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Abstract: A new approach for output feedback L1 adaptive control based on a proportional adaptation
law is presented. The effectiveness of this design is assessed in simulation and validated through
real-time testing on an airfoil pitch control wind tunnel experimental rig. Experimental evaluation of
the robustness of the controllers, assessed by introducing various disturbances into the control signals,
shows that the adaptive control has a better performance compared to PID control, particularly in
scenarios with reduced control effectiveness and time-varying disturbances. The experimental results
demonstrate the efficacy of the proposed method in practical applications.
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1. Introduction

Control systems have played a crucial role in aerospace, employing a variety of meth-
ods to enhance performance and ensure the resilience of aerospace systems [1]. Traditional
controllers were designed to handle small perturbations about a particular operating
point, and if there were uncertainties or large variations present, the system could become
unstable or perform poorly. As a result, the concept of adaptive control theory was intro-
duced, which involved modifying controller parameters in response to unknown plant
variations [2].

One commonly used approach is model reference adaptive control (MRAC); this
calculates the controller parameters in order to make an unknown dynamic system follow
the desired reference model behaviour [3]. There are two ways to put this into action:
direct and indirect [2]. In the indirect approach, the first step involves estimating the
parameters of the plant. Once these parameters are known, they are used to compute
the appropriate controller parameters. The direct approach, on the other hand, involves
directly determining the controller gains needed to achieve the desired system behaviour.

From MRAC systems analysis, it is straightforward to show that improving the re-
sponse to system variations can be achieved with high adaptation gains [4]. However, it
was identified that doing so would lead to a reduction in the time-delay margin and the
introduction of high-frequency oscillations in the control signal [4]. Furthermore, the ab-
sence of proper guidelines for determining an adequate adaptation rate means a greater
dependence on extensive simulations or trial-and-error methods. The challenge was to
select the right adaptation gain and ensure good performance bounds in transient regime.
Hence, L1 adaptive control architecture was developed to decouple the adaptation rate
from the system robustness [5]. L1 adaptive control includes a low-pass filter in the control
channel, thus limiting its bandwidth. Inclusion of the low-pass filter helps compensate for
the uncertainty within the bandwidth of control channel.

L1 adaptive control has been applied for various practical control systems—[6–13],
to cite a few. However, relatively few methods have been presented for output feedback
L1 adaptive control. The first approach employed a projection-based adaptive law [14],
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but was constrained to first-order reference systems. Another option, applied to some
aerospace problems, caters to non-strictly positive real reference systems [15], utilising a
piecewise-adaptive law to meet desired performance bounds. In [16], an L1 adaptive output
feedback controller was applied to manage disturbances at the system output, successfully
demonstrated in managed pressure drilling experiments. Similarly, Lee et al. [17] devised
an L1 adaptive output feedback controller for underactuated multi-input–multi-output
(MIMO) systems, augmenting an existing three-loop autopilot. This methodology found
application in temperature control, as detailed in [18], while Ma and Cao [19] showcased
its integration with model predictive control for multivariable nonlinear systems subject to
constraints. Additionally, Ma and Cao [20] explored the application of L1 adaptive output
feedback control to general partial differential equation (PDE) systems, and Zhou et al. [21]
addressed uncertain nonlinear systems with unmodelled dynamics and actuator faults
utilising a similar design strategy. The primary limitation of these approaches lies in their
reliance on transfer function formulation, which makes the interpretation of uncertainties
and reference models less intuitive compared to a state-space model formulation [22,23].
Indeed, state variables offer a more comprehensive reflection of the internal characteristics
of a system [21,24]. However, the main limitation of the approach presented in [22,24] is
that it is restricted to non-minimum phase systems with a relative degree of one.

Furthermore, although L1 adaptive control has been successfully demonstrated in
various applications in simulation environments, its practical implementations in real
aerospace systems are few.

