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Abstract: This paper addresses the force-tracking problem of aerospace electro-hydraulic load
simulators under the influence of high inertia, large loads, and a strong coupling force disturbance. An
accurate mathematical model is initially derived to describe the characteristics of the load simulator
system, the cause of the surplus force, and the strong phase lag due to large inertia. In order to
overcome the position interference of the system and the large phase lag problem, a terminal sliding
mode control strategy based on the modified fast double-power reaching law is proposed, based on
the accurate mathematical model. This control strategy effectively suppresses the chattering problem
of the sliding control and implements the finite time convergence of the system through the design of
the reaching law and terminal sliding surface, ensuring the robustness of the system and the accuracy
of the force-tracking problem. Finally, a comparison of the simulation and experimental results based
on the design of different strategy controllers is performed to verify the effectiveness of the control
strategy and system adaptability.

Keywords: electro-hydraulic load simulator; large inertia; force tracking; terminal sliding mode
control strategy; modified fast double-power reaching law

1. Introduction

The servo system, as a fundamental component of the launch vehicle control system,
regulates the flight attitude of the rocket by controlling the deflection angles of the engine
nozzles. Hence, the servo actuator must exhibit a rapid dynamic response and strong
anti-interference capabilities during rocket operations. To address this requirement, a
load simulation system is employed to replicate the diverse load characteristics of the
high-power control objects of the servomechanism. This load simulation system provides
load-testing conditions for dynamic variables that closely resemble real-world scenarios for
research tests on the servomechanism, thereby playing a significant role in verifying servo
control algorithms and evaluating the servomechanism’s performance.

The electro-hydraulic load simulator is a commonly used load simulation system, and
it is a typical hardware-in-loop system [1], providing the actual experimental conditions
for testing the system performance and the reliability of the servo actuator. Due to the
mechanical coupling characteristics between the load system and the tested actuator, the
active motion of the actuator results in an extra force on the loading side caused by forced
flow, thus considerably affecting force-tracking precision and decreasing the stability
of the system. Moreover, nonlinearities, mainly including flow pressure, friction and
backlash characteristics, uncertainties caused by unstable parameters (i.e., the leakage
coefficient, bulk modulus, and coefficient of viscosity), unknown disturbances, and sensor
noises [2–5], critically degrade the precise force closed-loop control, dynamic performance,
and static accuracy.

In order to mitigate the adverse impact of surplus force on the force loading and
improve system performance, numerous scholars have extensively conducted research and
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experimentations with respect to both the mechanical structures and control algorithms.
By manipulating the connection stiffness [6] and arm length [7] between the loading
mechanism and the steering gear system, the connection mechanism is optimized in
conjunction with a control algorithm, thus effectively mitigating the surplus force. The
dual-valve parallel control that consists of the large flow valve and small servo valve
is designed to achieve a high control accuracy in electro-hydraulic servo systems in [8].
To reduce the extra torque generated by the forced flow, substitution of the pressure
servo valve for the flow servo valve is adopted in the passive force control system, to
form a pressure closed-loop control for obtaining high-precision torque tracking in [9].
Overall, improving the mechanical structure leads to certain disadvantages like elevated
cost, a limited capacity to mitigate surplus force, and constrained control. Therefore, sole
dependance on this approach cannot effectively compensate for surplus force.

