
Citation: Romero, R.; Buyl, M.; De

Bie, T.; Lijffijt, J. Exploring the

Performance of Continuous-Time

Dynamic Link Prediction Algorithms.

Appl. Sci. 2024, 14, 3516. https://

doi.org/10.3390/app14083516

Academic Editor: Andrea Prati

Received: 21 March 2024

Revised: 11 April 2024

Accepted: 17 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Exploring the Performance of Continuous-Time Dynamic Link
Prediction Algorithms
Raphaël Romero * , Maarten Buyl , Tijl De Bie and Jefrey Lijffijt

AIDA, IDLab-ELIS, Department of Engineering and Architecture, Ghent University, 9052 Ghent, Belgium
* Correspondence: raphael.romero@ugent.be

Abstract: Dynamic Link Prediction (DLP) addresses the prediction of future links in evolving
networks. However, accurately portraying the performance of DLP algorithms poses challenges that
might impede progress in the field. Importantly, common evaluation pipelines usually calculate
ranking or binary classification metrics, where the scores of observed interactions (positives) are
compared with those of randomly generated ones (negatives). However, a single metric is not
sufficient to fully capture the differences between DLP algorithms, and is prone to overly optimistic
performance evaluation. Instead, an in-depth evaluation should reflect performance variations
across different nodes, edges, and time segments. In this work, we contribute tools to perform
such a comprehensive evaluation. (1) We propose Birth–Death diagrams, a simple but powerful
visualization technique that illustrates the effect of time-based train–test splitting on the difficulty
of DLP on a given dataset. (2) We describe an exhaustive taxonomy of negative sampling methods
that can be used at evaluation time. (3) We carry out an empirical study of the effect of the different
negative sampling strategies. Our comparison between heuristics and state-of-the-art memory-based
methods on various real-world datasets confirms a strong effect of using different negative sampling
strategies on the test area under the curve (AUC). Moreover, we conduct a visual exploration of the
prediction, with additional insights on which different types of errors are prominent over time.

Keywords: dynamic graphs; link prediction; evaluation

1. Introduction

Many real-world phenomena such as computers networks [1], epidemics [2], neural
networks [3], email exchanges [4], and face-to-face interactions [4,5] can be modeled as a
set of objects interacting through time. These types of data are commonly represented as a
dynamic graph [6], where nodes represent the objects while edges represent pairs of objects
that interact through time. While initial attempts at capturing the temporal evolution of
networks typically aggregated the interactions into a sequence of static graphs, recent efforts
incorporate time continuously, avoiding the loss of some fine-grained temporal information
during data preprocessing [6,7]. The resulting types of data are commonly referred to as
Continuous-Time Dynamic Graphs (CTDGs) [8]. Modeling and forecasting CTDGs have
recently become very active fields of research, as suggested by recent surveys [9,10]. A
crucial task of interest is Dynamic Link Prediction (DLP), where the goal is to predict future
links from a history of observed ones. This task has gained considerable attention, as seen
from recent benchmarks [11], and finds notable applications in recommender systems,
influence detection, routing in networks or disease prediction [12,13], to name a few.

Creating a standardized evaluation for Dynamic Link Prediction (DLP) algorithms
poses significant challenges [8]. Firstly, the benchmark datasets available vary widely in
nature, leading to different domain-specific DLP tasks. Predicting which pair of students
will have a face-to-face interaction in the HighSchool dataset at a given time is, for instance,
very different from predicting which item a given user will interact with in the Wikipedia
dataset. Secondly, the evaluation pipelines differ among methods. This often results in

Appl. Sci. 2024, 14, 3516. https://doi.org/10.3390/app14083516 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14083516
https://doi.org/10.3390/app14083516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3573-988X
https://orcid.org/0000-0002-5434-2386
https://orcid.org/0000-0002-2692-7504
https://orcid.org/0000-0002-2930-5057
https://doi.org/10.3390/app14083516
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14083516?type=check_update&version=2

Appl. Sci. 2024, 14, 3516 2 of 23

near-perfect performance metrics and contributes to a bias where each paper tends to favor
its own proposed approach. Lastly, typical metrics for DLP will compare the score of the
actual interactions occurring in the dynamic graph with the scores of interactions that
did not happen, obtained through random negative sampling (NS) [14]. As underlined
in [8], the procedure used to generate these negative events can have a dramatic impact
on DLP performance measures, to the point that some sophisticated methods can often be
outperformed by parameter-free heuristics.

As a result, there is a growing awareness that Dynamic Link Prediction performance
measures not only depend on the model quality and the challenging nature of the data,
but crucially also on the strategy for sampling negative events. Notably, a suggestion
proposed by Poursafaei et al. [8] was to generate more challenging negative samples by
examining which edges were previously seen or not at test time. These conclusions align
with the guidelines proposed by Junuthula et al. [15], who suggest splitting the DLP task
into two tasks: predicting previously observed links and predicting previously unobserved
links, with each of these tasks coming with their own specific metrics. This same work
attributes these challenges to the fact that, while conventional machine learning tasks target
independent and identically distributed (iid) data, events, nodes, and node pairs in a (dynamic)
graph do not satisfy this property. As a consequence, the prediction performance is likely
to exhibit substantial variations depending on the node, edge, or time interval considered.

Despite this growing awareness, central aspects of the DLP task remain ambiguous to
this day. Notably, there is a lack of tools for understanding the domain-dependent effect of
splitting a history of interaction into a train history and a test history based on a cutoff time.
Yet, such an understanding is crucial for designing relevant NS strategies for evaluation.
Furthermore, the time evolution of prediction performance tends to be disregarded, despite
its significant relevance in real-world applications.

Contributions. In this work, we investigate the open challenges discussed above
through visualization and empirical evaluation:

1. We introduce the Birth–Death diagram. As illustrated in Figure 1, this simple plot
facilitates the visualization and comparison of the lifetimes of nodes and edges (po-
tentially extending to higher-order structures) in a CTDG. Crucially, this visualization
tool enables a clear representation of the partitioning of these objects as influenced by
the time-based splitting of the history of events. We discuss two key measures derived
from these plots, the node and edge surprise indices, quantifying the difficulty of the DLP.
We analyze and compare different real-world datasets in terms of these measures.

2. We demonstrate the utility of Birth–Death diagrams in the design of more useful
negative sampling (NS) strategies for evaluation. By means of these diagrams, we
construct a comprehensive taxonomy that categorizes the types of nodes/edges
suitable for use as negative instances against which to contrast the scores of positive
events. Subsequently, we leverage this taxonomy to develop more targeted NS
strategies specifically intended for evaluation. We assess six key NS strategies derived
from this approach and analyze the resulting variations in performance.

3. Finally, we incorporate time in the evaluation and present a simple visualization
method to analyze the time evolution of Dynamic Link Prediction performance of
several recent methods and some heuristics.

Our experiments confirm that the performance of methods depend highly on the
strategy used for NS. Moreover, the strategy which leads the model to commit more
prediction errors (i.e., where the model scores the negative event higher than the positive)
varies through time. This observation opens up opportunities for comparing methods
empirically by juxtaposing their profile of performance over time. The code is available
in open-source at https://github.com/aida-ugent/dlp_exploration.git (accessed on 15
April 2024).

Outline. This paper is divided as follows. In Section 2, we start by discussing related
work on dynamic graphs, Dynamic Link Prediction, and strategies for evaluating this task.
In Section 3, we formally introduce the Birth–Death diagrams, along with corresponding

https://github.com/aida-ugent/dlp_exploration.git

Appl. Sci. 2024, 14, 3516 3 of 23

statistics (the node and edge surprise indices), which are central to assessing the difficulty
of the DLP task on a given dataset. In Section 4, we subsequently discuss the evaluation of
Dynamic Link Prediction algorithms through NS, and propose a taxonomy of the types of
negative samples that can be derived. Finally, in Sections 5 and 6, we conduct numerical
experiments to assess the effect of the different NS strategies, and the evolution of the
predictive performance over time.

0 tsplit
Death

0

tsplit

B
ir

th
Nodes

0 tsplit
Death

Edges

Figure 1. A Birth–Death diagram on a recording of face-to-face interactions among high school
students over 9 days [16]. The y and x coordinates for each node/edge represent their first (Birth) and
last (Death) interaction time, respectively. Given a cutoff time tsplit, while the history of interaction is
divided into a train or a test set, the nodes and edges are partitioned into three categories: historical,
overlap, and inductive. The surprise index is the ratio Inductive

Inductive+Overlap .