However, several devices have been created for the purpose of demonstrating the
working of feedback control on experimental laboratory rigs. For example, Mansor et al. [25]
conducted an experiment to test the performance of a standard PID control algorithm using
the 3-DOF helicopter rig from [26]. Subramanian et al. [27] implemented model reference
adaptive control on a 2-DOF helicopter rig from [28] by incorporating a baseline LQR
controller. They were able to improve the stability characteristics by achieving faster
convergence. For fixed-wing aircraft, Villarreal-Valderrama et al. [29] built a wind tunnel
test bed to study aircraft pitch control. They tested a PID controller and a loop shaping
compensator on the test bed and found that both produced responses that were similar to
the theoretical response. This demonstrated the suitability of their test unit for teaching
or educational purposes. This is similar to the flight control demonstrator unit used in
this paper [30,31], which was designed to as a demonstrator of some of the principles of
automatic flight control. The equipment consists of a basic aerofoil in a wind tunnel, as
shown in the schematic in Figure 1. The aerofoil is a NACA 0012 and is free to pitch about
a horizontal axis located at the centre of gravity. It is controlled by an elevator that is
driven by a servomotor controlled by an Arduino board that receives the pivot axis angle
measurement from a potentiometer.

nozzle
test chamber

diffuser

air-flow
fan

wing
elevator

potentiometer

Arduino

servo-motor

Figure 1. Flight control demonstrator unit—aerofoil in a wind tunnel.
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This paper demonstrates the real-world applicability of an output feedback L1 adap-
tive control approach via its implementation on the automatic flight control demonstrator
unit. The approach is based on the proportional adaptation law that directly relates the
adaptation to the estimate error [32]. This method reduces computational processing time
by making the error bounds proportional to the adaptation gain, in contrast to the gradient
descent approach where the relation is with the square root of the adaptation gain. Ad-
ditionally, this architecture introduces phase margin in the estimation loop, enabling the
state predictor to incorporate first-order sensor dynamics. Although the initial approach
relies on complete state feedback, here it is extended to the output feedback control case.
Another advantage of using this approach is that it can be applied to non-semi-positive
real (SPR) systems, i.e., it relaxes the assumption of non-minimum phase systems with a
relative degree of one [22,24] while maintaining the state-space formulation of the systems.

The remainder of this paper is organised as follows. Section 2 describes the propor-
tional L1 adaptive controller design. In Section 3, the analysis of the L1 adaptive control is
presented. Simulation results are presented in Section 4. In Section 5, the implementation
of the designed controller for the airfoil system is discussed. Finally, some conclusions
are drawn.

2. Output Feedback Proportional L1 Adaptive Controller

In this section, the theory and design of the output feedback proportional adaptive
law are provided. The design mostly builds upon the original proportional adaptive law
introduced by Vanness et al. [32,33]. The significant change made is to the adaptation law
itself. As a result, the overall structure and analysis remain quite similar. The proofs have
been recreated, with the main difference appearing in how the estimation error is bounded.

Problem Formulation

The controlled system (plant) dynamics are represented in a state space form:

ẋ(t) = Amx(t) + Bmωu(t) + f (t, x(t))

y(t) = C⊤x(t), x(0) = x0,
(1)

where x(t) is the plant state vector, u(t) is the control signal, Bm is a known constant vector,
Am is a known Hurwitz matrix representing the desired model dynamics, ω is unknown
input gain and f is an unknown continuous nonlinear map representing uncertainties.
The control objective is to design an output feedback controller such that the output y(t)
tracks a bounded continuous reference input r(t).

Assumption 1. The given control design assumes that there exists positive constants, denoted as L
and B, such that

∥ f (t, x1)− f (t, x2)∥∞ ≤ L∥x1 − x2∥∞

∥ f (t, x)∥∞ ≤ L∥x∥∞ + B

where the numbers L and B can be arbitrarily large.

Assumption 2. The unknown input gain ω is bounded, i.e., 0 < ωl ≤ ω ≤ ωu.

