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Abstract: Drought has emerged as a major challenge to global food and water security, and is
particularly pronounced for Algeria, which frequently grapples with water shortages. This paper
sought to monitor and assess the temporal and spatial distribution of drought severity across northern
Algeria (excluding the Sahara) during the growing season from 2011 to 2022, while exploring the
relationship between the normalized difference vegetation index (NDVI) anomaly and climate
variables (rainfall and temperature). Temporal NDVI data from the Terra moderate resolution
imaging spectroradiometer (MODIS) satellite covering the period 2000–2022 and climate data from
the European Reanalysis 5th Generation (ERA5) datasets collected during the period 1990–2022
were used. The results showed that a considerable portion of northern Algeria has suffered from
droughts of varying degrees of severity during the study period. The years 2022, 2021, 2016, and
2018 were the hardest hit, with 76%, 71%, 66%, and 60% of the area, respectively, experiencing
drought conditions. While the relationship between the NDVI anomaly and the climatic factors
showed variability across the different years, the steady decrease in vegetation health indicated by
the NDVI anomaly corroborates the observed increase in drought intensity during the study period.
We conclude that the MODIS-NDVI product offers a cost-efficient approach to monitor drought
in data-scarce regions like Algeria, presenting a viable alternative to conventional climate-based
drought indices, while serving as an initial step towards formulating drought mitigation plans.

Keywords: drought; MODIS-NDVI; NDVI anomaly; remote sensing

1. Introduction

Water insecurity is a growing global concern, driven by factors such as climate change,
population growth, and the demands of agriculture, energy, and industry [1–5]. Among var-
ious natural disasters, drought stands out as one of the most costly and widespread [3,4,6–8],
exacerbating water scarcity and posing significant challenges. Drought, characterized by
prolonged periods of below-normal precipitation, has far-reaching impacts on the envi-
ronment, society, and economy [9]. Consequently, drought has attracted the attention of
many scientists from a broad range of disciplines, such as environmental science, ecology,
hydrology, meteorology, geology, and agriculture [10,11]. Drought occurs in all climatic
regions, including humid, sub-humid, semi-arid, and arid climates [9,12,13], affecting
both developed and developing societies [14]. Already, in developing continents such as
Africa, which are largely dependent on agriculture, drought has had severe consequences,
producing starvation and degradation [15–17].
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The Mediterranean region, particularly the northern part of the African continent, is
susceptible to drought conditions, primarily attributed to its pronounced climate change
occurring at a rate surpassing that of the global average [18]. Several climate studies have
shown that drought has affected most Mediterranean countries [19–23], including Algeria,
which is the largest country in the Mediterranean region and Africa. Algeria is renowned
for its long-term droughts, which have caused water scarcity and harmed the natural
environment and human life in many parts of the country [6,7,24–30]. In recent decades,
Algeria has experienced two significant drought episodes. The first occurred from 1943
to 1948, followed by a subsequent onset beginning in 1980. Notably, during the 1980s and
1990s, the central and western regions of Algeria faced a pronounced deficiency in rainfall,
estimated at approximately 30%, while the eastern region also encountered a deficit of
around 30% [31].

As the early detection of drought is critical for proactive decision making and prepara-
tion [32], many indices have been developed to monitor and quantify drought, such as the
Palmer drought severity index (PDSI) [33], the standardized precipitation evapotranspira-
tion index (SPEI) [34], and the standardized precipitation index (SPI) [35]. Although these
indices are widely used around the world [36–43], they are based on meteorological data,
such as precipitation and temperature, that may not be available promptly [44]. Further-
more, meteorological observations often have different record lengths and variable data
quality [32,45], making it challenging to conduct consistent drought analysis [46].