In terms of control strategy, a structure invariance compensation (SIC) control method,
which utilizes the velocity feedback of the servo actuator as forward feedback compensa-
tion to isolate the driving torque from the driving speed, is proposed in [10] to compensate
for the influence of interference from the tested servo actuator and suppress the surplus
force. An active force control system is developed to provide an accurate real-time force
loading for the landing gear of the M-346 “iron bird”, which is an integrated testing rig for
the simulation, confirmation, and verification of the flight controls, hydraulic system, and
landing gear of the M-346 trainer, adopting the servo valve to control the hydraulic actuator,
combined with a nonlinear adaptive control law to achieve precise loading controls [11].
To account for the internal and external disturbances that affect the mechanism of the
loading simulator, a more accurate mathematical model, including nonlinear factors and
uncertainties, advanced control algorithms (i.e., backstepping [12], sliding mode, neural
network [13], iterative learning control [14]), and sensor faults and disturbances observa-
tion [15,16], is utilized for accurate tracking and nonlinear compensation. The backstepping
adaptive control, combined with the modified LuGre friction model [17], is introduced
into the force-tracking control of the loading simulator [18]. This approach effectively
weakens the distortion phenomenon caused by friction and results in a better force control
performance. In a research study, a finite-time sliding mode control based on the modified
GMS friction model, which is identified by PSO, has been designed to acquire an accurate
system model and compensate for uncertain disturbances and nonlinear friction, ensuring
the dynamic performance and static precision of the loading system, while achieving a
finite-time convergence [19]. Parameter estimation [20,21] and identification [22], aimed
at system uncertainties and nonlinear disturbances, integrated into a sliding force control
model, is adopted to eliminate parametric uncertainties, which strengthens the system’s
robustness, as well as exhibiting a strong anti-interference ability and loading accuracy.
Based on a proposed disturbance coupled model containing mechanical backlash, a decou-
pled position interference and mitigated oscillation caused by the backlash are achieved
by the control strategy of an almost disturbance decoupling. Moreover, the stability of the
state and the system performance are ensured by tuning the controller parameters [23]. In
general, numerous scholars have made significant contributions to the suppression of the
surplus force of the load simulation system and the improvement of the corresponding
control algorithms. They have achieved favorable results in their studies. However, the
abovementioned control methods are generally aimed at medium and low loads with
medium and low inertia, which are unsuitable for the load simulation systems with large
loads and high inertia that are discussed in this paper.

The sliding mode control is particularly suitable for achieving a precise force closed-
loop control in load simulation systems, due to its robustness, adaptability to nonlinear
systems, and provable stability. It is a typical variable structure control, which has been
researched widely and applied in nonlinear control strategies, owing to the characteristics
of strong robustness and anti-interference ability, fast response, and simple physical im-
plementation [24]. The chattering phenomenon and the complex finite convergence time
are trending topics of research, which need to be resolved by scholars. A robust fixed-time
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sliding mode strategy has been designed, so that mismatched disturbances can be rejected
without using a disturbance observer, and fixed-time stability can be obtained [25,26]. For
obtaining dynamic response rapidity and convergence to the original in fixed time, the
fast terminal sliding mode (TSM) has been designed by [27], where the nonlinear item is
integrated to improve the approach rate and obtain finite-time convergence, while intro-
ducing a reaching rate that is lower than that of the linear sliding mode (LSM). Therefore,
the global terminal sliding mode (FTSM) has been developed to combine the strengths
of the FTSM and LSM, which ensures system rapidity and fixed-time reachability [28,29].
However, both the TSM and FTSM exhibit a critical challenge: singularity. A nonsingular
terminal sliding mode control, utilized in wave energy converters, a miniature helicopter,
and a robotic system [30–32], is proposed to address this issue, eliminating the singular
item induced by the design of the controller and enhancing the engineering applicability.
In [33], a fixed-time sliding control involving the cosine function is developed to simul-
taneously satisfy closed-loop system stability and the nonsingularity of the system. The
small high-frequency oscillation in the vicinity of the sliding manifold, which is caused
by the chattering phenomenon, hinders the application of the control strategy [34]. From
an engineering perspective, K. D. Young et al. accurately analyze and evaluate the sliding
mode control and its chattering phenomenon. Subsequently, they proposed seven solutions
for mitigating the chattering effect in continuous systems and examined the design of the
sliding mode control for discrete systems in three different scenarios, providing valuable
guidance for the practical implementation of sliding mode controls [35]. The chattering at a
high frequency is eliminated by the continuous switching of the boundary layer, due to the
substitution of the signal function by the hyperbolic tangent function [36]. In [37], a sliding
mode control based on the enhanced triple-power reaching law is proposed, to assure
fixed-time convergence to the equilibrium point of the sliding surface in the system and
eliminate chattering behaviors by means of the switchover of a set of prescribed switching
manifolds. In this paper, an innovative approach is proposed for a load simulator of large
inertia, which simultaneously addresses the finite-time convergence problem of both the
reaching motion and the sliding motion of the sliding mode surface. The effectiveness of
the approach is validated through simulation and experimentation, in conjunction with
comparable control strategies.

Overall, the main contributions of this paper are as follows:

(1) The causes and characteristics of surplus force and a significant phase lag are analyzed,
based on a precise mathematical model derived from a high-inertia electro-hydraulic
load simulator.