Control Architecture

The proposed control design involves a state predictor, an adaptation law and a control
law, as shown in Figure 2.

State Predictor: Consider the following state predictor:

˙̂x(t) = Am x̂(t) + Bmω0u(t) + η̂(t), x̂(0) = x0

ŷ(t) = C⊤ x̂(t),
(2)
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where ω0 is the appropriate guess for unknown input gain ω, and overall uncertainties are
then combined together to form the vector of estimates η̂(t).

ẋ = Amx+Bmωu+ f(t, x)

y = C⊤x

˙̂x = Amx̂+Bmω0u+ η̂

ŷ = C⊤x̂

kg KD(s)

η̂ = −ΓWỹ

ω0u+ η̂1

η̂1 = C⊤(sI−Am)−1

C⊤(sI−Am)−1Bm
η̂

Control Law

Adaptation Law

Predictor

Plant

r y

ŷ

ỹ

u

−

−

Figure 2. L1 adaptive control architecture (proportional).

Adaptation Law: The proposed adaptation law extends the state feedback case [32,33]
to output feedback. The adaptation is determined by

η̂(t) = −ΓWỹ(t) (3)

where ỹ(t) = ŷ(t)− y(t) is the output prediction error, Γ is the adaptation gain and W is a
n × m arbitrary matrix such that WC⊤ ̸= 0.

Control Law: The control law is defined by

u(s) = −KD(s)(ω0u(s) + η̂1(s)− kgr(s)),

η̂1(s) = ϕ(s)η̂(s), ϕ(s) =
C⊤(sI− Am)−1

C⊤(sI− Am)−1Bm
,

(4)

where r(s) and η̂(s) are the frequency domain representations of r(t) and η̂(t), respectively;
kg = 1/(C⊤A−1

m Bm) is the feedforward gain meant to eliminate steady-state error; D(s) is
a strictly proper transfer function; and K is the feedback gain, which gives

C(s) =
ωkD(s)

1 + ωkD(s)

which is a strictly proper transfer function with a steady-state gain C(0) = 1. The above
described controller is subjected to the following L1-norm condition:

∥G(s)∥L1 L < 1

where

G(s) = (In − Hxm(s)C(s)H−1
m (s)C⊤)Hxum(s),

Hxum(s) = (sI− Am)
−1, Hxm(s) = (sI− Am)

−1Bm,

Hm(s) = C⊤(sI− Am)
−1Bm

3. Controller Analysis

In this section, the performance of the L1 adaptive controller is analysed. More
specifically, the following are shown:
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• The reference model resulting from perfect knowledge of the uncertainties and a
corresponding non-adaptive controller is stable, subject to some conditions involving
the filter.

• The prediction error, i.e., the error between the state of the plant and that of the state
predictors, is bounded.

• The difference between the state/input of the system and those of the reference system
is proportional to the prediction error.

3.1. Reference System Analysis

Consider the following closed-loop reference system:

ẋref(t) = Amxref(t) + Bmωuref(t) + ηref(t), xref(0) = x0

yref(t) = C⊤xref(t)

ηref(t) = f (t, xref(t))

uref(s) = −C(s)
ω

(ϕ(s)ηref(s)− kgr(s))

(5)

Lemma 1. If K and D(s) satisfy the L1-norm condition, then the closed-loop reference system is
BIBS stable with respect to reference r(t) and initial state vector x0.