Remote sensing data have been frequently used in recent years to measure drought
at a minimal cost [44,47–50], mainly in areas where meteorological station measurements
are unavailable [51]. Many drought indicators can be derived from remotely sensed data,
such as the normalized difference vegetation index (NDVI), the vegetation condition index
(VCI), the temperature condition index (TCI), and the vegetation health index (VHI), which
have been used for drought detection and monitoring around the world [38,42,43,52–55].
Drought-prone regions can be identified using these vegetation indices, which assume
that dryness reduces the photosynthetic capacity of terrestrial plants during the growing
season [53–56]. Among these drought indices, the NDVI is widely used because it reflects
the health of the vegetation by measuring factors such as the leaf area index (LAI) and
net primary productivity [57,58]. However, NDVI reflectance can be negatively influenced
by soil moisture and surface conditions, which are not easy to eliminate. Additionally,
due to the significant time lag associated with the NDVI, rainfall, and temperature, the
NDVI anomaly may be considered a more reliable drought metric than the NDVI [59–61].
It represents the difference between the average NDVI for a specific period in a given year
and the corresponding average NDVI for the same period across multiple years [48,60,62].
Although remote-sensing-derived drought indices like the NDVI anomaly are commonly
used for drought assessment [44,63,64], there has not been any research employing this
method specifically for drought monitoring in Algeria. In general, prior drought studies in
Algeria have mainly employed either the PDSI, the SPEI, or the SPI, focusing mainly on the
north-western part of the country [65–67] or on individual watersheds [68–72]. Only one
recent study [73] has delved into drought patterns and their effects on vegetation across
North and West Africa between 2002 and 2018. However, this study lacked a focused
analysis of Algeria, particularly since 2011, leaving a gap in our understanding of the
specific geographical and temporal patterns of drought in northern Algeria. Recently, [74]
assessed and characterized drought in northern Algeria, shedding light on the drought
patterns within the region. This study, however, relied on climatic drought indices, with
limited observations until 2015. Consequently, a study reflecting the more recent evolution
of the drought patterns in northern Algeria is required.

Previous studies have analyzed the spatiotemporal patterns of drought in the region
using remote sensing data, but these assessments have been limited to smaller geographic
areas, focusing on specific parts of the region [75]. This limitation persists despite the
capability of remote sensing to cover larger areas, because such drought assessments
combine remote sensing with traditional climatic indices that require reliable rainfall data.
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Unfortunately, the coverage of operational weather stations across most African countries,
including Algeria, is sparse, with significant spatial gaps, and the data from individual
stations are often incomplete [76]. For these reasons, and recognizing the need for detailed
insights, especially across broader geographic regions like Algeria, this study aimed to
examine the extent and severity of drought in northern Algeria from 2011 to 2022. The
main objectives were to understand the drought’s variation during the growing seasons
over these years and to analyze the annual relationship between the vegetation (measured
using the NDVI) and the climate over the twelve-year period. To the best of our knowledge,
no previous study has covered such a large-scale assessment of the drought conditions in
northern Algeria during the studied period using similar methodologies.

2. Materials and Methods
2.1. Study Area

Algeria, the largest country in Africa, spans an area of approximately 2,381,741 km².
Situated in the northern section of the continent, the country stretches between 28.0339◦ N
and 1.6596◦ E (Figure 1). Geographically, the country can be divided into two distinct
regions, namely the northern and southern regions. The north, lying between the Mediter-
ranean and the Sahara, boasts mountains, valleys, and plateaus. Here, the Tell Atlas and
the Saharan Atlas, which are two significant mountain ranges, run east to west, separated
by the High Plateau. The vast majority (about 80%) of Algeria is in the southern region,
which is predominantly desert with no agricultural activity. Our study, however, focused
on the northern region of Algeria, encompassing 375,815 km² or 15.77% of the country, and
home to 40 provinces.
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Figure 1. Location of the study area in northern Algeria (a). Land cover map of the northern part of 
Algeria and the location of weather stations falling within the study area (b). 

2.2. Data Collection and Processing 
The satellite data utilized in this study consisted of two scenes of moderate resolution 

imaging spectroradiometer (MODIS) images covering the study area. These images were 
obtained free of charge from the National Aeronautics and Space Administration (NASA) 
through their Earthdata platform (https://urs.earthdata.nasa.gov/; accessed on 20 January 
2023). More specifically, we obtained the MOD13Q1 v061 NDVI products with a 16-day 
temporal resolution and a spatial resolution of 250 m. The MODIS instrument is integral to 
the Earth Observing System (EOS), deployed on both the Terra and Aqua satellites. 
Launched in December 1999 and May 2002, respectively, these satellites serve as the host 
platforms for MODIS, a sophisticated 36-band imaging radiometer. Operating within a spa-
tial resolution spectrum ranging from 250 m to 1 km, MODIS assumes a pivotal role in di-
verse scientific domains, including agriculture, forestry, meteorology, and urban studies. Its 
extensive deployment underscores its global significance in advancing research and appli-
cations across these multidisciplinary fields; in addition, these MODIS-NDVI data were ac-
quired for each year’s growing season (November–June), spanning over 23 years from 2000 
to 2022. Additionally, monthly rainfall and temperature data from 1990 to 2022 were ac-
quired for the research region. We used the ERA5 “European Reanalysis 5th Generation” 
dataset, produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) 
[79]. Reanalyses are the result of decades of research into data assimilation methodologies, 
dynamical Earth system models, and investment in Earth observation. These products em-
ploy data assimilation to optimally combine various surface and satellite observations with 
a dynamical model, generating a self-consistent dataset that includes all essential climate 
variables from January 1940 to the present [79,80]. The ERA5 dataset offers insights into both 
observational uncertainty (integrated into the data assimilation framework) and stochastic 
uncertainty from the dynamical models. Furthermore, the ERA5 data were acquired in a 