2. Related Work

Temporal Networks. Temporal networks have been utilized to model extensive
systems that comprise entities interacting over time (see Masuda and Lambiotte [7] and Holme
and Saramäki [17] for a general introduction). As highlighted by Rozenshtein and Gionis [18],
temporal networks have been studied under different terminologies, including dynamic/
temporal graphs/networks, depending on the task and the way time is modeled. In
particular, some works consider time as discrete [19] and others as continuous [20]. In the
present paper, we consider Continuous-Time Dynamic Graphs, as defined in [8,21], and
the representation used is the “sequence of interaction model of temporal networks” [18].
The emphasis is on predicting the events on different time intervals, and not on studying
emergent properties. Although our focus is on continuous-time graphs, the methodology
proposed in this paper applies to both discrete and continuous-time representations.

Visualizing Temporal Networks. Due to the additional complexity introduced by
the time dimension, visualizing temporal graphs faces unique challenges, as discussed
in recent surveys [22]. As detailed by Linhares et al. [23], the time aspect exacerbates
visual clutter issues, which are already common in static network visualization. They
propose node activity maps, a method to visualize node activity over time, but do not
consider the evaluation of Dynamic Link Prediction as a use case. Temporal edge traffic
(TET) and Temporal edge activity (TEA) plots proposed by Poursafaei et al. [8] enable
the understanding of the effect of time-based splitting on the edges. However, as these
visualizations focus on visualizing the events directly, edges that are exclusively observed
in the training set are represented in the region as those observed both in the train and test
sets, rendering a visual comparison of these two sets difficult. In contrast, our proposed
Birth–Death diagram focuses on directly illustrating the division of nodes and edges into
three distinct regions.

Appl. Sci. 2024, 14, 3516 4 of 23

Methods for DLP. (Dynamic) Link Prediction is a longstanding problem, and various
classes of methods have been proposed to address it. Early efforts focused on using tradi-
tional tools from statistics and network science, often borrowing from the existing literature
on the modeling of static networks. These include univariate time series models [24,25],
similarity-based methods [26], probabilistic generative models [27–30], and matrix and
tensor factorization [31]. Nevertheless, with the success of deep learning and representation
learning on static graphs, recent approaches have shifted towards using neural networks, as
surveyed by Kazemi et al. [9] and Longa et al. [10]. Notably, memory-based dynamic graph
neural networks (DGNNs) such as TGN [21] and DyRep [32], use an encoder–decoder archi-
tecture. The encoder maps each node to a time-varying representation in a low-dimensional
space, while the decoder allows for calculating the probability of interactions from the latent
representations of the nodes. More generally, the idea of learning a vector representation
(embedding), either at the node level or the edge level, has been explored in several other
papers [33–38].

It is important to consider that there is currently a lack of fair and objective comparison
between these embedding-based techniques and shallow methods such as the ones previ-
ously detailed. Our objective hereby is not to propose a novel method for DLP, but rather
to introduce a new performance visualization approach capable of effectively visualizing
the DLP task and supporting the performance evaluation of existing methods. Nonetheless,
Birth–Death diagrams are particularly pertinent for assessing and diagnosing memory-
based DGNNs. Indeed, these models work by maintaining a memory state summarizing
the history associated with specific nodes or edges over time. The accuracy and usefulness
of this memory state is greatly influenced by the times at which these nodes/edges start
(Birth time) and stop (Death time) interacting. We emphasize that our study does not
consider negative sampling for training, which has its own challenges [39], but rather for
evaluation in Link Prediction.

Challenges in Evaluating DLP Algorithms. Although many methods for static
and dynamic Link Prediction have been proposed in the past, the formal definition and
evaluation of this task has been subject to much debate and countless refinement over the
years. Many evaluation methods have been proposed, including set-based metrics [26],
receiver operating characteristic (ROC) curves and associated area under the ROC (AUC–
ROC) curve [40,41], and average precision [42]. While the above studies used the time
information mainly for splitting the train–test data into a training and a test set, Tylenda
et al. [43] presented ways to incorporate the time aspect into a method and evaluation
process, demonstrating its positive impact on performance. Subsequently, Junuthula et
al. [15] suggested separating the DLP problem into two tasks: the prediction of either
recurring edges or newly observed edges. They propose a metric combining AUC–ROC
and area under the precision–recall curve to incorporate these two aspects.

In these studies, the impact of negative sampling was often overlooked in the evalua-
tion step. More recently, Poursafaei et al. [8] proposed more challenging negative samples
for deep learning-based DLP methods. They introduced three strategies: random, historical,
and inductive. In this paper, we extend the literature by proposing a visualization-based
method for separating the possible negative samples into categories, with an emphasis on
distinctively sampling from overlap and historical edges/nodes. Moreover, we introduce a
principle means of scrutinizing the changes in performance over time depending on the
negative sampling strategy used for evaluation.

3. Understanding the Effect of Splitting a Dynamic Graph Based on Time

In this section, we provide some background on Continuous-Time Dynamic Graphs
(CTDGs). Subsequently, we introduce the notions of Birth and Death time, and the associ-
ated Birth–Death diagrams, a visualization tool that allows one to understand the effect of
splitting a dynamic graph based on time. Based on this tool, we introduce the node and
edge surprise indices as metrics for quantifying the difficulty of predicting future links on
a given dynamic graph dataset.

Appl. Sci. 2024, 14, 3516 5 of 23

3.1. Background: Continuous-Time Dynamic Graphs

For a set of nodes U and maximal time T, a Continuous-Time Dynamic Graph (CTDG) is
defined as a stream H = {(u, v, t)} ⊂ U ×U × [0, T] of events (u, v, t), each representing an
interaction of the source node u with the destination node v at timestamp t. We use the term
edge to refer to a pair of nodes (u, v) at an unspecified time. In directed graphs, such an edge
(u, v) in an event (u, v, t) is an ordered pair of nodes; in other words, this means that node
u sends an interaction to v at time t. Conversely, undirected graphs treat edges as unordered
pairs of nodes {u, v}; so an interaction (u, v, t) means that u and v interacted at time t. In
practice, an undirected edge can be uniquely identified by (min(u, v), max(u, v)). Further,
note that CTDGs allow events to occur at any continuous-valued timestamp 0 ≤ t ≤ T and
allow multiple events to happen at the same time.

To index the collection of all events H in the CTDG, we also introduce some helpful
shorthand notations.

We use Hu ≜ {(u′, v′, t) ∈ H | u′ = u ∨ v′ = u} to represent the set of all events in H
that involve the node u and H(u,v) ≜ {(u′, v′, t) ∈ H | u′ = u ∧ v′ = v} to represent the set
of events that involve the edge (u, v). We also define Ht as the subset of all events in H
that occur up to a certain time t, i.e., Ht ≜ {(u, v, t′) ∈ H | t′ < t}.

Overall, our goal is to better inform the evaluation of Dynamic Link Prediction over
CTDGs. We hold off on formally introducing this task until Section 4 and first consider a
core decision in any machine learning evaluation: how the data are split up into training
and testing data. A typical assumption in dynamic graphs is that we will only need to
make predictions about future events. Hence, the train–test split is commonly determined
by a cutoff time tsplit that partitions the set of events H into the train set of past, known
events Htrain = Htsplit and the test set of ‘future’, unknown events Htest = H \Htsplit . In
what remains of this section, we characterize nodes and edges by whether they are active
exclusively in the train set, test set, or in both.

3.2. The Birth and Death of Nodes and Edges

Dynamic graphs dynamically evolve over time. A key motivation for our contributions
is that many real CTDG datasets only have nodes and edges that interact within a specific
timeframe. For instance, in a social network, a new user may join (represented as a node),
or a pair of users (i.e., an edge) may cease interacting entirely at a certain time. To formalize
these concepts, we introduce the following definitions.

Definition 1 (Birth time). For any node x = u or edge x = (u, v), the birth time bx
H is defined

as the earliest time at which this node or edge is involved in an event in history H:

bx
H ≜ min

(u,v,t)∈Hx
t. (1)

Definition 2 (Death time). For any node x = u or edge x = (u, v), the death time dx
H is defined

as the latest time at which this node or edge is involved in an event in history H:

dx
H ≜ max

(u,v,t)∈Hx
t. (2)

Note that, by definition, bx
H ≤ dx

H. These definitions allow us to capture the lifespan
of nodes and edges in dynamic graphs, which is crucial for understanding their behavior
and evolution over time.

We argue that the Birth and Death times of nodes and edges are highly relevant when
splitting up a CTDG’s events into a train set Htrain and test set Htest. Such splitting is
performed to assess a model’s ability to generalize to unseen data that is encountered in
real-world applications, but CTDGs typically see nodes and edges reoccur often. In fact,
exploiting recurring patterns is an implicit goal of any machine learning task. Previous
work [8,15] has hypothesized that it is far easier for any parametrized model to predict if
and when an edge occurs in the test set Htest, if it has already learned from the occurrences

Appl. Sci. 2024, 14, 3516 6 of 23

of the same edge in the train set Htrain. The formal definition of the Birth and Death times
helps to elucidate this assumption. For instance, we can state that the occurrence of an edge
in the test set will seem more likely to a model if its Birth time bx

H was before tsplit. Likewise,
nodes that were already active in the train set, i.e., they were ‘born’ at time bx

H < tsplit, will
be better understood and less surprising than nodes with a Birth time bx

H ≥ tsplit.
Moreover, the extent to which different methods are capable of accurately predicting

previously unseen edges in the test set may vary between these different situations. Under-
standing such differences may be important for choosing the most appropriate method in a
particular application.