Proof. It follows from (5) that

xref(s) = G(s)ηref(s) + Hxm(s)C(s)kgr(s) + xin(s) (6)

where xin(s) = (sI− Am)−1x0 is bounded since Am is Hurwitz. Then, it follows that

∥xrefτ∥L∞ ≤ ∥G(s)∥L1∥ηrefτ∥L∞ + ∥Hxm(s)C(s)kg∥L1∥r∥L∞ + ∥xin∥L∞ (7)

and using Assumption 1, the upper bound for ηref(t) is

∥ηrefτ∥L∞ ≤ L∥xrefτ∥L∞ + B

Substituting and solving for ∥xrefτ∥L∞ ,

∥xrefτ∥L∞ ≤
∥G(s)∥L1 B + ∥Hxm(s)C(s)kg∥L1∥r∥L∞ + ∥xin∥L∞

1 − ∥G(s)∥L1 L
(8)

Hence, ∥xrefτ∥L∞ is bounded if K and D(s) verify the L1-norm condition.

3.2. Estimation Error Analysis

The following lemma states that the bound of the state estimation error x̃(t) = x̂(t)−
x(t) is uniformly bounded.

Lemma 2. If the closed-loop system is stable, then the estimation error is uniformly bounded, and
its bound is defined by

∥x̃τ∥L∞ ≤ γ0 =
∆m

Γ∥WC∥

(
λmax(P)
λmin(P)

)3/2
(9)

where ∆m is defined below.

Proof. From (1) and (2), the prediction error can be written as

˙̃x(t) = Am x̃(t) + η̂(t)− η(t) + Bm(ω0 − ω)u(t)

ỹ(t) = C⊤ x̃(t), x̃(0) = x̃0 = 0
(10)
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Rewriting the prediction error dynamics in frequency domain, we have

C⊤ x̃(s) = Hm(s)η̃(s)

where
η̃(s) = (ω0 − ω)u(s) + η̂1(s)− η1(s)

and η1(s) = ϕ(s)η(s).
Now, we consider the Lyapunov function candidate

V(t) =
1

2Γ
x̃⊤(t)Px̃(t) (11)

where P is the solution of the Lyapunov equation

A⊤
m P + PAm = −Q

where Q = Q⊤ > 0 is an arbitrary positive definite matrix. Hence, including the adaptation
law, it can be written

V̇(t) =− 1
2Γ

x̃⊤(t)Qx̃(t)− x̃⊤(t)PWC⊤ x̃(t)

+
1
Γ

x̃⊤(t)P(Bm(ω0 − ω)u(t)− η(t))
(12)

Hence, an upper bound can be derived for t ∈ [0, τ]

V̇(t) ≤− λmin(P)∥WC∥∥x̃(t)∥2 +
1
Γ
∥x̃(t)∥λmax(P)∆m (13)

where ∆m is bounded as

∥Bm(ω0 − ω)u(t)− η(t)∥ ≤ ∆m = (ωu − ωl)∥Bm∥ρu +
√

n(Lρ + B) (14)

where ρ and ρu are the upper bounds for state and control variable, respectively. Hence,

V̇(t) < 0 if ∥x̃(t)∥ >
λmax(P)∆m

λmin(P)∥WC∥Γ
(15)

and since 1
2Γ λmin(P)∥x̃(t)∥2 ≤ V(t), we obtain

∥x̃τ∥L∞ ≤ ∆m

Γ∥WC∥

(
λmax(P)
λmin(P)

)3/2
(16)

3.3. Performance Bounds Analysis

In the following theorem, the performance bounds of L1 proportional adaptive law
are shown.

Theorem 1. Given the system (1), the reference system (5) and the L1 adaptive controller (2) to
(4), we have

∥xref − x∥L∞ ≤ γ1

∥uref − u∥L∞ ≤ γ2
(17)

where
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γ1 =

∥∥Hxm(s)C(s)H−1
m (s)C⊤∥∥

L1

1 − ∥G(s)∥L1 L
γ0

γ2 =

∥∥∥∥C(s)
ω

ϕ(s)
∥∥∥∥
L1

Lγ1 +

∥∥∥∥∥C(s)H−1
m (s)C⊤

ω

∥∥∥∥∥
L1

γ0

Proof. The control law (4) can be written as

u(s) = −C(s)
ω

(η1(s) + η̃(s)− kgr(s)) (18)

