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Simple Summary: Lines of White Leghorn chickens divergently selected for high or low antibody
response to sheep red blood cells (SRBC) have undergone selection for 50 generations. These lines
have allowed for insights into understanding the phenotypic and genotypic changes occurring under
phenotypic selection for this single trait. When collecting organ samples from 18-day embryos of
generation 48, a difference was seen in the size of the spleen. This observation led to the question of
whether the growth of organs associated with immunity had changed after almost 50 generations of
selection. Body weights and weights of immune organs representing both primary and secondary
immune systems were taken at nine time points. The results showed that divergent selection for
the response to SRBC and relaxation of selection resulted in differences in spleen and bursa weights
during the later stages of embryonic development and early post-hatch.

Abstract: Long-term divergent selection from a common founder population for a single
trait—antibody response to sheep erythrocytes 5 days post-injection—has resulted in two distinct
lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)-
and low (LAS)-antibody selected lines. Subpopulations—high (HAR)- and low (LAR)-antibody
relaxed—were developed from generation 24 of the selected lines to relax selection. The objective
of the current experiment was to determine if this long-term selection and relaxation of selection
impacted the growth of two organs important to chicken immunity: the spleen and the bursa of
Fabricius. Spleens and bursae were obtained from ten chickens per line at nine timepoints (E18, D0,
D6, D13, D20, D35, D49, D63, and D91) throughout their rapid growth phase and presented as a
percent of body weight. Significance was set at p ≤ 0.05. For the spleen, all lines consistently increased
in size relative to body weight to D49, followed by a consistent decline. All lines had a similar growth
pattern, but HAS spleens grew faster than LAS spleens. For the bursa, LAS was smaller than the
other three lines as an embryo and also smaller than HAS through D63. In the selected lines, bursa
weight peaked at D35, whereas the relaxed lines peaked at D49. By D91, there was no difference
between lines. Artificial and natural selection, represented by the long-term selected and relaxed
antibody lines, resulted in differences in the growth patterns and relative weights of the spleen and
bursa of Fabricius.

Keywords: chicken; SRBC; antibody; spleen; bursa of Fabricius

1. Introduction

Long-term divergent selection from a common founder population for a single
trait—antibody response to sheep erythrocytes 5 days post-injection—has resulted in two
distinct lines of White Leghorn chickens with a well-documented difference in antibody
titers. These lines were developed for “determining if general fitness could be studied
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by measuring the genetic variation in response to natural antigens” [1]. Sheep red blood
cells (SRBC) are a preferred T-cell-dependent antigen for eliciting a nonpathogenic immune
response [2]. At generation 49, the high (HAS)- and low (LAS)-antibody selected lines
differed by approximately seven-fold. Subpopulations (HAR and LAR) were developed
from generation 24 of the selected lines to relax selection, representing natural selection,
instead of the intense artificial selection for HAS and LAS. The HAS and LAS lines differ in
their reproductive traits, body weight, and feed efficiency as well as in their resistance to
infectious diseases, including Mycoplasma gallisepticum, Escherichia coli, Staphylococcus aureus,
Eimeria tenella, Newcastle Disease, and Marek’s Disease [3–6]. These genetic lines have also
proven to be a model for genotypic and phenotypic studies to further the understanding
of the intestinal microbiome, the MHC-B and MHC-Y complexes, the Usutu virus, and
inflammation response to Histomonas meleagridis [7–12]. However, the effect of selection for
high and low antibody response on growth and morphology, particularly of the immune
organs, has not been recently analyzed.

The spleen, thought to have originated from the mesoderm, is a secondary immune
organ, along with the cecal tonsils. The role of the avian spleen is somewhat different than
that of mammals, as it is the primary organ responsible for systemic immune response
because of the lack of lymph nodes in poultry. Chicken spleen size has historically been
thought to be a possible indicator of health or the presence of disease [13–16].

The bursa of Fabricius, the thymus, and bone marrow are primary immune organs in
chickens. Nicknamed the “cloacal thymus”, the bursa is a dorsal diverticulum located at
the junction of the cloaca and large intestine [17]. The bursa is unique to avian anatomy,
originating from ectodermal tissue in the developing embryo, and is primarily responsible
for B-cell maturation [15,17–19].

The spleen and bursa of Fabricius represent both primary and secondary immune
systems of poultry. In a preliminary study of generation 48 HAS and LAS chickens, there
appeared to be a size difference in the spleen and bursa of Fabricius between lines in 18
d embryos. To further investigate this observation, chickens from the next generation
(S49, selected; R26, relaxed) were used to measure their early growth and to obtain spleen
and bursa weights relative to body weight, the objective being to determine if long-term
selection for high and low antibody response to sheep red blood cells (SRBC) and the
relaxation of selection impacted the growth of these two organs, which are important to the
chicken immune system.