Therefore, a prudent and useful analysis of (predictions over) a CTDG benefits from
partitioning nodes and edges into three categories, which we define here. In all definitions,
we denote by tsplit the time at which the train–test split is made.

Definition 3 (Historical). A historical (H) node or edge x only occurs in the train set Htrain and
never in the test set Htest, i.e.,

dx
H < tsplit. (3)

Definition 4 (Inductive). An inductive (I) node or edge x only occurs in the test set Htest and
never in the train set Htrain, i.e.,

bx
H ≥ tsplit. (4)

Definition 5 (Overlap). An overlap (O) node or edge x occurs in both the train set Htrain and
the test set Htest, i.e.,

bx
H < tsplit ∧ dx

H ≥ tsplit. (5)

3.3. The Birth–Death Diagram

For a given a cutoff time tsplit, the Birth and Death times of nodes and edges clearly
distinguish whether they are historical, overlap, or inductive. By extension, the distribution
of their Birth and Death times characterizes the difficulty of the test set for any cutoff time.

We therefore introduce the Birth–Death diagram: a scatter plot visualization that
represents each node or edge by its Birth time (on the y-axis) and Death time (on the x-axis).
Figure 1 illustrates the Birth–Death diagram on a dataset of face-to-face interactions among
high school students. Moreover, in Figure 2, we plot the Birth–Death diagrams for different
CTDG datasets from the benchmark of Poursafaei et al. [8]. We refer the reader to [8] for
details about the datasets.

Remark 1. For all datasets in our illustration, the cutoff time is determined as the 1− α-th quantile
of the event times, where α is a train–test split ratio set to α = 0.15. In simpler terms, this means
that the cutoff time tsplit is set to the point in time beyond which 15% of the events occur. Any
events that occur before this point in time are included in the training set, while any events that
occur after this point in time are included in the test set.

From Figure 2, we can draw some interesting observations, which we discuss here.

Appl. Sci. 2024, 14, 3516 7 of 23

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(a) UNtrade

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(b) Flights

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(c) CanParl

0 tsplit
Death

0

tsplit
B

ir
th

Nodes

0 tsplit
Death

Edges

(d) Enron

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(e) Lastfm

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(f) mooc

0 tsplit
Death

0

tsplitB
ir

th

Nodes

0 tsplit
Death

Edges

(g) UCI

0 tsplit
Death

0

tsplit

B
ir

th

Nodes

0 tsplit
Death

Edges

(h) wikipedia

Figure 2. Birth–Death diagrams for nodes and edges in datasets from the dynamic graph benchmark
from Poursafaei et al. [8]. The datasets are split into train and test sets containing 85% and 15% of the
events, respectively.

Appl. Sci. 2024, 14, 3516 8 of 23

Seasonality of Birth and Death Times. The seasonality of lifespan patterns can be
observed in both the HighSchool and MOOC datasets as the points corresponding to edges
and nodes tend to cluster into squares representing days. The UCI dataset, which describes
online interactions among students from April to October 2004, also shows seasonality in
the holiday break: there is a white stripe during the holiday break (slightly before tsplit).
This seasonality is a crucial property of the Link Prediction task at hand. For instance, in
the case of the HighSchool dataset, a possible task can be predicting interactions between
students during a specific day, given that we trained a model on the past few days. For
these datasets, carefully representing time using techniques such as time encoding [37] can
be crucial to achieve good performances.

Short-Lived Nodes and Edges. The high density of points on the diagonal of these
diagrams, in particular in the Wikipedia dataset, indicates that most nodes and edges have
very short lifespans. As a result, information learned by models about these instances has a
higher chance of becoming obsolete after some time. Here, it is crucial that methods take
into account time and prioritize active edges/nodes. Conversely, however, some nodes and
edges have very long lifetimes in the Wikipedia and Flights datasets (their scatter points
are in the lower right), so memorization may work well on these.

“Easy” Datasets. There are some datasets, namely UNtrade, Enron, CanParl, and
HighSchool, where most of the nodes are observed at least once in the train set, with only a
few nodes starting interactions in the test set. Memorization heuristics such as Preferential
Attachment and EdgeBank will constitute strong baselines for these datasets.

Finally, it is crucial to note that for User–Item graphs, such as Wikipedia, MOOC or
Lastfm, the Birth–Death diagram will yield different profiles for the User and Item nodes.
We showcase and discuss these differences in Appendix A.

3.4. The Surprise Index

The Birth–Death diagrams suggest that the proportion of overlap and inductive nodes
and edges is highly dependent on the cutoff time tsplit. We formally assess this proportion
through the surprise index, i.e., the proportion of inductive nodes/edges in the test set.

Definition 6 (Surprise Index). The node/edge surprise index is defined as the proportion of nodes
and edges x in the test set (i.e., their Death time dx

H ≥ tsplit) that only appear in the test set (i.e.,
their Birth time bx

H > tsplit). In other words, it is the ratio between the number of inductive (i.e.,
having a Birth time after tsplit) and the number of inductive or overlap (i.e., having a Death time
after tsplit) nodes/edges. Mathematically, considering x to be either the nodes or edges,

surprisex =

∣∣{x|bx
H ≥ tsplit}

∣∣∣∣{x|dx
H ≥ tsplit}

∣∣ .

Indeed, by definition, the inductive nodes/edges are those whose Birth time is after tsplit, while
objects which are either inductive or overlap are those whose Death time is after tsplit.

Typical ML pipelines will learn from the training data by hinting on recurring pat-
terns (concepts present in the data) and learn to recognize these patterns. The test data
may reproduce these patterns to some extent, along with some other signals previously
unobserved by the model, which will be reflected in the fact that the predictions will not be
imperfect. In the case of the DLP, we dispose of concrete ways of measuring the quantity of
information in the test set that will be new for the model. The surprise index is a natural
way of measuring that.

In Figure 3, we present the node surprise index against the edge surprise index for
various datasets, with train–test splitting ratios ranging from 0.1 to 0.5. By examining these
indices, we can observe some interesting properties.

Appl. Sci. 2024, 14, 3516 9 of 23

0.0 0.2 0.4 0.6 0.8 1.0
Edge Surprise Index

0.0

0.2

0.4

0.6

0.8

1.0

N
od

e
S

u
rp

ri
se

In
d

ex

Wikipedia

Uci

EnronLastfm

Mooc

Reddit

CanParl

UNtrade

Split Ratio=0.15

Figure 3. Changing the test split ratio linearly from 0.1 to 0.5 changes the node and edge surprise
indices differently depending on the dataset. The typical test split ratio of 0.15 is marked as “*” on
the lines.

The Surprise Index is Not Necessarily Monotonous with The Size of The Test Set.
It may be intuitive to assume that the surprise index increases monotonically with a larger
proportion of events included in the test set (i.e., earlier cutoff times tsplit). However, this is
not always the case. For instance, in the CanParl dataset, increasing the test ratio from 0.3
to 0.4 actually decreases the edge surprise index, while substantially increasing the node
surprise index. A similar non-monotonicity can be observed for the Enron dataset, where
increasing the test ratio from 0.3 to 0.4 similarly decreases the edge surprise index. This
paradox arises from the fact that the surprise index is a non-decreasing function of the ratio
between inductive events (those that occur only in the test set) and overlapping events
(those that occur in both the training and test sets). Thus, if adding more events to the
test set increases the number of overlapping events faster than it increases the number of
inductive events, the surprise index will actually decrease. This observation highlights the
importance of carefully selecting cutoff times to ensure that the evaluation setting accurately
reflects the difficulty and type of task at hand.

The Edge Surprise Index is Typically Higher than the Node Surprise Index. All
datasets evaluated here exhibit curves in the lower right of Figure 2, indicating that the
edge surprise index is generally higher than the node surprise index. While this may seem
obvious, we stress here that it does not have to be the case. Indeed, what is clear is that if a
given node was never observed during training but starts to interact during testing, then
it means that the corresponding edge it forms during testing was necessarily never seen
during training. As a consequence, there are always at least as many inductive edges as
there are inductive nodes. However, the surprise index increases with the ratio between the
number of inductive and overlap nodes/edges, and this ratio does not necessarily have
to be larger for edges than for nodes. For instance, suppose that four nodes, A, B, C, and
D, interact with each other during both the training and test period, resulting in a total of
six overlap edges. Now, suppose that a node E starts interacting with A during testing. In
this case, the number of inductive nodes and edges are both 1. However, the node surprise
index is 1

5 , while the edge surprise index is 1
7 , which is smaller. In contrast, if E had started

interacting with all four nodes, then we would have an edge surprise of 4
10 , which would

Appl. Sci. 2024, 14, 3516 10 of 23

be larger than the node surprise. Another example would be if two nodes E and F would
start interacting but only with each other during testing. In this case, the node surprise
index would be 2

6 , while the edge surprise index would be 2
8 , which is smaller. As such it

is in itself an interesting pattern that the edge surprise index is generally higher than the
node surprise index in all the considered datasets. Reporting both these indices in practice
may give a good first overview of the difficulty of the DLP task at hand.