Figure 1. Location of the study area in northern Algeria (a). Land cover map of the northern part of
Algeria and the location of weather stations falling within the study area (b).
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The elevation of the study area varies from −36 m to 2301 m. This area exhibits three
distinct climate zones, progressing from north to south, as identified in [77,78], as follows:
(i) a Mediterranean climate marked by dry summers and mild, rainy winters; (ii) a sub-
humid climate with relatively cool winters and occasional frost risks; and (iii) a semi-arid
climate featuring cool winters and notably warm summers, with temperatures averaging
27 ◦C during the peak months, such as July. Rainfall fluctuates considerably, with annual
averages ranging from 100 to 800 mm. Notably, there are considerable variations in rainfall
distribution between the northern and southern parts and between the eastern and western
zones of the study area [27].

2.2. Data Collection and Processing

The satellite data utilized in this study consisted of two scenes of moderate resolution
imaging spectroradiometer (MODIS) images covering the study area. These images were
obtained free of charge from the National Aeronautics and Space Administration (NASA)
through their Earthdata platform (https://urs.earthdata.nasa.gov/; accessed on 20 January
2023). More specifically, we obtained the MOD13Q1 v061 NDVI products with a 16-day
temporal resolution and a spatial resolution of 250 m. The MODIS instrument is integral
to the Earth Observing System (EOS), deployed on both the Terra and Aqua satellites.
Launched in December 1999 and May 2002, respectively, these satellites serve as the host
platforms for MODIS, a sophisticated 36-band imaging radiometer. Operating within a
spatial resolution spectrum ranging from 250 m to 1 km, MODIS assumes a pivotal role in
diverse scientific domains, including agriculture, forestry, meteorology, and urban studies.
Its extensive deployment underscores its global significance in advancing research and
applications across these multidisciplinary fields; in addition, these MODIS-NDVI data
were acquired for each year’s growing season (November–June), spanning over 23 years
from 2000 to 2022. Additionally, monthly rainfall and temperature data from 1990 to 2022
were acquired for the research region. We used the ERA5 “European Reanalysis 5th Gener-
ation” dataset, produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [79]. Reanalyses are the result of decades of research into data assimilation
methodologies, dynamical Earth system models, and investment in Earth observation.
These products employ data assimilation to optimally combine various surface and satellite
observations with a dynamical model, generating a self-consistent dataset that includes
all essential climate variables from January 1940 to the present [79,80]. The ERA5 dataset
offers insights into both observational uncertainty (integrated into the data assimilation
framework) and stochastic uncertainty from the dynamical models. Furthermore, the ERA5
data were acquired in a gridded format, with a resolution of 0.25 degrees [79]. We utilized
the KrigR package [81] to obtain ERA5 climate reanalysis data customized to our research
area and time range. Furthermore, we used the Kriging interpolation from the KrigR
package to perform the spatial downscaling of climatic variables to a resolution of 250 m.

2.3. Calculation of NDVI, Rainfall, and Temperature Anomalies

Through quantifying the vegetation density and chlorophyll content, the NDVI serves
as a proxy for overall vegetation health [82], enabling a direct estimation of drought
conditions. One way to determine notable drought indicators is the NDVI anomaly, which,
in our context, is the difference between the long-term mean NDVI for a specific season
and the mean NDVI for that same season across a different number of years. We employed
a straightforward pixel-based method to determine NDVI anomalies where the long-term
mean NDVI values were compared to the NDVI values in a specific year [83]. A positive
NDVI variation indicates normal conditions, whereas negative values suggest severe
drought conditions [44,84]

https://urs.earthdata.nasa.gov/
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Before determining the NDVI anomaly, we took two preliminary steps. Firstly, we
determined the mean NDVI during the growing season (from November to June) for each
year, using the following formula (Equation (1)):