Converting the plant dynamics to frequency domain and substituting the given control law,
we obtain

x(s) = Hxm(s)C(s)kgr(s) + G(s)η(s)− Hxm(s)C(s)η̃(s) + xin(s) (19)

Taking the difference between (6) and (19),

xref(s)− x(s) = G(s)(ηref(s)− η(s)) + Hxm(s)C(s)η̃(s)

xref(s)− x(s) = G(s)(ηref(s)− η(s)) + Hxm(s)C(s)H−1
m (s)C⊤ x̃(s)

(20)

Then, the following bound holds for t ∈ [0, τ]:

∥xref(s)− x(s)∥L∞ ≤ ∥G(s)∥L1∥ηref(s)− η(s)∥L∞

+ ∥Hxm(s)C(s)H−1
m (s)C⊤∥L1∥x̃τ(s)∥L∞

(21)

From Assumption 1, it follows that

∥xref(s)− x(s)∥L∞ ≤ ∥G(s)∥L1 L∥xref(s)− x(s)∥L∞

+ ∥Hxm(s)C(s)H−1
m (s)C⊤∥L1 γ0

(22)

which leads to the bound

∥xref(s)− x(s)∥L∞ ≤
∥Hxm(s)C(s)H−1

m (s)C⊤∥L1

1 − ∥G(s)∥L1 L
γ0 (23)

Now, taking the difference between the reference system and plant control inputs,

uref(s)− u(s) = −C(s)
ω

(ϕ(s)ηref(s)− kgr(s))

+
C(s)

ω
(ϕ(s)η(s) + η̃(s)− kgr(s))

(24)

Hence,

uref(s)− u(s) = −C(s)
ω

ϕ(s)(ηref(s)− η(s)) +
C(s)

ω
η̃(s) (25)

and the following bound holds for t ∈ [0, τ]:

∥uref(s)− u(s)∥L∞ ≤
∥∥∥∥C(s)

ω
ϕ(s)

∥∥∥∥
L1

L∥xref(s)− x(s)∥L∞

+

∥∥∥∥∥C(s)H−1
m (s)C⊤

ω

∥∥∥∥∥
L1

∥x̃τ(s)∥L∞

(26)



Actuators 2024, 13, 172 8 of 18

which leads to the bound on the input,

∥uref(s)− u(s)∥L∞ ≤
∥∥∥∥C(s)

ω
ϕ(s)

∥∥∥∥
L1

Lγ1 +

∥∥∥∥∥C(s)H−1
m (s)C⊤

ω

∥∥∥∥∥
L1

γ0 (27)

4. Simulation Results

In this section, simulation results of the proposed output feedback proportional L1
adaptive controller are presented. The proportional L1 adaptive controller is compared with
both a PID controller and the piecewise adaptation output feedback controller presented
in [15]. The piecewise controller design is detailed in Appendix A.

The dynamics of the aerofoil can be represented by a second-order differential equation:

Iα̈(t) = −q̄Sl0a1α(t) + q̄S(l0a2 + cm0)δ(t)− bα̇(t) (28)

where i is the moment of inertia of the aerofoil; α is the angle of attack, also equal to the pitch
angle; q̄ is the dynamic pressure; S is the wing area; l0 is the length between aerodynamic
centre and pivot point; c is the chord length; a1, a2, m0, b are aerodynamic derivatives; and
δ is the elevator deflection angle, as illustrated in Figure 3.

α pivot

δ

air flow

Figure 3. Aerofoil showing pitch and elevator deflections.