(2) Aimed at a high-inertia electro-hydraulic load simulator, a modified fast variable-
power terminal sliding mode control strategy (FVPTSM) is proposed, which achieves
both a finite convergence time and a finite-time proof, while employing the Lyapunov
theory for stability analysis.

(3) The controllers of the FVPTSM, the derived double-power terminal sliding mode
control (DPTSM), and the PID are designed for conducting a comparison of the
simulation and experimental verification, and the results demonstrate the effectiveness
of the proposed strategy.

2. System Introduction and Mathematical Model
2.1. Mechanical Structure and Construction of the System

An aerospace electro-hydraulic load simulation system is used to simulate the ground
dynamic and static performance test, research test, and servo control algorithm verification
of the high-power servomechanism. Therefore, this system is required to provide loading
test conditions of complex dynamic variables that are close to the real load object. The
system also must provide force loading with high accuracy.

The simulator is composed of a tested servo actuator, force-loading mechanism,
friction-loading mechanism, elastic torque-loading mechanism, inertia-regulating mecha-
nism, and harmonic resonance-regulating mechanism, as shown in Figure 1. The designed
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simulator is a large-load, high-inertia servo system with a loading force range of ±20 kN
and an inertia value of 2200 kg.m2.
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Figure 1. Mechanical structure and construction of the aerospace electro-hydraulic load simulator.

The friction-loading mechanism is installed on the rotating shaft that is used to
simulate the damping characteristic. The elastic torque-loading mechanism and inertia-
regulating mechanism fixed on the cantilever constitute the elastic constant and equivalent
mass of rotation of the load simulation system. The harmonic resonance is adjusted through
the design of the primary and secondary mass block. The tested servo actuator and the
force-loading mechanism are installed at the end of the swing arm, respectively, which
are both closed-loop systems comprising the servo valve and double-rod cylinder. Due to
the force coupling through the swing arm, position interference is generated by the active
motion of the actuator, while the force-loading unit loads the force to the servo actuator.

2.2. Mathematical Model of Force Loading System

The force-loading servomechanism loads the force to the tested servo actuator by
way of the force coupling of the swing arm. The inertia-regulating mechanism, elastic
torque-loading mechanism, and friction-loading mechanism are equivalent to the load
mass, the elastic constant, and damping coefficient in the system, respectively, as shown in
Figure 2. To ensure the precision of the loading force acting on the tested servo actuator in
a short time, the servo valve controlling the double-rod symmetrical hydraulic cylinder is
employed in the force-loading mechanism, in which voltage and force represent the input
and output, respectively.
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The idealized assumptions for the valve and hydraulic cylinder are outlined as follows:

(1) The valve is a four-way spool valve with an ideal opening, where the four throttling
windows are matched and symmetrical;

(2) The flow at the throttling window is turbulent flow, and the influence of liquid
compressibility in the valve can be neglected;

(3) The valve has an ideal response capability, that is, the flow change corresponding to
the change of spool displacement and valve pressure drop can occur instantaneously;

(4) The hydraulic cylinder is the ideal double-rod symmetrical hydraulic cylinder;
(5) The oil supply pressure ps is constant, and the oil return pressure pT is zero.

According to the small-hole throttle formula and flow continuity equation, the flow
equation of the inlet and outlet chambers of the oil of the force load mechanism can be
written as follows:

Q1 = Cd A1

√
2(ps − p1)

ρ
(1)

Q2 = Cd A2

√
2p2

ρ
(2)

where Q1 and Q2 are the flow of the two chambers, Cd is the discharge coefficient, A1 and
A2 are the throttling window area of the servo valve spool, ps is the supply pressure, ρ is
the density of hydraulic oil, and p1 and p2 are the pressure of the two chambers.

Due to the symmetry and matching of the four throttling windows of the servo valve,
the area can be expressed as:

A1 = A2 = wxv (3)

where w is the servo valve spool area gradient and xv is the servo spool displacement.
The load flow QL and the load pressure pL are defined as follows:

QL =
1
2
(Q1 + Q2) (4)

pL = p1 − p2 (5)

Considering that the compressibility of the two chambers has little effect on the valve
coefficient of the throttle window, and the external leakage of the hydraulic cylinder can be
neglected, the following equation is still applicable.

pS = p1 + p2 (6)

Combining Equations (1)–(3), (5) and (6), Equations (7) and (8) can be derived as
shown below.