2. Materials and Methods
2.1. Animals and Husbandry

The HAS and LAS lines originated from the same founder population of Cornell Ran-
dombred White Leghorns and have undergone long-term divergent selection for antibody
response to SRBC [6]. Generation 49 HAS and LAS chicks from breeders 40–50 weeks
of age (hatch 2 of the main hatch for reproducing the lines), and their respective relaxed
lines were incubated under standard conditions. As this experiment aimed to study the
long-term impact of selection and the relaxation of selection on bursa and spleen weights
in the aforementioned lines of chickens, no SRBC challenge was given to these chicks.

At hatch, the chicks were wing-banded, vaccinated for Marek’s Disease, and placed,
by line, in adjacent floor pens with hot-air brooding and concrete floors covered with
pine wood shavings. Antibiotic-free feed in mash form (20% CP, 2685 kcal ME/kg) and
water were allowed ad libitum. The husbandry and diet were consistent throughout all
generations of selection.

At nine timepoints from embryonic day 18 (E18) through day 91 post-hatch (D0, D6,
D13, D20, D35, D49, D63, D91), ten chicks per line were weighed and then euthanized
by cervical dislocation. Sex was determined by gonadal inspection, and yolk sac, spleen,
and bursa weights were obtained. For E18, the yolk sac weight was added to the body
weight, because at subsequent sampling ages the yolk sac is drawn into the body cavity
and gradually absorbed.
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2.2. Statistical Analyses

Body weight means are presented, and because means and variances are correlated,
they were analyzed using the log10 transformation. The spleen and bursa are presented as
a percent of body weight, transformed into arc sines of the square root for normality before
analysis. All parameters were analyzed by ANOVA [20] to test the main fixed effects and
interactions of line, sex, and age at sampling. Significance was considered at p ≤ 0.05.

3. Results and Discussion
3.1. Antibody Response

The divergence of the lines selected for over 49 generations for high or low antibody
response to SRBC, as well as where selection was relaxed beginning at generation 24, are
shown in Figure 1 (for females). The variation within each line from year to year can
partially be explained by the fact that blood has been drawn from a different sheep from
the Virginia Tech flock each year. The relaxed lines, while following the same pattern as the
selected lines, do not go to the extremes, illustrating that perhaps natural selection brings
these lines toward their optimum. “But Natural Selection, as we shall hereafter see, is a
power incessantly ready for action, and is immeasurably superior to man’s feeble efforts,
as the works of Nature are to those of Art”—Charles Darwin [21]. The means and standard
deviations for 5-day post-hatch antibody titers of the hatch contemporaries of the chicks
used in this experiment were 13.5 ± 3.2, 12.3 ± 4.0, 3.0 ± 1.2, and 1.9 ± 1.1 for HAS, HAR,
LAR, and LAS, respectively. Thirty-eight generations prior, the values were 6.9 ± 0.3 and
3.8 ± 0.2 for HAS and LAS, with sexes pooled [22].
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Figure 1. Forty-nine generations of sheep red blood cell (SRBC) antibody titer means for female
high (HAS)- and low (LAS)-antibody selected and current high (HAR)- and low (LAR)-antibody
relaxed lines.

3.2. Body Weight

The mean male and female body weight growth curves of the chicks sampled are
shown in Figures 2 and 3, respectively. For males, body weights were not different at
E18, D13, or D63. During the initial period of rapid growth (D20 and D35), and again as
growth was beginning to slow (D91), LAR males were significantly heavier than the other
three lines. Females showed no body weight differences among lines during embryonic
development, at hatch, or during the rapid growth period. Natural selection and resource
allocation may play a role in allowing the LAR chicks to have a slight increase in growth.
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Figure 2. Means (grams) and standard errors for male body weight at each sampling day for high
(HAS)- and low (LAS)-antibody selected and high (HAR)- and low (LAR)-antibody relaxed lines.
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Figure 3. Means (grams) and standard errors for female body weight at each sampling day for high
(HAS)- and low (LAS)-antibody selected and high (HAR)- and low (LAR)-antibody relaxed lines.

3.3. Organ Weight—Body Weight Relationship

There were no significant three-way interactions for line, sex, and age at sampling.
However, because males grow at a faster rate to a heavier weight than females and there
are differences in weights between lines, one cannot fairly compare absolute organ weights.
Ubosi et al. [22] found no sexual dimorphism when adjusting for body weight. Therefore,
organ weights were analyzed and presented as a percent of body weight, with sexes pooled.