Domain Dependency. The difference in growth rates between the node and edge
surprise indices varies widely across different datasets. For some datasets, increasing
the number of events in the test set will increase the proportion of nodes present in the
test set that were not observed in the training set. For instance, in the CanParl dataset,
increasing the test ratio from 0.1 to 0.3 increases the edge surprise index from 0.15 to around
0.78, while the node surprise index only undergoes a 0.1 increase. This means that while
in both cases most of the nodes will already have been observed in the training set, the
number of previously unobserved edges will increase significantly. This illustrates the fact
that seemingly small changes in the evaluation setting can have a dramatic impact on the
difficulty and type of task at hand. The exact values of the node and edge surprise indices,
on the datasets from Poursafaei et al. [8], are provided in Table 1.

Table 1. Dataset statistics, including the node and edge surprise indices, for a test ratio of 15%. For
most datasets, the nodes are mostly all observed during training, hence a relatively low node surprise
index. The edge surprise is higher however, since many edges that interact in the test set were never
observed in the test set.

Events
Total Historical Overlap Inductive Surprise Total Historical Overlap Inductive Surprise

UCI 59,835 1899 1052 681 166 0.196 20,296 17,069 657 2570 0.796
HighSchool 45,047 180 18 160 2 0.012 2239 1577 445 217 0.328
Wikipedia 157,474 9227 5663 2648 916 0.257 18,257 13,667 2046 2544 0.554
Enron 125,235 184 43 138 3 0.021 3125 1914 724 487 0.402
USLegis 60,396 225 112 101 12 0.106 26,423 18,884 5857 1682 0.223
UNvote 1,035,742 201 7 194 0 0.000 31,516 4487 26,583 446 0.017
UNtrade 507,497 255 27 228 0 0.000 36,182 10,595 24,347 1240 0.048
SocialEvo 2,099,519 74 12 62 0 0.000 4486 2609 1827 50 0.027
MOOC 411,749 7144 4732 2185 227 0.094 178,443 147,612 6628 24,203 0.785
Flights 1,927,145 13,169 2182 10,698 289 0.026 395,072 264,189 85,369 45,514 0.348
Reddit 672,447 10,984 1369 9578 37 0.004 78,516 53,589 17,933 6994 0.281
Lastfm 1,293,103 1980 227 1681 72 0.041 154,993 106,038 30,883 18,072 0.369
CanParl 74,478 734 384 340 10 0.029 51,331 38,401 7432 5498 0.425

Nodes Edges

4. Towards More Targeted Negative Sampling Strategies for Dynamic Link Prediction

The Birth–Death diagrams introduced in Section 3 illustrate the partitioning of nodes
and edges into distinct categories: historical, overlap, and inductive. The comparison
between a test event and a negative event involving an edge or node from any of these
categories presents varying levels of difficulty for the task of discriminating the true event
from the negative one. In this section, we operationalize these insights by formally defining
Dynamic Link Prediction (DLP) and its connection to negative sampling (NS), before
uncovering a taxonomy of the NS strategies targeting different aspects of DLP performance.

4.1. Background on Dynamic Link Prediction

Having thoroughly analyzed the nodes and edges in a CTDG, we now formalize the
task of Dynamic Link Prediction (DLP).

Definition 7 (Dynamic Link Prediction). The Dynamic Link Prediction (DLP) problem is the
task of distinguishing positive (true) interactions (u, v, t) from interactions (u′, v′, t) that do not
occur at the same time t.

Appl. Sci. 2024, 14, 3516 11 of 23

For example, the task at hand can be to predict which two people u and v, at the
present time t, are most likely to interact in a social network.

Algorithms for DLP. In practice, DLP algorithms are required to output a score
s(u, v, t|Ht) that expresses the likelihood of the event (u, v, t) given the past history of
events Ht up to time t (as any future event would be unavailable at that time). When dis-
cussing DLP algorithms, it will then be helpful to also define Ut as shorthand notation for
the set of nodes interacting up to time t and Et for the set of edges. We note that parametric
DLP algorithm (e.g., neural networks) will typically output a score s(u, v, t|Ht) that is a
function of the past history Ht and of the parameters of the model. Thus, to evaluate the
score of a given test event (u, v, t), DLP algorithms are given access to the history up to
time t, but are not allowed to update their parameters based on these test events.

Negative Sampling for Evaluation. As already discussed, the goal of DLP algorithms
is to accurately score the events (u, v, t), conditioned on the past Ht at time t. Ideally, a
perfect model would score any positive event (u, v, t), i.e., an event that actually occurs in
history H, higher than any negative event (u′, v′, t), such that (u′, v′) ̸= (u, v), i.e., an event
that could have occurred (but did not) at time t. The default strategy would thus be to
gather all possible edges and calculate their scores jointly with the positive event at time t.
However, computing the scores for all possible edges scales quadratically with the number
of nodes. Even for reasonably sized networks with a few thousand nodes, this renders the
exhaustive comparison intractable. Consequently, as is the case in Static Link Prediction, it
is common to strongly subsample the set of possible negatives. We now formally define
this crucial step of the evaluation.

Definition 8 (Negative Sampling). A negative sampling strategy is a mapping that takes as in-
put a positive event (u, v, t) ∈ H and returns a set of K-associated negative events
{(u(k), v(k), t)}k=1,...,K occurring at the same timestamp t.

Problems with Naive Negative Sampling Strategies. A straightforward NS strategy
is to swap the source u and/or destination node v of the positive event (u, v, t) with other
nodes u′ ∈ U and/or v′ ∈ U uniformly at random. Although common, this strategy is
naive. The vast majority of possible negatives at time t tends to be unrealistic for various
intuitive reasons. For instance, many edges never occur at all in the graph, and many nodes
only interact long before or after time t (i.e., they are probably inactive at this time). Such
an unrealistic NS strategy may give an unbiased estimate of the exhaustive performance
(obtained through a comparison of the positive with all the possible edges). However,
including trivial negatives into the comparison will steer the accuracy to a value close
to 1, rendering such accuracy rather uninformative. To obtain accuracy estimates which
align better with the actual task at hand, it is therefore important to only consider more
challenging negatives. In what follows, we will investigate how to do so.

4.2. A Taxonomy of Negative Samples

Given that unrealistic NS leads to an uninformative evaluation of DLP, how might we
generate more useful negative samples?

Clearly, this depends on the task at hand. For example, in the Flights dataset, the goal
is to predict which destination a plane in a given origin airport will depart to at a given
time. In this case, most edges will have been observed already, and it is more interesting to
evaluate whether our model can distinguish between the actual origin and destination of
the flight and an origin–destination pair that has been previously observed. Therefore, a
realistic negative sample could be generated by replacing the actual edges with previously
observed edges.

Similarly, in the case of social networks such as email datasets, the goal may be
predicting the receiver of a message emitted by a given sender at a certain time. In this case,
one may want to specifically sample a negative edge (u′, v′, t) such that the destination
node v′ interacts in both the train and test sets. The intuition for such a choice is that models

Appl. Sci. 2024, 14, 3516 12 of 23

will tend to naturally assign a higher score to events whose nodes have interacted in the
train set. Moreover, the fact that these nodes are also present in the test set indicate that
they may still be active at the time of the positive interaction, thus making the negative
interaction a reasonable candidate.

Here, we aim to contribute NS strategies which can be applied to any dataset or task.
Instead of focusing on specific applications, we present a general taxonomy of potential
edges that can be used as negative samples. DLP performance can then be appropriately
scrutinized for different types of negatives in any application. Considering that machine
learning evaluation typically distinguishes performance on the train set from performance
on the test set, we make heavy use of our definition of temporal categories in Section 3.2.

Assume any NS strategy starts from a positive event (u, v, t) and then ‘corrupts’ it into
(realistic) negatives {(u(k), v(k), t)}k=1,...,K. As discussed previously, the timestamp t is left
unchanged, as this is the time at which the prediction is assumed to be made. We can then
either corrupt one of the nodes in the event (which we call negative node sampling) or both
(which we call negative edge sampling). For both, different strategies can be discerned, as
described in the following two definitions.

Definition 9 (Negative Node Sampling). Negative node sampling (node-NS) takes a positive
event (u, v, t) and replaces the source node u by u′ ∈ U or the destination node v by v′ ∈ U . In
both cases, the other node is left the same.