Equation (28) is linear for angles of attack below stall, so a Laplace transfer function
representation could be obtained by determining the coefficient values in the differential
equation. However, Duran [30] used second-order identification techniques to model the
aerofoil as

α(s) =
44.94

s2 + 5.12s + 89.87
δ(s) (29)

The initial step in the process was to design a PID controller with two degrees of
freedom, allowing for separate weightings to be adjusted for both the proportional and
derivative terms. This specific controller, in parallel form, is expressed by

K(s) = Kp(bαre f − α) + Ki
(αre f − α)

s
+ Kd

N
1 + N/s

(cαre f − α) (30)

where αre f is the output reference angle; Ki, Kp and Kd are the integral, proportional and
derivative gain, respectively; N is the filter coefficient; and b and c are weightings for the
proportional and derivative terms, respectively, that assign the closed-loop system zeros.

The PID parameters were tuned to achieve the desired performance with values
Kp = 0.435, Ki = 4.427, Kd = 0.0395, N = 52.68, b = 1 and c = 0.

Figure 4 depicts the obtained system response for the PID controller. Similarly, the sys-
tem response is displayed for both the adaptive controllers in Figure 5. All the responses
exhibit zero overshoot, accompanied by a short rise time. Moreover, the control signals
display smooth variation, devoid of any noise components. This characteristic ensures the
prevention of any potential actuator damage.
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Figure 4. PID control simulation response.
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Figure 5. L1 adaptive control simulation response.
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5. Implementation Results

The implementation of the proportional and the piecewise L1 adaptive controllers
on the flight demonstrator unit are presented in this section. All the controllers are imple-
mented using the Arduino IDE [34] in the C++ programming language. The PID algorithm
was previously coded by [31] and is now utilised to obtain real-time responses by incorpo-
rating the PID parameters from the simulation.

In this L1 adaptive controller implementation, the desired model was chosen to
achieve second-order dynamics with a frequency of 0.7: rad/s and a damping ratio of 0.7.
The transfer function D(s) of the L1 adaptive controller was set as D(s) = 1/s(s + 9.8),
and k = 36, resulting in a filter C(s) = 36/s2 + 9.6s + 36. The adaptation rate of the
proportional controller was set at Γ = 1000, given that the sampling time of the test bed is
Ts = 0.0001 s. This choice is based on the guideline that Γ = 1/Ts [35].

5.1. Nominal Performance

Figure 6a illustrates the response to a command angle of 6◦ using the PID parameters
obtained from the simulation stage. The control history is also depicted in Figure 6b.
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Simulation

(c) System response comparison.

Figure 6. Real-time response with PID control.
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The results are good, with overshoot being 8.67% and no steady-state error observed
in the system. Moreover, the system effectively rejects disturbances, and the response is
satisfactory, characterised by smooth variations in the control signal. Comparing the real-
time response to the simulation depicted in Figure 6c, it is evident that the real-time system
shows higher overshoot and more pronounced oscillations. However, it demonstrates
a faster response with a rise time of 0.51 s, in contrast to the simulation rise time of
0.92 s. The disturbances are mostly in the airflow; the wind tunnel has not been specifically
designed to create a smooth, steady laminar flow so that the disturbance rejection properties
of the controller can be tested.

Likewise, Figure 7a illustrates the response of the proportional adaptive law. The con-
trol design demonstrates a good response in the form of a minimal overshoot of 6%.
In comparison to the PID control history, the proportional adaptive law response appears
noisier, which could be attributed to the utilisation of a larger bandwidth for the low-pass
filter. However, it boasts a faster rise time of 0.64 s, outperforming the simulated rise time
of 1 s.
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Figure 7. Real-time response with L1 adaptive control (proportional).

Lastly, Figure 8 presents the results of the piecewise algorithm. Among all the con-
troller designs, it demonstrates the most favourable performance with the lowest overshoot
of 3.17%. Additionally, it achieves a rapid rise time of 0.56 s. However, like the proportional
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law, the control signal is quite noisy in comparison to the smoother control signal observed
in the PID controller. Note that when the reference is zero, greater oscillation is evident.
The NACA0012 aerofoil is relatively thick; hence, at low Reynolds numbers (as in this
experiment), there is a nonlinearity in the control surface effectiveness, which results from
flow separation that occurs on both the upper and lower surfaces and from the formation of
a laminar separation bubble [36]. This also causes a reduction in the elevator effectiveness
at low angles of attack.
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Figure 8. Real-time response with L1 adaptive control (piecewise).