3.4. Spleen Weight, as a Percent of Body Weight

Spleen weights, as a percent of body weight, from E18 to D91 are presented in Table 1.
The HAS chicks consistently had greater spleen weights than their relaxed counterparts.
The spleens of all four lines had a similar growth pattern, and throughout the trial, both
HAS and HAR had larger spleens with respect to body weight than LAR and LAS, with
no consistent differences between the LAR and LAS. There was no consistent difference
between the two LA lines, but LAR did have larger spleens than LAS with respect to their
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body weight at D0, D20, and D91. The pattern of immune organ growth and development
appears to be a predictor of the functional capabilities of the avian immune system and its
responses to antigens and stressors throughout life [23]. At hatch and during the periods
just before and after the most rapid growth phases, perhaps natural selection becomes more
involved to facilitate the size and function of the spleen. However, to our knowledge, there
are no confirmations that a larger spleen, relative to body weight, supports an elevated
humoral immunological response to the antigenic properties of SRBC. When an earlier
generation of these lines of chickens was fed an aflatoxin, no consistent pattern existed
to explain the interaction between relative spleen weight and aflatoxin level [22]. It has
been reported that the immune system develops until approximately 34 days of age [15].
For the White Leghorns in the current study, the percent spleen weights among all lines
consistently increased until D49, representing the morphological peak time in post-hatch
development at 0.279, 0.188, 0.160, and 0.140 percent of body weight for HAS, HAR, LAR,
and LAS, respectively. Thereafter, the spleen did not show positive growth relative to
body weight.

Table 1. Means (grams) and standard errors for spleen weight, as a percent of body weight, by age
and line (sexes pooled).

Age HAS HAR LAR LAS

E18 0.035 ± 0.003 a 0.026 ± 0.002 b 0.017 ± 0.001 c 0.015 ± 0.001 c

D0 0.070 ± 0.004 a 0.055 ± 0.003 b 0.042 ± 0.002 c 0.030 ± 0.002 d

D6 0.105 ± 0.011 a 0.093 ± 0.010 a 0.053 ± 0.002 b 0.054 ± 0.003 b

D13 0.172 ± 0.017 a 0.138 ± 0.008 b 0.078 ± 0.005 c 0.062 ± 0.002 c

D20 0.214 ± 0.013 a 0.131 ± 0.010 b 0.095 ± 0.007 c 0.062 ± 0.004 d

D35 0.266 ± 0.013 a 0.160 ± 0.011 b 0.104 ± 0.005 c 0.099 ± 0.009 c

D49 0.279 ± 0.014 a 0.188 ± 0.010 b 0.160 ± 0.009 c 0.140 ± 0.007 c

D63 0.236 ± 0.010 a 0.150 ± 0.011 b 0.110 ± 0.008 c 0.110 ± 0.008 c

D91 0.208 ± 0.011 a 0.148 ± 0.004 b 0.119 ± 0.009 c 0.096 ± 0.006 d

HAS = high antibody selected; HAR = high antibody relaxed; LAR = low antibody relaxed; LAS = low antibody
selected; a,b,c,d Means within a row with uncommon superscripts differ significantly (p ≤ 0.05), according to
Duncan’s Multiple Range Test; n = 10/line/day.

Relative spleen weights followed the same pattern as the SRBC antibody titers for
the four lines—HAS being the largest and LAS being the smallest—with the relaxed
lines intermediate yet still significantly different from the other lines. These spleen size
differences suggest that the entire long-term single-trait selection experiment has altered
the mechanisms used by the lines to organize their resources. Nolin et al. [24] observed
differences in the intestinal gene expression of these lines, which also were not injected
with SRBC. The HAS line may be prepared to respond to an antibody exposure, while the
biological resources of LAS appear to have been redirected toward other physiological
fitness traits [23]. Natural selection makes the relaxed lines intermediate, and thus a more
balanced approach is required for the allocation of resources as the chicken grows and
responds to biological and environmental factors.

3.5. Bursa of Fabricius Weight, as a Percent of Body Weight

Important to chicken immunity, the bursa of Fabricius grows rapidly for the first
56–112 days post-hatch, at which time involution begins [18,25,26]. Bursae weights, as a
percent of body weight, are presented in Table 2. In the later part of embryonic development,
LAS bursae were smaller than in the other lines. By D0, the HAS mean relative bursa
weight was significantly greater than LAS, with the relaxed lines being intermediate and
not different from either selected line. At D6, the LAS bursa weight, as a percentage of
body weight, was again less than the other lines. Throughout the rapid growth period,
LAS weight fluctuated between being significantly different and not. The selected-line
bursae weights, as a percent of body weight, peaked at D35 (0.428 and 0.281%), and the
relaxed lines peaked a week later at 0.358 and 0.310%. By D91, well after the period of the
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most rapid bursal growth, there were no differences among the lines, with relative bursae
weights being 0.232, 0.221, 0.219, and 0.186% for HAS, HAR, LAR, and LAS, respectively.