For a given cutoff time tsplit, we distinguish six types of negative node samples:

Historical Source (HS)
du′
H < tsplit;

Overlap Source (OS)
bu′
H < tsplit ∧ du′

H ≥ tsplit;

Inductive Source (IS)
bu′
H ≥ tsplit;

Historical Destination (HD)
dv′
H < tsplit;

Overlap Destination (OD)
bv′
H < tsplit ∧ dv′

H ≥ tsplit;

Inductive Destination (ID)
bv′
H ≥ tsplit.

Remark 2. In undirected graphs, source and destination sampling are equivalent.

Definition 10 (Negative Edge Sampling). Negative edge sampling (edge-NS) takes a positive
event (u, v, t) and replaces the edge (u, v) by another edge (u′, v′) ∈ U × U .

For a given cutoff time tsplit, we distinguish three types of negative edge samples:

Historical Edge (HE)
d(u

′ ,v′)
H < tsplit;

Overlap Edge (OE)
b(u

′ ,v′)
H < tsplit ∧ d(u

′ ,v′)
H ≥ tsplit;

Inductive Edge (IE)
b(u

′ ,v′)
H ≥ tsplit.

Appl. Sci. 2024, 14, 3516 13 of 23

These strategies lend themselves to a straightforward visualization interpretation. For
instance, in the Birth–Death diagrams (see for instance Figure 2), HE, OE, and IE correspond
to sampling the negative edge, respectively, from the set of blue, orange, or green points.

In the rest of this work, we will conduct experiments using the strategies HE, OE,
and IE. These strategies enable us to compare the score of a positive event (an action
that did happen) with the score of an event that occurred in the dataset but at a different
time. Furthermore, we will closely investigate the HD, OD, and ID strategies. These
are particularly relevant for evaluating many DLP tasks (e.g., recommendation), where
we compare the score of an interaction from a given source (such as a user) to the true
destination (an item or another user) with the score of a negative destination that is
randomly sampled. The HD, OD, and ID strategies help us understand the impact of
choosing a negative destination from different time intervals. This choice can significantly
affect the results of an evaluation.

5. Experimental Setup

In the remainder of this paper, we present the extensive experiments conducted in
order to validate our evaluation tools, and answer two main questions.

5.1. Datasets

We selected 5 datasets of various sizes from a recent benchmark [8]. Wikipedia is a
dataset of edits of Wikipedia pages recorded over one month. Mooc is a dataset of online
behavior of students interacting with content (items) on a MOOC platform. Lastfm is
a dataset of interaction between users and songs listened by users. Uci is a network of
university students communicating over a social network. Enron is a dataset of emails
between employees of a company, over a period of three years.

5.2. Methods

In our experiments, we consider 4 different DLP algorithms. The first two methods
are simple parameter-free heuristics, which work by memorizing either the nodes or the
edges observed in past events. We describe them here, and detail the type of error that these
are susceptible to commit:

• Preferential Attachment (PA) assigns a score of 1 to an event (u, v, t) if and only if
both the nodes have been observed in the past Ht:

s(u, v, t|Ht) = 1{u∈Ut∧v∈Ut}. (6)

This method issues a false negative when the true event (u, v, t) is such that neither
u nor v were ever observed prior to t, and a false positive when the negative event
(u′, v′, t) is such that both u′ and v′ were involved in a past event.

• EdgeBank [8] assigns a score of 1 to an event (u, v, t) if and only if the edge (u, v) has
been observed in the past Ht:

s(u, v, t|Ht) = 1{(u,v)∈Et}. (7)

This method yields false negatives whenever the true event (u, v, t) is such that the
edge (u, v) was never involved in any event up to time t. It produces false positives
whenever the negative event (u′, v′, t) is such that (u′, v′) was involved in an event
before t.

While simple, these baselines are helpful reference points to assess the performance of
more sophisticated methods, as they relate directly to the Birth–Death diagrams presented
in Section 3.3. Indeed, one can think of Preferential Attachment and EdgeBank as follows.
If we draw a horizontal line at the y coordinate corresponding to the current time t, PA
will assign a score of 1 to any event (u, v, t) such that both u and v are below the line, i.e.,

Appl. Sci. 2024, 14, 3516 14 of 23

have a Birth time prior to t: bu
H < t and bv

H < t. Similarly, EdgeBank will output a score
of 1 to any event such that the edge (u, v) is represented by a point below the horizontal
line with a y coordinate equal to t (i.e., b(u,v)

H < t). On top of these methods, we consider
two memory-based dynamic graph representation learning methods, which we briefly
introduce below:

• TGN-attn [11] is a DLP algorithm composed of two main modules. A memory module
is responsible for maintaining a node-level memory state, encoding the past events at
the node level. Using an attention module, the memory states of different nodes are
then combined and subsequently used to calculate the probability of the event (u, v).

• DyRep [32] has a similar architecture, but specifically uses an attention mechanism on
the destination node in order to update the memory given an incoming event.

Remark 3. In terms of implementation, we use a common approximation to the memory-based
methods discussed above. Instead of updating the memory state (set of observed nodes or edges
for PA/EdgeBank, node memory states for TGN and DyRep) at every newly observed events, the
interactions are consumed by mini batches of 200 events. For each batch, the models successively
compute a prediction score for the events in this batch and the associated negative samples, and then
update their memory by ingesting the events in that batch.

5.3. Metrics

Binary Classification. In the first experiment, we view DLP as a binary classification
task. For each positive event, we draw a negative event at random, following a specific
NS strategy. We thus obtain as a result a list of labeled events, where the label indicates
whether it is an event that actually occurred or whether it is a negative sample. Considering
a given threshold on the prediction scores, a confusion matrix such as the one in Table 2
may then be constructed, measuring the amount of positive/negative events that are
scored higher (positive prediction) or lower (negative prediction) than the threshold. By
varying the threshold, we can then draw the corresponding receiver operating characteristic
(ROC) and compute the associated area under the curve (AUC). Note that this is typically
conducted per batch of events, as the prediction scores may not be comparable across
batches corresponding to different time spans. The reported AUC is the average of the
AUCs obtained on the different batches.

Table 2. Confusion matrix.

Predicted/Actual Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

Ranking. In order to assess which negative edge type is more likely to deceive
the model at a given time, in a second experiment we consider ranking as a measure of
performance. More precisely, we suppose that for each positive event, we assign it a certain
number K of negative events, obtained through various NS strategies. Then, we calculate
for each of these entries the rank of the positive but also of the associated negatives. Thus,
for each event (u, v, t) in the test data, we have a list of ranks corresponding to the positive
event as well as to different NS strategies, such as NS1, NS2, etc.

In order to obtain a regularly sampled time series, we then partition the time interval
[0, T] time into B = 50 bins I1, . . . , IB of equal size. For each interval, we calculate the mean
average rank (MAR) of all the positives within that interval and perform the same for each
NS strategy. As a result, we obtain for each event type (positive, NS strategy 1, NS strategy
2. . .) a time series of the ranks of the associated events in the different intervals.

For instance, suppose that the first interval I1 contains 4 positive events, to each of
which we adjoin 2 negative events (coming from 2 different NS strategies, NS1 and NS2).
Now, using the DLP algorithm, we obtain scores for each of the positives and the negatives.
Suppose that, as a result, the ranks of the 4 positive events are 1, 3, 2, and 1, the ranks of the

Appl. Sci. 2024, 14, 3516 15 of 23

negative obtained using NS1 are 2, 1, 3, and 2, and the ranks for NS2 are 3, 2, 1, and 3. Then,
for this interval, the MAR for the positive NS1 and NS2 events are 7

4 , 2, and 9
4 , respectively.

6. Results

In this section, we discuss our experimental results with the aim of answering two
research questions. The goal is to assess the impact of the different NS strategies at the
aggregate level (Section 6.1) and over time (Section 6.2).

6.1. How Do Performances of DLP Algorithms Vary over Different NS Strategies?

In Figure 4a, we report the AUC scores against three edge-NS: historical edge, overlap
edge, and inductive edge negative sampling strategies. Similarly, in Figure 4b, we report
AUCs for three destination-NS: historical destination, overlap destination, and inductive
destination, as defined in Section 4.2.

HE OE IE
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Wikipedia

HE OE IE

Mooc

HE OE IE

Lastfm

HE OE IE

Uci

HE OE IE

Enron

Tgn Dyrep Preferential Attachment Edgebank

(a)

HD OD ID
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

Wikipedia

HD OD ID

Mooc

HD OD ID

Lastfm

HD OD ID

Uci

HD OD ID

Enron

Tgn Dyrep Preferential Attachment Edgebank

(b)

Figure 4. Test AUC results obtained by comparing the scores of the positive events with the scores of
the negative events, sampled using specific strategies. For DyRep and TGN, we retrained the models
with 5 different seeds and report the mean and the standard deviation of the resulting AUCs. (a) Test
AUC results employing various edge negative sampling strategies: historical edge (HE), overlap
edge (OE), and inductive edge (IE). These strategies involve sampling negative edges (u’,v’) from sets
corresponding to edges exclusively present during training, those present during both training and
testing, and those exclusively present during testing, respectively. (b) Test AUC results employing
various destination negative sampling strategies: historical destination (HD), overlap destination
(OD), and inductive destination (ID). These strategies swap the destination node with one present
during training, both training and testing, or exclusively during testing.