NDVImeani = (NDVI 1 + NDVI2 + NDVIn)/n (1)

where NDVImean = mean NDVI value of the growing season in each i year; NDVI1 = first
NDVI month (November); and NDVIn = last NDVI month (June) in the growing season of
i year. Secondly, we computed the long-term mean NDVI based on the following formula
(Equation (2)):

NDVI = ∑n
i=1

NDVImeani
n

(2)

where NDVI = long-term NDVI mean; and n = number of years considered for calculat-
ing the long-term mean, equal to the first 11 years (2000–2010) of the entire study period
(2000–2022). We then calculated the NDVI anomaly for each growing season of the remain-
ing twelve years (2011–2022), using the following formula (Equation (3)):

NDVIanomalyi =
NDVImeani − NDVI

NDVI
× 100 (3)

where NDVIanomalyi = NDVI anomaly for the growing season of the i year.
In addition to NDVI anomalies, we also determined anomalies for rainfall and temper-

ature (Table 1). A 30-year long-term average spanning from 1990 to 2020 was calculated
for these climatic variables, following the recommendation of the World Meteorological
Organization (WMO) [85]. To ensure uniformity, rainfall and temperature anomalies were
computed for the identical time frame (2011–2022) as that of the NDVI anomaly.

Table 1. Rainfall and temperature anomaly calculation, where EN refers to equation numbers.

Climate Variable Equation EN Description

Rainfall R f meani = (R f 1 + R f 2 + R f n)/n (4)

R f mean = mean rainfall value of the growing season
in each i year;
R f 1= first month of the growing season;
R f n = last month of the growing season in the i year.

R f = ∑n
i=1

R f meani
n (5)

R f = long-term mean rainfall;
n = number of years considered for calculating the
long-term mean, equal to 30 years (1990–2020).

R f anomalyi = R f meani − R f (6)
R f anomalyi = rainfall anomaly for the growing season
of the i year.

Temperature Temmeani = (Tem 1 + Tem2 + Temn)/n (7)

Temmean = mean temperature value of the growing
season in each i year;
Tem1= the first month of the growing season;
Temn = last month of the growing season in the i
year.

Tem = ∑n
i=1

Temmeani
n (8)

Tem = long-term mean temperature;
n = number of years considered for calculating the
long-term mean, equal to 30 years (1990–2020).

Temanomalyi = Temmeani − Tem (9) Temanomalyi = temperature anomaly for the growing
season of the i year.

2.4. Drought Severity Classification

The drought severity levels were determined by reclassifying the map of the NDVI
anomaly into the following five categories: non-drought, slight drought, moderate drought,
severe drought, and very severe drought (Table 2). This approach is widely recognized
and has been used in drought severity assessments worldwide [44,84,86,87]. To analyze the
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spatiotemporal patterns and variability, we examined the percentages of each drought level
in a specific year within the study area. We used the ggplot2 package [88] in R software to
graphically show the proportion of the area affected by drought in each year.

Table 2. The drought classification scheme used in this study.

Drought
Class

Non-
Drought

Slight
Drought

Moderate
Drought

Severe
Drought

Very Severe
Drought

NDVI
anomaly (%) Above 0 0 to −10 −10 to −25 −25 to −50 Below −50

2.5. Statistical Analysis of the Relationship between NDVI and Climate Anomalies

We employed ArcMap to generate a random sample of 988 points from which we
retrieved the NDVI, rainfall, and temperature anomaly pixel values for each year. Con-
sidering the vast geographic extent of the study area, with over 6.9 million pixels, we
specifically chose 988 pixels to facilitate clear and simple statistical interpretation. The
Spearman correlation coefficient was then utilized to examine the relationship between
the NDVI and climatic factors [44,86,87]. Unlike the Pearson correlation, the Spearman
correlation does not assume a linear relationship between variables or a normal distribution
of data [89,90]. For this reason, the Spearman correlation was chosen for this study because
of the non-linear relationship between the NDVI and climatic variables. Based on the corre-
lation values, the relationship between the NDVI and the climatic factors was classified
into different levels, ranging from a negligible to a very strong correlation (Table 3). We
used the R software [91] for computing the Spearman correlation coefficients and Microsoft
Excel for plotting the NDVI and climate anomalies graph. To produce the NDVI–climate
anomalies graph, we calculated the average anomaly from 988 pixels for each year.

