were reported
in AMD, underscoring the detrimental impact of the diabetic condition on the ocular safety
of AAV therapies [228,229].

Additionally, in the ALTITUDE clinical trial, while treating patients with DR with-
out center-involved DME with a suprachoroidal injection of RGX-314, a molecule of
AAV2/8 vectors encoding an anti-VEGF antibody fragment, the researchers obtained
good tolerance at 6 months, with no drug-induced severe adverse events (NCT04567550;
NCT05296447) [228,230]. The ALTITUDE trial is set to be completed in 2024, with the
followup phase finishing in 2028 [228].

Collectively, gene therapy holds immense potential in DR treatment, but its safety,
precision, and potential side effects require further verification.

Cell therapy represents another crucial avenue in DR treatment, involving the re-
placement of damaged retinal cells or stimulation of regenerative abilities through the
transplantation of healthy retinal cells [231]. The treatment strategies aiming for neuropro-
tection and neuronal cell replacement have the potential to represent valuable alternative
therapy options for halting the progression of DR [232]. Neuronal stem cell studies have
emphasized the possibility of inducing the generation and replacement of the photore-
ceptors and retinal ganglion cells [233,234]. In fact, stem cells may replace dying neurons
such as retinal progenitor cells, pluripotent stem cell-derived photoreceptors, and ganglion
cells [231].

Stem cell therapy, particularly utilizing mesenchymal stem cells (MSCs) derived from
bone marrow, has shown promising vascular effects in ischemic and diabetic murine
models [235,236]. Mechanistically, MSCs release a wide range of growth factors, such
as the NGF, so it is not surprising to report that the intravitreal injection of MSCs in the
STZ-induced diabetic mouse model increased the ocular levels of neurotrophic agents,
reduced the lipid peroxidation levels, and prevented ganglion cell loss [237].

In the field of the clinical research testing the human use of stem cells to treat DR,
Gu and colleagues displayed an acceptable level of safety and efficacy regarding the
intravenous injection of autologous bone MSCs in 34 eyes afflicted by DR. However, they
did not report the optimal treatment window and infusion times for the therapy [238].
Currently, numerous clinical trials are underway to evaluate the efficacy and safety of stem
cell therapy for human use [231,239,240]. These investigations focus on different types
of stem cells, including endothelial progenitor cells (NCT01927315 and NCT03403283),
induced pluripotent stem cells (NCT03403699), and autologous bone marrow stem cells
(NCT01920867 and NCT01736059).

Nevertheless, employing stem cells to manage DR presents significant limitations
and poses relevant challenges. First, the diabetic retina represents a hostile environment
for homing cells like MSCs [239,240]. Second, specific types of stem cells, such as retinal
progenitor cells, have a very limited capability to proliferate and differentiate. Therefore, it
becomes crucial to identify the most suitable product for each individual patient to achieve
successful treatment [231]. Third, translating the pre-clinical findings into clinical testing is
challenging due to the imperfect characteristics of animal models in representing human
environments [241].

4. Challenges and Limitations

The future research in the field of DR is poised to advance through various avenues, in-
cluding a deeper exploration of the pathogenesis, the development of innovative diagnostic
methods, the progression of novel treatment strategies, and the investigation of approaches
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for disease prevention. The recent investigations have revealed new biomarkers and ex-
amined fresh diagnostic and therapeutic modalities, enhancing our comprehension and
management of DR. Recognizing that DR’s pathogenesis arises from multiple interacting
factors, such as hyperglycemia, oxidative stress, inflammatory responses, and vascular
endothelial cell damage, has been a pivotal stride. Notably, cytokines like VEGF and NF-κB
play central roles in DR’s pathogenesis, and the identification of biomarkers like NGF,
TNF-α, and glial cells holds promise for early DR diagnosis. Nevertheless, DR remains a
significant visual impairment challenge globally for individuals with diabetes, underscor-
ing the imperative to deepen our understanding and enhance the treatment strategies for
this intricate disease.

Fundamental questions persist, such as why diabetes triggers DR in only certain
patients and which genes and environmental factors influence the onset and progression
of DR. These inquiries offer opportunities for a more complete comprehension of DR’s
pathogenesis. The development of diagnostic methods remains an ongoing endeavor, with
artificial intelligence-based fundus photo diagnosis systems showing promise but requir-
ing enhancements in terms of the accessibility, accuracy, and usability of the underlying
software and hardware facilities. Addressing key challenges, such as accurately predicting
a patient’s DR risk and disease progression and creating precise and convenient large-scale
screening tools, represents potential directions for future research.

While anti-VEGFs, antioxidants, anti-inflammatory drugs, and PKC inhibitory molecules
have demonstrated effectiveness in mitigating DR in corresponding clinical trials, their
utilization is significantly constrained by the high costs of the emerging therapies as well
as the long-term safety profiles of the candidate drugs and the short- to mid-term efficacy
of the antioxidant agents.

Despite being a primary treatment for DR, anti-VEGF therapy has limitations as it may
not be suitable for all patients due to the necessity of long-term and recurrent intraocular
injections, posing a burden. The safety and long-term efficacy of gene therapy require
further investigation, while stem cell therapy faces challenges in obtaining an adequate
quantity and quality of stem cells and ensuring the stable survival and functionality of the
transplanted cells in the retina. Addressing the potential side effects poses a significant
challenge for anti-inflammatory and other drug therapies. Moreover, the DR prevention
strategies, heavily reliant on optimal blood sugar control, still encounter instances where
patients develop DR despite meticulous blood sugar management.

5. Concluding Remarks

In summary, our review article has elucidated the molecular pathomechanisms un-
derlying DR, presenting a comprehensive and up-to-date report on the emerging and
experimental treatment strategies aimed at mitigating this debilitating and widespread
disease. Future research into the pathogenesis must effectively integrate the data from vari-
ous genes and environmental factors, while the novel diagnostic methods must prioritize
precision and accessibility. The research and development of new therapeutic drugs and
methods should emphasize safety, effectiveness, and clinical applicability. Furthermore,
the DR prevention strategies must explore practical avenues for effective prevention. Each
of these challenges demands substantial effort and resources in the future research, with a
collective recognition that this ongoing process will be arduous. Continuous knowledge
accumulation, theory updates, and technique enhancements are crucial for achieving a
more profound understanding and improved treatment of DR.
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