Kq =
∂Q1

∂xv
=

∂Q2

∂xv
= Cdw

√
ps − pL

ρ
(7)

2Kc = −∂Q1

∂p1
=

∂Q2

∂p2
= Cdwxv

√
1

ρ(ps − pL)
(8)

where Kq is the flow gain and Kc is the flow pressure coefficient.
Therefore, the linearized flow equation of the two throttling windows of the spool

valve can be written as follows:

∆Q1 = Kq∆xv − 2Kc∆P1 (9)

∆Q2 = Kq∆xv + 2Kc∆P2 (10)
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By the addition of Equations (9) and (10) combined with Equations (4) and (5), the
increment of load flow can be derived as:

∆QL =
1
2
(∆Q1 + ∆Q2)= Kq∆xv − Kc∆PL (11)

To simplify the derivation of the flow continuity equation, the following assumptions
are made:

(1) All connecting pipes are short and thick, and the friction loss, liquid quality, and
dynamic properties of the oil circuit can be neglected;

(2) The internal pressure of each chamber of the hydraulic cylinder is equal everywhere,
and the oil temperature and volume elastic modulus can be considered to be constant;

(3) The internal and external leakage of the hydraulic cylinder is in the form of lami-
nar flow.

Based on the abovementioned assumptions, the flow continuity equation of the inlet
and outlet chambers of the oil in the hydraulic cylinder can be written as:

Q1 = Ap
dxp

dt
+ Cip(P1 − P2) + CepP1 +

V1

βe

dp1

dt
(12)

Q2 = Ap
dxp

dt
+ Cip(P1 − P2)− CepP2 −

V2

βe

dp2

dt
(13)

where Ap is the effective area of the hydraulic cylinder piston, xp is the piston displace-
ment of the loading hydraulic cylinder, Cip and Cep are the internal and external leakage
coefficients of the hydraulic cylinder, V1 and V2 are the volume of the oil inlet and outlet
chambers, respectively, and βe is the equivalent volume elastic modulus of hydraulic oil.

Assuming that the hydraulic cylinder is operated at the middle position, the initial
volumes of the two chambers are expressed in the equation V01 = V02 = Vt

2 , where Vt is
the total volume of the two chambers. Therefore, V1 and V2 can be expressed as:

V1 = V01 + xp Ap =
Vt
2

+ xp Ap (14)

V2 = V02 − xp Ap =
Vt
2

− xp Ap (15)

Combined with Equations (4) and (5), the load flow equation can be obtained as:

QL =
1
2
(Q1 + Q2) = Ap

dxp

dt
+ (Cip +

Cep

2
)PL +

Vt

4βe

dpL
dt

+
xp Ap

2βe
(

dp1

dt
+

dp2

dt
) (16)

The equation dp1
dt = − dp2

dt can be obtained through Equations (5) and (6). Therefore,
the flow continuity equation can be simplified as:

QL =
1
2
(Q1 + Q2) = Ap

dxp

dt
+ CtpPL +

Vt

4βe

dpL
dt

(17)

where Ctp = Cip +
Cep
2 is the total leakage coefficient of the hydraulic cylinder, Ap

dxp
dt is the

flow required to drive the piston movement of the hydraulic cylinder, CtpPL is the total

leakage flow, and Vt
4βe

dpL
dt is the compression flow.

Due to the force coupling of the force-loading servomechanism and tested servo
actuator, as shown in Figure 2, Equation (18) can be established according to Newton
second flow.

ApPL = m0
d2xp

dt2 + Bs
dxp

dt
+ Ks

(
xp − xrd

)
(18)



Actuators 2024, 13, 145 7 of 27

where m0 is the equivalent mass of the system inertia, Bs is the equivalent viscous damp
coefficient, including the friction between the piston rod and the servo hydraulic cylinder
of the force-loading and friction-loading mechanisms, Ks is the equivalent elastic con-
stant of the elastic torque-loading mechanism, and xrd is the displacement of the position
disturbance of the tested servo actuator.

Considering that the frequency width of the aerospace electro-hydraulic load simu-
lation system in this paper is far lower than that of the electro-hydraulic servo valve, the
servo valve can be regarded as the first-order inertia element. Hence, the relationship of
the control voltage and the servo spool displacement can be described as:

.
xv = −wnxv + KvKawnum (19)

where Kv is the gain coefficient of the servo valve, Ka is the gain coefficient of the input
voltage and the output current of the linear force motor of the servo force, wn is the natural
frequency of the servo valve, um is the control input voltage, and xv is the servo spool
displacement of the servo valve.