Table 3. Correlation coefficient values and their associated interpretations [92].

Correlation Coefficient (+/−) Interpretation

0.00–0.10 Negligible correlation
0.10–0.39 Weak correlation
0.40–0.69 Moderate correlation
0.70–0.89 Strong correlation
0.90–1.00 Very strong correlation

3. Results
3.1. Spatial and Temporal Changes in Seasonal NDVI from 2011 to 2022

The northern section of the region, notably the coastal provinces of Skikda, Tizi-Ouzou,
Jijel, Annaba, El Tarf, Béjaa, Tipaza, and Algiers, had higher NDVI values than the southern
section, which encompasses a large percentage of the study area (Figure 2). The year 2013
had the highest maximum NDVI value (0.95), and the maximum NDVI value for all of
the other years varied from 0.87 to 0.94. We also analyzed the distribution of NDVI values
from 2011 to 2022 against the long-term NDVI (2000–2010) (Figure 3). The boxplots were
consistently right-skewed, indicating the predominance of low NDVI pixel values. The
median NDVI values across all years consistently fell below 0.25. Most years demonstrated
a relatively stable NDVI value distribution, with notable exceptions in 2013, 2018, and 2022,
where the medians were higher than the long-term NDVI.
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3.2. Drought Severity Assessment

The results revealed substantial temporal variability in the occurrence of drought
throughout the study period (Figure 4). Among the years examined, 2012 and 2013 were
the least drought-affected years, with the highest percentages (>70%) of non-drought
conditions. On the contrary, the years 2016, 2021, and 2022 stood out as those most severely
impacted by drought in northern Algeria. In 2016, around 39.93% of the region experienced
slight drought, while 20.7% faced moderate drought conditions. A notable 5.79% of the
area was affected by severe drought, reflecting a significant decline in vegetation health
and increased water scarcity. Similarly, in 2021, the severity of drought escalated further,
with 11.06% of the region being affected by severe drought conditions. However, it was
in 2022 that the severity of drought reached a critical level, as only 23.92% of the region
was classified as non-drought, while a substantial 76.08% of the area experienced slight
drought to severe drought conditions, making it one of the most drought-affected years
during the study period.
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The western and central sections experienced more drought in 2011, while the eastern
and south-eastern regions were mainly affected by drought in 2013 and 2017 (Figure 5).
Similarly, in 2018, the entire southern part of the study area suffered from drought. During
2016, 2018, 2021, and 2022, the drought affected almost the entire study area, but with
varying degrees of severity.

3.3. Temporal Variations in NDVI, Rainfall, and Temperature Anomalies

Except for the years 2016, 2020, 2021, and 2022, all of the other years displayed positive
NDVI anomalies (Figure 6). Across the entire study duration, we noted three-year cycles of
variation in the NDVI anomalies. The first three years (2011–2013) experienced a consistent
rise in NDVI anomalies, peaking in 2013. This was followed by a decline from 2014 to 2016,
culminating in negative values by 2016. A resurgence in positive NDVI anomalies occurred
from 2017 to 2019, but this was again followed by a dip in 2020, hitting its lowest point in
2021. A generally consistent pattern between NDVI and rainfall anomalies was observed,
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except for the years 2014 and 2021, which showed a divergent pattern. On the other hand,
the pattern between temperature anomalies and NDVI anomalies was less predictable.

Environments 2024, 11, 95 9 of 18 
 

 

 
Figure 4. Percentage surface area of drought in northern Algeria from 2011 to 2022. 

 
Figure 5. The spatial distribution of drought in northern Algeria from 2011 to 2022. 

3.3. Temporal Variations in NDVI, Rainfall, and Temperature Anomalies 
Except for the years 2016, 2020, 2021, and 2022, all of the other years displayed posi-

tive NDVI anomalies (Figure 6). Across the entire study duration, we noted three-year 
cycles of variation in the NDVI anomalies. The first three years (2011–2013) experienced a 

Figure 5. The spatial distribution of drought in northern Algeria from 2011 to 2022.