5.2. Robustness Analysis

The key advantage of L1 adaptive control lies in its robustness without compromising
the adaptation gain. To demonstrate the robustness, various types of disturbances were
introduced in the control channel at around 25 s.

In the first test, the control effectiveness is decreased by thirty percent. The PID
Control response decreases to approximately 3.24◦, whereas both adaptive controller
responses drop to 4.64◦, before eventually recovering to the reference command. This
behaviour is illustrated in Figure 9a, where it is clear that both adaptive control designs
outperform the PID control, exhibiting better performance despite the reduction in control
effectiveness. The adaptive controllers adapt more effectively to the changes in the system
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and maintain better control throughout the process. Figure 9b shows that the reduced
control effectiveness leads to an increased control effort requirement for compensation.
This heightened control effort is sustained until the end of the operation.
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Figure 9. System response with reduced control effectiveness.

In the second comparison, a time-varying disturbance is introduced into the control
channel, in the form of a sine wave with a frequency of 10 rad/s. The response of the
control system is analysed, and the results are shown in Figure 10a. It can be observed
that with PID control, the system experiences a sudden overshoot due to the disturbance.
However, both adaptive control designs handle the time-varying disturbance effectively,
as they do not exhibit significant overshoot. The compensation effects are depicted in
Figure 10b, where the control signal of the adaptive designs shows the development of
high-frequency content. This indicates that the adaptive controllers are actively adjusting
to the changing disturbance and effectively maintaining control over the system.
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Figure 10. System response with time varying disturbance.

Another robustness check is conducted by introducing a 2◦ bias in the control channel.
Interestingly, there is no significant difference in the response when this bias is introduced
for all the controllers. However, when the reference is set back to zero, large oscillations
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are observed, as shown in Figure 11a. Figure 11b shows the control history, revealing a
constant offset in the control signal intended to compensate for the introduced bias.
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Figure 11. System response with bias.

To further evaluate the robustness of the control systems, different forms of distur-
bances are combined. The first combination includes a thirty percent reduction in control
effectiveness along with a time-varying disturbance represented as a sine wave with a
frequency of 10 rad/s. The results, as shown in Figure 12a, indicate that the PID control
performs poorly in handling the time-varying disturbance compared to both adaptive con-
trollers. On the other hand, the L1 adaptive control demonstrates effective compensation
for both types of disturbances, as depicted in Figure 12b. However, after the introduction
of the disturbances, the control signal becomes noisier and exhibits a simultaneous increase
in control effort.

0 10 20 30 40 50
Time (s)

−2 

0

2

4

6

8

10

A
n
g
le

(/
)

Reference
PID
Proportional
Piecewise

(a) System response.

0 10 20 30 40 50
Time (s)

0

5

10

15

20

A
n
gl

e
(/

)

−10 

−5 

PID
Proportional
Piecewise

(b) Control history.

Figure 12. System response with reduced control effectiveness and time varying disturbance.

The impact of introducing a two-degree bias and thirty percent control reduction can
be observed in Figure 13. Like the scenario with only control reduction, the PID response
shows a lower performance compared to both adaptive controllers. Conversely, both
adaptive controllers handle the combined disturbances effectively, resulting in better control
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responses. The control history of the adaptive controllers demonstrates the necessary
variations required to compensate for the reference command appropriately, ensuring a
more robust and stable control performance.
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Figure 13. System response with bias and reduced control effectiveness.

6. Conclusions

An output feedback L1 adaptive control approach employing a proportional adapta-
tion law is introduced. This method enhances the phase margin within the estimation loop,
facilitating the integration of first-order sensor dynamics into the state predictor. Moreover,
the reduction in error bounds is directly proportional to the adaptation gain, rather than its
square root, leading to decreased computational resource requirements.