Appl. Sci. 2024, 14, 3516 16 of 23

In general, the AUC scores are higher when swapping only the destination node,
as in Figure 4b. This makes sense when thinking that swapping the destination with
random nodes may lead to edges that never happened overall, and thus to negative events
that are very unlikely. The overlap edge and overlap destination seem to lead to lower
scores in general. Indeed, these strategies yield events that hit a good trade-off between
having enough memory about the associated nodes/edges to yield a high score, and being
sufficiently novel so that the models do not know yet how to discriminate them from the
positive event. In contrast, for historical edges and destination, the involved nodes and
edges become relatively obsolete after a certain time, an effect which seems to be picked up
by the models.

Starting with the baselines, we note that EdgeBank and Preferential Attachment show
very similar performances against historical and overlap edges, with EdgeBank performing
worse than random (AUC < 0.5). This can be explained by remembering that, at test time,
all the historical edges and overlap edges will have a score of 1. In contrast, the true event
may have a score of 1 or 0 depending on whether the associated edges or nodes were
previously observed. In that context, the false positive rate is greater than 0 only if the
decision threshold is at least 1 (if it is below 1, all the negatives are predicted negative).
When the decision threshold reaches the value 1, the number of false positives jumps to
the number of negatives (all the negatives will be predicted as positives). In particular, the
false positive rate will increase faster than the true positive rate, resulting in an AUC score
lower than 0.5.

These figures indicate that NS can be defined such that heuristic baselines outperform
neural network-based methods. For instance, in the IE and ID settings, EdgeBank is
better than TGN and DyRep on the Lastfm dataset. Moreover, on the Enron dataset, PA
outperforms the three other methods in the OD setting, and slightly outperforms TGN in
the ID and IE setting. This is counter-intuitive when remembering that PA does not retain
any information about the edges active in the past, but only remembers which node was
active in the past.

In general, TGN seems to yield a higher score than DyRep. This makes sense consid-
ering that DyRep has been shown to be a special case of TGN. However, there are some
exceptions, notably in the overlap destination setting where DyRep is better on Lastfm,
UCI, and Enron.

6.2. Which Competing Negative Sampling Strategy Misleads the Model More over Time?

In the previous experiment, we observed that using a different NS strategy can dramat-
ically alter the prediction results. However, it is crucial to note that performance evolves
over time in a temporal graph. In this section, we demonstrate how distinguishing different
NS techniques can help provide a more nuanced insight into the performance of each
method over time.

In Figure 5, we observe the performance over time against edge-NS. For all methods
and datasets, we note that the rank of the positive events increases over time while the
rank of the other edges decreases. Indeed, as memory is filled over time, more events will
appear to be likely to occur. In particular, the score of randomly sampled historical and
overlap edges will rise in general as compared to the score of the positive event.

A general trend is that the rank of inductive edge/destination NS (green and red
lines, respectively) increases on the training period, before dropping on the test set. These
types of negative samples will eventually be the ones which will confuse the model during
test time, as their rank becomes increasingly closer to the rank of the positive event after
tsplit. In general, historical and overlap items follow the opposite trend: they become more
likely up to tsplit, and their rank then starts increasing again either at tsplit, or shortly before
(notably for historical edges/destinations).

These plots make it clear that the type of error made by the models changes over time.
Indeed, while on the train set, inductive edges are likely to be scored low (less likely) since
they have not been observed yet; they become much more likely on the test set. Even

Appl. Sci. 2024, 14, 3516 17 of 23

during the test period, for instance, looking at EdgeBank on the UCI datasets in Figure 5,
shortly after tsplit, the model will tend to rank the positive events lower than the overlap
and historical edges. After some time, however, the inductive edge negative samples will
tend to be ranked similarly to the historical and overlap edges.

These visualizations give profound insights on the differences in performance between
TGN and DyRep. For instance, on the Lastfm dataset, TGN seems to be more consistent
in ranking the inductive destination as high compared with the other destination nodes.
However, its overall performance on the test set is not clearly better than DyRep. On the
other hand, in Figure 6, the performances on the UCI dataset indicate that, while TGN is
clearly able to push historical destinations further than the inductive destination, DyRep
tends to assign them similar rankings across the test set.

Pos Historical Edge Overlap Edge Inductive Edge

PA

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

EdgeBank

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

DyRep

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

TGN

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

Figure 5. MAR of each method over time. The positive event “Pos” is ranked against negative events
resulting from different negative edge sampling strategies as defined in Section 4.2: historical edge,
overlap edge, and inductive edge.

Appl. Sci. 2024, 14, 3516 18 of 23

Pos Historical Dst Overlap Dst Inductive Dst

PA

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

EdgeBank

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

DyRep

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

TGN

Time

1

2

3

4

Av
er

ag
e

R
an

k

tsplit

Wikipedia

Time
tsplit

Mooc

Time
tsplit

Lastfm

Time
tsplit

Uci

Time
tsplit

Enron

Figure 6. MAR of each method over time. The positive event “Pos” is ranked against negative events
resulting from different negative destination sampling strategies as defined in Section 4.2: historical
destination, overlap destination, inductive destination.

In both Figures 5 and 6, the examples on the UCI data allow us to visualize the effect
of seasonality on the performance. Indeed, for both methods, the rank of the positive event
peaks just before the split time. This time corresponds roughly to the lower activity that is
also observed in Figure 2g.

To conclude, the results shown in Figures 4–6 demonstrate that an overly optimistic
AUC may hide a more intricate reality, especially when taking simple baselines as a
reference point. While more targeted NS strategies help to identify settings where heuristics
outperform proposed heavier models, plotting the performance over time is important to
obtain an idea of how a model’s performance will react to domain-specific changes in the
data over time.

Appl. Sci. 2024, 14, 3516 19 of 23

7. Guidelines for Practitioners

Before concluding this study, we propose the following series of guidelines to practi-
tioners of DLP, with the hope of further improving the evaluation of this task:

1. One key conclusion is that evaluating DLP algorithms requires exploring the perfor-
mance along several dimensions of the data, at the node, edge, and time interval level.

2. To do so, as much as possible, a good practice for the use of the DLP algorithm is
to enable the saving of the list of scores of each positive event and negative event.
Indeed, these scores can be the starting point of in-depth evaluations such as the one
conducted in this paper. As suggested in [44], this type of standardized output format
is critical in order to easily apply diverse evaluation methods, while minimizing
evaluation error.

3. Birth–Death diagrams are important tools to understand the effect of time-based
train–test splitting on the nodes and edges involved in the graph, and may help in
hypothesizing the expected performance of a given method on a given dataset.

4. Simple baselines such as EdgeBank and Preferential Attachment baselines are indis-
pensable in order to understand whether the model learns anything non-trivial from
the data.

5. Finally, visualizing how the prediction performance evolves over time can be crucial
in understanding the strengths and weaknesses of DLP algorithms.

8. Conclusions

Recent academic efforts have been dedicated to standardizing Dynamic Link Predic-
tion (DLP) as a machine learning task. The goal is to equip the task with its own evaluation
pipelines, baseline methods, and benchmark datasets. However, as a consequence of the
high dimensionality of the data and their non-independent, non-identically distributed
nature, deriving a single consistent model validation has resulted in numerous challenges.

In this paper, we have explored several key aspects of these challenges. On the
one hand, we have investigated the effect of time-based train–test splitting on the set of
nodes and edges through novel Birth–Death diagrams, and discussed examples of these
visualizations on datasets from diverse domains. Moreover, we have shown how to rely on
the proposed Birth–Death diagrams to derive more challenging negative samples, based
on the hypothesis that the error depends on the NS strategy. To illustrate the effect of these
negative samples, an empirical assessment of the impact of different negative samples on
performance was conducted. The relative performance of methods across datasets was
compared over time by plotting the prediction ranks as a time series, revealing interesting
insights into the failure modes of the different methods.

This work raised several open questions that can be explored in future work. First,
our evaluation tools could be used to conduct a more exhaustive comparison of existing
heuristics such as the ones introduced in [26], first with simple learning-based approaches
such as the ones discussed in Section 2, and then with more recent representation learning
methods, with an emphasis on fair comparison. In terms of visualization, the proposed
Birth–Death diagrams could be leveraged to visualize higher-order structures such as
cliques or triangles, or any repeatedly occurring subgraph that can be uniquely identified.