Environments 2024, 11, 95 10 of 18 
 

 

consistent rise in NDVI anomalies, peaking in 2013. This was followed by a decline from 
2014 to 2016, culminating in negative values by 2016. A resurgence in positive NDVI 
anomalies occurred from 2017 to 2019, but this was again followed by a dip in 2020, hi ing 
its lowest point in 2021. A generally consistent pa ern between NDVI and rainfall anom-
alies was observed, except for the years 2014 and 2021, which showed a divergent pa ern. 
On the other hand, the pa ern between temperature anomalies and NDVI anomalies was 
less predictable. 

 
Figure 6. Seasonal variations in NDVI, rainfall, and temperature anomalies from 2011 to 2022. 

3.4. Correlation of NDVI Anomaly with Rainfall and Temperature Anomalies 
The Spearman correlation test was applied to quantify the strength and direction of 

the relationships between NDVI anomalies and rainfall and temperature anomalies. The 
findings indicated a statistically significant correlation (p < 0.05) between NDVI anomalies 
and climatic anomalies, although with varying degrees of strength across the different 
years (Figure 7). Specifically, the correlation between NDVI and rainfall was weak and 
predominantly positive, fluctuating between values of 0.10 and 0.37 over the study period. 
On the contrary, the correlation between NDVI and temperature anomalies was consist-
ently negative throughout the years, with correlation coefficients typically ranging from 
negligible (rs = −0.01) to moderate (rs = 0.47). 

Figure 6. Seasonal variations in NDVI, rainfall, and temperature anomalies from 2011 to 2022.



Environments 2024, 11, 95 10 of 17

3.4. Correlation of NDVI Anomaly with Rainfall and Temperature Anomalies

The Spearman correlation test was applied to quantify the strength and direction of
the relationships between NDVI anomalies and rainfall and temperature anomalies. The
findings indicated a statistically significant correlation (p < 0.05) between NDVI anomalies
and climatic anomalies, although with varying degrees of strength across the different
years (Figure 7). Specifically, the correlation between NDVI and rainfall was weak and
predominantly positive, fluctuating between values of 0.10 and 0.37 over the study period.
On the contrary, the correlation between NDVI and temperature anomalies was consis-
tently negative throughout the years, with correlation coefficients typically ranging from
negligible (rs = −0.01) to moderate (rs = 0.47).
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4. Discussion
4.1. Spatial and Temporal Patterns of Drought in Algeria during the Period 2011–2022

Our study revealed variable spatial and temporal patterns of drought during the
study period. Despite fluctuations from year to year, there was an apparent pattern of
increasing drought, with nearly 40% of the region experiencing overall drying conditions
between 2011 and 2022, while certain areas did not show any obvious wetting pattern. The
years 2012 and 2013 were the least drought-affected years, whereas 2016, 2021, and 2022
experienced the harshest drought conditions, affecting large areas with varying degrees
of severity. These observations are in line with previous studies conducted in Algeria.
For instance, [18] notably highlighted 2021 as part of a sustained dry spell in the country
from 2012 to 2021. Similarly, [93] also classified 2020 as a distinctively dry year for the
North African region, including Algeria. During these dry years, the median NDVI values
consistently fell below 0.25, indicating widespread vegetation stress in the study area.
While various parts of the region were affected, the southern section experienced the
most significant impact, which is expected given the significant desertification in that area.
However, even the northern coastal areas, which are usually vegetated, suffered from
drought during extreme years like 2016. [73] corroborated our findings by identifying 2016
as a drought-prone year for Algeria. Interestingly, they also indicated that 2014 and 2015
were normal years, which is consistent with our results, showing these years as relatively
minimally impacted by drought. This observation is further supported by [94], who also
found no indications of drought characteristics in 2015. Such spatiotemporal patterns of
drought are likely influenced by various factors, including climate variables, particularly
rainfall and temperature, which are crucial for vegetation growth [95,96]. Consequently,
we also investigated the relationship between vegetation and climate by utilizing the NDVI
anomaly as an indicator of vegetation dynamics.

4.2. Relationship between NDVI and Climatic Factors

While rainfall and temperature are universally accepted as major elements influencing
vegetation dynamics, differing conclusions have been drawn about the relative importance
of these climatic variables in determining vegetation dynamics. For example, higher plant
production is directly connected to high temperatures in the high-latitude region, while
rainfall has a minimal impact [97]. Other studies, however, have found that vegetation
productivity patterns were mainly driven by high rainfall [98–100]. In our study, while
there is evidence to suggest the influence of rainfall on vegetation dynamics, such as the
observed triennial fluctuations in the NDVI, the strength of this relationship considerably
varied throughout the study period.