Table 2. Means (grams) and standard errors for bursa of Fabricius weight, as a percent of body
weight, by age and line (sexes pooled).

Age HAS HAR LAR LAS

E18 0.052 ± 0.007 a 0.049 ± 0.003 a 0.051 ± 0.004 a 0.034 ± 0.003 b

D0 0.110 ± 0.009 a 0.092 ± 0.008 ab 0.102 ± 0.005 ab 0.083 ± 0.008 b

D6 0.184 ± 0.015 a 0.156 ± 0.008 a 0.164 ± 0.007 a 0.128 ± 0.011 b

D13 0.281 ± 0.026 a 0.274 ± 0.016 a 0.231 ± 0.011 ab 0.214 ± 0.020 b

D20 0.361 ± 0.021 a 0.286 ± 0.036 b 0.285 ± 0.019 b 0.260 ± 0.012 b

D35 0.428 ± 0.022 a 0.338 ± 0.016 b 0.306 ± 0.021 bc 0.281 ± 0.014 c

D49 0.341 ± 0.016 ab 0.358 ± 0.013 a 0.310 ± 0.013 b 0.261 ± 0.018 c

D63 0.321 ± 0.015 a 0.288 ± 0.014 ab 0.268 ± 0.011 bc 0.247 ± 0.012 c

D91 0.232 ± 0.026 0.221 ± 0.017 0.219 ± 0.008 0.186 ± 0.011
HAS = high antibody selected; HAR = high antibody relaxed; LAR = low antibody relaxed; LAS = low antibody
selected; a,b,c Means within a row with uncommon superscripts differ significantly (p ≤ 0.05), according to
Duncan’s Multiple Range Test. n = 10/line/day.

In a White Leghorn population different from that in the current experiment, bursal
growth exceeded the growth of the body only until D21, peaking at 0.52 and 0.50% for males
and females, respectively, with a relative bursa weight of 0.14% for females at D49 [17,18].
Subsequently, Glick and Dreesen [26] reported that bursal regression, in two lines selected
for large or small bursae, began at 35–56 days of age. Ubosi et al. [22] reported that in a
previous generation of the current lines, LAS bursae were smaller than HAS bursae and
noted the reciprocal crosses of the two lines. Perhaps the continued presence of antigens
in the bursa delays involution [23]. Accordingly, it is also possible that selection for a
humoral response to SRBC in these lines of White Leghorns, naïve to this antigen, also
caused persistence in relative bursa weight.

The relationship between the size of the bursa and antibody titers is not yet clear.
With the growth patterns shown in the present study and in previous work, it appears
that the significant difference in bursa weight at hatch may be important to differences in
antibody production at older ages [25]. In theory, large bursae, because they have been
found to contain greater follicular development at hatch, should be more functional [27].
However, Yamamato and Glick [28] reported an increased antibody response to SRBC
in their line selected for small bursa size. Glick and Dreesen [26] found no difference in
antibody response to bovine serum albumin between chickens selected for large or small
bursae. Thus, weight alone does not determine bursal activity, but rather, what matters
is, as Glick described, “the presence of a minimal number of functional cells expressed as
lymphocytes within bursal follicles” [27].

3.6. The Interface

It appears that selection for high or low antibody titers to SRBC for 49 generations
resulted in changes in the weight of the spleen and bursa of Fabricius. There is an interface
between the primary and secondary systems; however, it does not appear to be dependent,
considering the observation that bursa size did not influence spleen size [25]. As these long-
term selected and relaxed lines of chickens approach sexual maturity, resource allocation
may be coming into play, with the body making the switch from focusing on the rapid
development of the immune system to one of growth and reproduction. This is evidenced
by LAS chickens typically having a heavier juvenile body weight, maturing at an earlier
age, and having a higher hen-day egg production and percent normal eggs than HAS
chickens [6,29]. It is probable that along with growth, the relationships between the spleen
and bursa of Fabricius and other systems in the body, such as the intestinal microbiota,
work to shape the immune response potential of the chicken [11,22]. These fundamental
data provide insight for future genomic and phenotypic immune response studies.
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4. Conclusions

Differences were observed in the relative weights of the spleen and bursa of Fabricius
during the period ranging from E18 to D91 in chickens divergently selected for 49 gen-
erations and when selection was relaxed for 26 generations. The developmental growth
patterns compared among lines and between organs over time were also different. Thus,
long-term artificial and natural selection for immune response to sheep erythrocytes, in
chickens from a common founder population, resulted in correlated responses in the rel-
ative growth of these two important chicken immune organs—the spleen and bursa of
Fabricius—during the critical periods of late embryogenesis and early life post-hatch.
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