The design was implemented and tested on a benchtop flight control demonstrator,
that being an airfoil pitch control system. To evaluate its robustness, different types of
disturbances were introduced. The results demonstrate that the proposed method, along
with the piecewise adaptive controller, outperforms PID Control when dealing with reduced
control effectiveness and time-varying disturbances.

In L1 adaptive control, a key challenge lies in selecting the appropriate structure and
parameters for the low-pass filter, especially in output feedback designs. Currently, no
established principles guide this selection, leading to a trial-and-error approach in choosing
the filter structure. This results in an ongoing challenge to achieve an optimal filter structure
that balances performance and robustness effectively.

The implications of the nonlinearities of the control surface effectiveness on the control
system performance remains to be fully analysed. An accurate model of the aerodynamics
requires experiment in a high quality wind tunnel. The effect of the nonlinearities on
the closed loop performance could then be analysed and simulated. This remains for
further work.
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Appendix A

Appendix A.1. L1 Piecewise Adaptive Law

The plant dynamics are represented in slightly different state space form:

ẋ(t) = Amx(t) + Bm(u(t) + σ(t))

y(t) = C⊤x(t), x(0) = x0 = 0,
(A1)

where σ(t) is the overall uncertainties arising from plant dynamics and external disturbances.

Assumption A1. The given control design assumes that there exists positive constants, denoted as
L and B, such that

∥ f (t, y1)− f (t, y2)∥∞ ≤ L∥y1 − y2∥∞

∥ f (t, y)∥∞ ≤ L∥y∥∞ + B

where the numbers L and B can be arbitrarily large.

The architecture of the piecewise adaptive control differs slightly from the proportional
version in that it does not factor in the input gain as part of its consideration.

ẋ = Amx+Bm(u+ σ)

y = C⊤x

˙̂x = Amx̂+Bmu+ σ̂

ŷ = C⊤x̂

C(s)

−Φ−1(T )µ(iT )C⊤(sI−Am)−1

C⊤(sI−Am)−1Bm
C(s)

Control Law

Adaptation Law

Predictor

Plant

r y

ŷ

ỹ

u

−

−

Figure A1. L1 adaptive control architecture (piecewise).

State Predictor: Consider the following state predictor,

˙̂x(t) = Am x̂(t) + Bmu(t) + σ̂(t), x̂(0) = x̂0 = 0

ŷ(t) = C⊤ x̂(t)
(A2)

Here, σ̂(t) is denoted to represent the overall vector of estimates.
Adaptation Law: There exists a P = P⊤ > 0, which satisfies the following Lya-

punov equation:

A⊤
m P + PAm = −Q

where Q > 0, and given the properties of P, there exists a D, which represents the null
space of C⊤(

√
P)−1, and letting

Λ =

[
C⊤

D
√

P

]
(A3)

Adaptation is governed by the following law:

σ̂(iT) = −Φ−1(T)µ(iT), i = 1, 2 . . . (A4)
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where

Φ(T) =
∫ T

0
eΛAmΛ−1(T−τ)Λdτ (A5)

and
µ(iT) = eΛAmΛ−1T11ỹ(iT), i = 1, 2 . . . (A6)

with 11 being a basis vector of length equal to number of states.
Control Law: The control law is defined through a low-pass filter represented by

transfer function C(s),

u(s) = C(s)

(
r(s)− C⊤(sI− Am)−1

C⊤(sI− Am)−1Bm
σ̂(s)

)
(A7)

Furthermore, the selection of C(s) and M(s) must ensure that the following transfer
function is stable:

H(s) =
A(s)M(s)

C(s)A(s) + (1 − C(s))M(s)

and the given L1-norm condition should hold:

∥G(s)∥L1 L < 1

where G(s) = H(s)(1 − C(s)).
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