Specifically, our study identified a negligibly to moderately positive correlation be-
tween the NDVI anomaly and the rainfall anomaly, with correlation coefficients varying
from rs = 0.10 to 0.37, which aligns with previous research [24,100–103]. For example, [44]
found a similar correlation coefficient range of 0.22 to 0.46. Similarly, [104] observed corre-
lation coefficients ranging from 0.06 to 0.29, indicating a negligible to weak relationship
between the NDVI and rainfall. Supported by these studies, our findings suggest a com-
plex relationship between vegetation response and climatic factors. Vegetation health, as
depicted by the NDVI, typically improves with increased rainfall, although this relation-
ship varied from year to year. This variability was particularly evident in the correlation
coefficient values for different years, indicating differing strengths of correlation between
the NDVI and rainfall in different years.

We also observed that the correlation between the NDVI anomaly and the temperature
anomaly was negative, mostly ranging from negligible and moderate correlations, implying
that, during our study period, the vegetation health had a limited or barely noticeable
correlation with temperature. Similarly, ref. [44] showed that temperature had a lesser
impact on the NDVI anomaly compared to rainfall. However, other studies have shown
that high temperatures inhibit vegetation growth, leading to a strong correlation between
temperature and NDVI anomalies [105,106]. Given that northern Algeria covers a vast area,
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the varying strengths of correlation observed between the NDVI and climate anomalies in
different years are likely due to the spatial distribution of rainfall and temperature across
the region, which can vary considerably. According to [25], rainfall variability tends to
increase with an increase in longitude and a decrease in latitude. These disparities can
lead to inconsistencies in the impact of rainfall and temperature on vegetation growth, as
captured by NDVI.

4.3. Limitations and Future Research Opportunities

Our study underscores the complex interplay between climate conditions and vegeta-
tion dynamics in northern Algeria, an area known for its erratic weather patterns in terms of
rainfall and temperature [25]. However, besides climate, other environmental factors, such
as soil moisture, evapotranspiration rates, and local ecological dynamics, potentially play a
crucial role in understanding the drought patterns in the region [107]. Consequently, there
are opportunities for further investigation to explore the impacts of these environmental
factors on present and future drought dynamics, as well as their correlation with the NDVI
in northern Algeria.

Our analysis was conducted on a relatively shorter timescale, namely the annual
timescale. As a result, we could not perform meaningful statistical tests for trends at such a
short timescale. At this scale, the climatic variables generally exhibited weak correlations
with the NDVI, albeit varying from year to year. More research is necessary to delve deeper
into the relationship between the NDVI and climatic factors, examining it across different
time scales, including daily and monthly scales [25,99,103].

This study has revealed complex and non-linear relationships between the NDVI
and the climatic variables across most years. While the Spearman correlation was chosen
over the Pearson correlation, due to its non-parametric nature, it too has limitations in
capturing non-linear relationships [108]. Specifically, it relies on a monotonic relationship,
albeit not strictly linear like the Pearson correlation [109]. Despite its limited ability to
detect non-linear patterns, the Spearman correlation was still applicable in some years
where a monotonic relationship was evident, with climate variables either positively or
negatively changing with NDVI variations. Future investigations should explore alternative
correlation methods, such as Kendall’s tau [110] and distance correlation [111], which can
capture non-linear relationships. These methods were not employed in this study due to
their computational intensity, particularly with large datasets [109].

5. Conclusions

This study assessed the spatial and temporal patterns of drought and investigated the
relationship between the growing season’s NDVI anomaly and climate factors in northern
Algeria from 2011 to 2022. The results have revealed that, in 2012 and 2013, northern Algeria
experienced the least impact from drought, with over 70% of the study area experiencing
non-drought conditions. Conversely, the years 2016, 2021, and 2022 were the most adversely
affected by drought in the region. Throughout the study period, we observed recurring
triennial fluctuations in the NDVI anomalies. The relationship between the NDVI anomaly
and the climate factors varied across the years and was generally not strong. Therefore,
we recommend further studies focusing on the link between the NDVI and climate factors,
particularly over various time frames, such as daily and monthly periods. Overall, the
MODIS-NDVI product provides an economically viable method for drought monitoring
in data-limited areas such as Algeria, offering a potential alternative to climate-centric
drought indices, which largely rely on sparse local rainfall stations.
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