Author Contributions: Conceptualization, R.R., M.B., T.D.B. and J.L.; Methodology, R.R., M.B. and
J.L.; Software, R.R.; Validation, R.R.; Formal analysis, R.R.; Writing—original draft, R.R.; Writing—
review & editing, M.B., T.D.B. and J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The research leading to these results has received funding from the Special Research Fund
(BOF) of Ghent University (BOF20/IBF/117), from the Flemish Government under the “Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, and from the FWO (project no.
G0F9816N, 3G042220, G073924N).

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2024, 14, 3516 20 of 23

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Notation Description
U Set of nodes
T Maximal time
H Stream of events (u, v, t)
(u, v, t) Event representing an interaction of node u with node v at timestamp t
Ht Set of all events in H that occur up to time t
Ut Set of nodes involved in interactions up to time t
Et Set of edges involved in interactions up to time t
Hu Set of events in H that involve node u
H(u,v) Set of events in H that involve edge (u, v)
tsplit Cutoff time for train–test split
Htrain Train set of events occurring up to time tsplit
Htest Test set of events occurring after time tsplit
bx
H Birth time of node or edge x in H

dx
H Death time of node or edge x in H

Appendix A. Birth–Death Diagrams on User–Item Graphs

The dynamic graphs studied in this paper can be classified into three distinct types:

• Unipartite undirected: For instance, in dynamic graphs of face-to-face interaction
such as from the HighSchool dataset, there is only one type of nodes (students), and
an interaction between nodes u and v does not have a direction. Contact, SocialEvo,
UNvote, and USLegis are examples of such graphs.

• Unipartite directed: For example, in the Enron email dataset, there is only one type of
nodes (users involved in mail exchanges). However, the interactions (emails) have
an orientation: a given user u sends an email to user v. The datasets UCI, UNtrade,
Flights, and Enron are examples of such graphs.

• Bipartite: in this case, there is a clear separation of the nodes into two node types.
Typically, in User–Item graphs such as Wikipedia, Lastfm, MOOC, and Reddit, users are
always involved in interactions as senders, while items always receive an interaction
(a click, a like, a subscription, etc.).

As mentioned in the main body of the paper, Birth–Death diagrams allow us to
visualize when nodes and edges start and stop interacting for the first time in a history of
events. However, for Bipartite datasets, there is a clear separation between the nodes that
will be involved in events as source nodes and those that will appear as destination nodes.
For these specific datasets, plotting the Birth and Death time of users and items separately
yields extra information. In Figure A1, it can be observed, for instance, that in all datasets,
most of the items are overlap nodes in the sense that they are observed in both the train
and test sets. In the MOOC dataset, all the items (courses that can be followed by students)
are actually observed at least once during the test period; thus, there are no historical
destination nodes in that case. For the Lastfm dataset, This is important since for the nodes
in the lower right, utilizing the prediction method results in the chance to accumulate a lot
of information about them over time. This is in contrast with user nodes, where it can be
seen that users more commonly appear and disappear during the training period.

Appl. Sci. 2024, 14, 3516 21 of 23

0 tsplit
Death

0

tsplit

B
ir

th

Users

0 tsplit
Death

Items

0 tsplit
Death

Edges

(a) Wikipedia

0 tsplit
Death

0

tsplit

B
ir

th

Users

0 tsplit
Death

Items

0 tsplit
Death

Edges

(b) Reddit

0 tsplit
Death

0

tsplit

B
ir

th

Users

0 tsplit
Death

Items

0 tsplit
Death

Edges

(c) MOOC

0 tsplit
Death

0

tsplit

B
ir

th

Users

0 tsplit
Death

Items

0 tsplit
Death

Edges

(d) Lastfm

Figure A1. Birth–Death diagrams on Bipartite User–Item graphs.

Appendix B. Model Architectures and Hyperparameters Used in the Experiments

In the main paper, we compared the performances of TGN-Attn and DyRep with
heuristic baselines. We used the implementation provided in the examples of the open-
source TGB library https://github.com/shenyangHuang/TGB/tree/main/examples/
linkproppred/tgbl-wiki, (accessed on 15 April 2024).

The architecture of the TGN model is as follows:

1. The message function is the identification function (the same as in the original paper [21]).
2. The aggregation function is the last message aggregator (we keep for each node only

the last message received from the batch).
3. The memory updater is a GRU.
4. The embedding module is a temporal graph attention layer. Its purpose is to inte-

grate both the network’s connectivity information and temporal data, ensuring that
embeddings remain current by combining the memory state with the most recent
network information.

5. The edge-level decoder (i.e., Link Predictor) is a two-layer MLP with 100 hidden units
and ReLU activation.

The DyRep model implemented in the library is very similar to the TGN architecture,
with two main differences:

• The memory updater is a simple RNN.
• The embedding module is the identity: the memory is used directly for prediction. Note

that this makes the model vulnerable to the memory staleness problem.
• However, the messages function is calculated using a graph attention module on the

destination node.

Hyperparameters. As the goal of our study is not to maximize the performance but
to compare it across negative sampling strategies, we used the default hyperparameter
values for both TGN-Attn and DyRep. Thus, the memory, time encoding, and embedding
dimensions are all set to 100. We use the Adam Optimizer [45] with a learning rate of
1 × 10−4 and a weight decay of 1 × 10−4. To prevent overfitting, we use early stopping on
the validation of AUC: we stop the training if there has been no improvement in the AUC
of more than 1 × 10−3 in the last 20 epochs.

https://github.com/shenyangHuang/TGB/tree/main/examples/linkproppred/tgbl-wiki
https://github.com/shenyangHuang/TGB/tree/main/examples/linkproppred/tgbl-wiki

Appl. Sci. 2024, 14, 3516 22 of 23

References
1. Yoon, M.; Hooi, B.; Shin, K.; Faloutsos, C. Fast and Accurate Anomaly Detection in Dynamic Graphs with a Two-Pronged

Approach. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 4–8 August 2019; pp. 647–657. [CrossRef]

2. Machens, A.; Gesualdo, F.; Rizzo, C.; Tozzi, A.E.; Barrat, A.; Cattuto, C. An Infectious Disease Model on Empirical Networks
of Human Contact: Bridging the Gap between Dynamic Network Data and Contact Matrices. BMC Infect. Dis. 2013, 13, 185.
[CrossRef] [PubMed]

3. Cadena, J.; Sales, A.P.; Lam, D.; Enright, H.A.; Wheeler, E.K.; Fischer, N.O. Modeling the Temporal Network Dynamics of
Neuronal Cultures. PLoS Comput. Biol. 2020, 16, e1007834. [CrossRef] [PubMed]

4. Klimt, B.; Yang, Y. The Enron Corpus: A New Dataset for Email Classification Research. In Machine Learning: ECML 2004;
Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Lecture Notes in
Computer Science; pp. 217–226. [CrossRef]

5. Eagle, N.; Pentland, A. Reality Mining: Sensing Complex Social Systems. Pers. Ubiquitous Comput. 2006, 10, 255–268. [CrossRef]
6. Holme, P.; Saramäki, J. Temporal Networks as a Modeling Framework. arXiv 2021, arXiv:2103.13586. [CrossRef]
7. Masuda, N.; Lambiotte, R. A Guide to Temporal Networks; Complexity Science, World Scientific Publishing: Singapore, 2016.
8. Poursafaei, F.; Huang, A.; Pelrine, K.; Rabbany, R. Towards Better Evaluation for Dynamic Link Prediction. In Proceedings of the

Thirty-Sixth Conference on Neural Information Processing Systems Datasets and Benchmarks track, New Orleans, LA, USA,
10–16 December 2023.

9. Kazemi, S.M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P. Representation Learning for Dynamic Graphs: A
Survey. J. Mach. Learn. Res. 2020, 21, 2648–2720.

10. Longa, A.; Lachi, V.; Santin, G.; Bianchini, M.; Lepri, B.; Lio, P.; Scarselli, F.; Passerini, A. Graph Neural Networks for Temporal
Graphs: State of the Art, Open Challenges, and Opportunities. arXiv 2023, arXiv:2302.01018.

11. Huang, S.; Poursafaei, F.; Danovitch, J.; Fey, M.; Hu, W.; Rossi, E.; Leskovec, J.; Bronstein, M.; Rabusseau, G.; Rabbany, R. Temporal
Graph Benchmark for Machine Learning on Temporal Graphs. arXiv 2023, arXiv:2307.01026. [CrossRef]

12. Srinivas, V.; Mitra, P.; Srinivas, V.; Mitra, P. Applications of Link Prediction. In Link Prediction in Social Networks; Springer: Cham,
Switzerland, 2016; pp. 57–61. [CrossRef]

13. Kumar, A.; Singh, S.S.; Singh, K.; Biswas, B. Link Prediction Techniques, Applications, and Performance: A Survey. Phys. A Stat.
Mech. Its Appl. 2020, 553, 124289. [CrossRef]

14. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781. [CrossRef]

15. Junuthula, R.R.; Xu, K.S.; Devabhaktuni, V.K. Evaluating Link Prediction Accuracy in Dynamic Networks with Added and
Removed Edges. In Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-
SustainCom), Atlanta, GA, USA, 8–10 October 2016; pp. 377–384. [CrossRef]

16. Fournet, J.; Barrat, A. Contact Patterns among High School Students. PLoS ONE 2014, 9, e107878. [CrossRef]
17. Holme, P.; Saramäki, J. Temporal Networks. Phys. Rep. 2012, 519, 97–125. [CrossRef]
18. Rozenshtein, P.; Gionis, A. Mining Temporal Networks. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, New York, NY, USA, 25 July 2019; KDD ’19; pp. 3225–3226. [CrossRef]
19. He, J.; Chen, D. A fast algorithm for community detection in temporal network. Phys. A Stat. Mech. Its Appl. 2015, 429, 87–94.

[CrossRef]
20. Latapy, M.; Viard, T.; Magnien, C. Stream Graphs and Link Streams for the Modeling of Interactions over Time. Soc. Netw. Anal.

Min. 2018, 8, 61. [CrossRef]
21. Rossi, E.; Chamberlain, B.; Frasca, F.; Eynard, D.; Monti, F.; Bronstein, M. Temporal Graph Networks for Deep Learning on

Dynamic Graphs. arXiv 2020, arXiv:2006.10637. [CrossRef]
22. Beck, F.; Burch, M.; Diehl, S.; Weiskopf, D. A Taxonomy and Survey of Dynamic Graph Visualization. Comput. Graph. Forum 2017,

36, 133–159. [CrossRef]
23. Linhares, C.D.G.; Travençolo, B.A.N.; Paiva, J.G.S.; Rocha, L.E.C. DyNetVis: A System for Visualization of Dynamic Networks. In

Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 3–7 April 2017; SAC ’17; pp. 187–194.
24. Güneş, İ.; Gündüz-Öğüdücü, Ş.; Çataltepe, Z. Link Prediction Using Time Series of Neighborhood-Based Node Similarity Scores.

Data Min. Knowl. Discov. 2016, 30, 147–180. [CrossRef]
25. Huang, Z.; Lin, D.K.J. The Time-Series Link Prediction Problem with Applications in Communication Surveillance. INFORMS J.

Comput. 2009, 21, 286–303. [CrossRef]
26. Liben-Nowell, D.; Kleinberg, J. The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 1019–1031.

[CrossRef]
27. Foulds, J.R.; DuBois, C.; Asuncion, A.U.; Butts, C.T.; Smyth, P. A Dynamic Relational Infinite Feature Model for Longitudinal

Social Networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL,
USA, 11–13 April 2011.

28. Heaukulani, C.; Ghahramani, Z. Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks. In Proceedings
of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 275–283.

http://doi.org/10.1145/3292500.3330946
http://dx.doi.org/10.1186/1471-2334-13-185
http://www.ncbi.nlm.nih.gov/pubmed/23618005
http://dx.doi.org/10.1371/journal.pcbi.1007834
http://www.ncbi.nlm.nih.gov/pubmed/32453727
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/s00779-005-0046-3
http://dx.doi.org/10.48550/arXiv.2103.13586
http://dx.doi.org/10.48550/arxiv.2307.01026
http://dx.doi.org/10.1007/978-3-319-28922-9_5
http://dx.doi.org/10.1016/j.physa.2020.124289
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.63
http://dx.doi.org/10.1371/journal.pone.0107878
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1145/3292500.3332295
http://dx.doi.org/10.1016/j.physa.2015.02.069
http://dx.doi.org/10.1007/s13278-018-0537-7
 https://doi.org/10.48550/arXiv.2006.10637
http://dx.doi.org/10.1111/cgf.12791
http://dx.doi.org/10.1007/s10618-015-0407-0
http://dx.doi.org/10.1287/ijoc.1080.0292
http://dx.doi.org/10.1002/asi.20591

Appl. Sci. 2024, 14, 3516 23 of 23

29. Xu, K.S. Stochastic Block Transition Models for Dynamic Networks. arXiv 2015, arXiv:1411.5404. [CrossRef]
30. Kim, M.; Leskovec, J. Nonparametric Multi-group Membership Model for Dynamic Networks. In Proceedings of the Advances

in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013; Volume 26.
31. Dunlavy, D.M.; Kolda, T.G.; Acar, E. Temporal Link Prediction Using Matrix and Tensor Factorizations. ACM Trans. Knowl.

Discov. Data 2011, 5, 1–27. [CrossRef]
32. Trivedi, R.; Farajtabar, M.; Biswal, P.; Zha, H. DyRep: Learning Representations over Dynamic Graphs. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
33. Cong, W.; Zhang, S.; Kang, J.; Yuan, B.; Wu, H.; Zhou, X.; Tong, H.; Mahdavi, M. Do We Really Need Complicated Model

Architectures for Temporal Networks? In Proceedings of the The Eleventh International Conference on Learning Representations,
Kigali, Rwanda, 1–5 May 2023; ICLR: Vienna, Austria, 2023. Available online: https://openreview.net/forum?id=ayPPc0SyLv1
(accessed on 15 April 2024).

34. Luo, Y.; Li, P. Neighborhood-Aware Scalable Temporal Network Representation Learning. In Proceedings of the First Learning
on Graphs Conference, Virtual, 9–12 December 2022; Volume 198, pp. 1:1–1:18.

35. Wang, Y.; Chang, Y.Y.; Liu, Y.; Leskovec, J.; Li, P. Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021; ICLR: Vienna, Austria,
2021. Available online: https://openreview.net/forum?id=KYPz4YsCPj (accessed on 15 April 2024).

36. Wang, L.; Chang, X.; Li, S.; Chu, Y.; Li, H.; Zhang, W.; He, X.; Song, L.; Zhou, J.; Yang, H. TCL: Transformer-based Dynamic Graph
Modelling via Contrastive Learning. arXiv 2021, arXiv:2105.07944. [CrossRef]

37. Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; Achan, K. Inductive Representation Learning on Temporal Graphs. arXiv 2020,
arXiv:2002.07962. [CrossRef]

38. Yu, L.; Sun, L.; Du, B.; Lv, W. Towards Better Dynamic Graph Learning: New Architecture and Unified Library. In Proceedings of
the Thirty-Seventh Conference on Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023.

39. Daniluk, M.; Dąbrowski, J. Temporal graph models fail to capture global temporal dynamics. arXiv 2023, arXiv:2309.15730.
[CrossRef]

40. Lu, L.; Zhou, T. Link Prediction in Complex Networks A Survey. Phys. A Stat. Mech. Its Appl. 2011, 390, 1150–1170. [CrossRef]
41. Lichtenwalter, R.; Lussier, J.; Chawla, N. New Perspectives and Methods in Link Prediction. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 243–252.
42. Yang, Y.; Lichtenwalter, R.N.; Chawla, N.V. Evaluating Link Prediction Methods. Knowl. Inf. Syst. 2015, 45, 751–782. [CrossRef]
43. Tylenda, T.; Angelova, R.; Bedathur, S. Towards Time-Aware Link Prediction in Evolving Social Networks. In Proceedings of the

3rd Workshop on Social Network Mining and Analysis, Paris, France, 28 June 2009; SNA-KDD ’09; pp. 1–10. [CrossRef]
44. Mara, A.; Lijffijt, J.; De Bie, T. EvalNE: A Framework for Network Embedding Evaluation. SoftwareX 2022, 17. [CrossRef]
45. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1411.5404
http://dx.doi.org/10.1145/1921632.1921636
https://openreview.net/forum?id=ayPPc0SyLv1
https://openreview.net/forum?id=KYPz4YsCPj
https://doi.org/10.48550/arXiv.2105.07944
https://doi.org/10.48550/arxiv.2002.07962
https://doi.org/10.48550/arxiv.2309.15730
http://dx.doi.org/10.1016/j.physa.2010.11.027
http://dx.doi.org/10.1007/s10115-014-0789-0
http://dx.doi.org/10.1145/1731011.1731020
http://dx.doi.org/10.1016/j.softx.2022.100997
https://doi.org/10.48550/arxiv.1412.6980

	Introduction
	Related Work
	Understanding the Effect of Splitting a Dynamic Graph Based on Time
	Background: Continuous-Time Dynamic Graphs
	The Birth and Death of Nodes and Edges
	The Birth–Death Diagram
	The Surprise Index

	Towards More Targeted Negative Sampling Strategies for Dynamic Link Prediction
	Background on Dynamic Link Prediction
	A Taxonomy of Negative Samples

	Experimental Setup
	Datasets
	Methods
	Metrics

	Results
	How Do Performances of DLP Algorithms Vary over Different NS Strategies?
	Which Competing Negative Sampling Strategy Misleads the Model More over Time?

	Guidelines for Practitioners
	Conclusions
	Appendix A
	Model Architectures and Hyperparameters Used in the Experiments
	References