Combining Equations (11) and (17)–(19), the open-loop transfer function can be de-
rived in the form of Equation (20), and the block diagram of the open-loop transfer function
is depicted in Figure 3.

ApPL =

ApKq
Kce

(
m0
Ks

S2 + Bs
Ks

S + 1
)

xv −
Ap

2S
Kce

xrd

Vtm0
4βeKsKce

S3 +
(

BsVt
4βeKsKce

+ m0
Ks

)
S2 +

(
Vt

4βeKce
+

Ap
2

KsKce
+ Bs

Ks

)
s + 1

(20)

where Kce is the total flow pressure coefficient of the system, and Kce = Kc + Ctp.
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As depicted in Figure 3, the surplus force is induced by the differential effect of xrd,
where xrd is the displacement of the position disturbance of the tested servo actuator.
According to Equation (20), the differential term of xrd causes the surplus force. Due
to the high-frequency sensitivity characteristic of the differential term, a high-frequency
position disturbance usually results in a large surplus force. Meanwhile, due to the leading
characteristic of the surplus force caused by the active disturbance of the tested servo
actuator, the output force FL of the electro-hydraulic loading mechanism always lags
behind the surplus force. Given the effect of the phase lag of the high inertia and the higher
inertia induced by the larger mass, the phase lag is positively correlated with the increase
in the equivalent mass m0. Therefore, the designed control strategy needs to overcome the
position interference and the large phase lag problem of the system to ensure the accuracy
of the force tracking, under the premise of not only ensuring the robustness of the system
but also realizing the fast convergence of the system.
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3. Proposal and Implementation of the Terminal Sliding Mode Control Strategy Based
on the Modified Fast Double-Power Reaching Law
3.1. The State–Space Model of Force-Loading System

Considering the piston displacement of the loading hydraulic cylinder xp, the piston
velocity

.
xp, the load pressure pL, and the servo spool displacement xv as the state variables,

the state vector of the system can be defined as

x = [x1 x2 x3 x4] =
[
xp

.
xp pL xv

]
(21)

Based on Equations (11), (17)–(19) and (21), and defining um as the system input and
pL as the system output, where pL = FL

Ap
, and FL is the load force of the loading hydraulic

mechanism, the entire system of the load simulator can be deduced in the state–space
form as:

x =


.

x1 = x2.
x2 = 1

m0

(
−Ksx1 − Bsx2 + Apx3 + Ksxrd

)
.

x3 =
4βe
Vt

(
−Apx2 − Kcex3 + Kqx4

)
.

x4 = −wnx4 + KvKawnum

(22)

To simplify the discussion and derivation process, λi, (i = 1, 2, . . . , 7) and Frd are
defined as: 

λ1 = Bs
m0

λ2 =
Ap
m0

λ3 =
4βeKq

Vt

λ4 =
4βe Ap

Vt

λ5 =
4βeKce

Vt
λ6 = wn
λ7 = KvKawn

Frd =
Ks(xrd−xp)

m0

(23)

Based on the abovementioned definition, the state–space model of the system can be
transformed to:

x =


.

x1 = x2.
x2 = −λ1x2 + λ2x3 + Frd.
x3 = λ3x4 − λ4x2 − λ5x3.
x4 = −λ6x4 + λ7um

(24)

With load pressure pL as the system output, the system error e can be expressed as:

e = x3 − x3
∗ (25)

where x3
∗ is the desired load pressure of the system output.

3.2. FVPTSM Controller Design

The sliding mode control (SMC) is a type of variable structure control, where the
system’s structure is not fixed. The structure of the system can be accordingly modified
during the dynamic process based on the current state of the system, such as the deviation
and its various derivatives. This compels the system to follow the state trajectory of
predetermined sliding mode dynamics. Therefore, the SMC exhibits the advantages of
strong robustness, a fast response, the non-necessity of online identification, and simple
physical implementation. Based on the abovementioned features, the introduction of
the SMC into the controller design of the electro-hydraulic load simulator is feasible and
suitable. Due to the contradiction between the chattering issue and fast convergence of
the SMC, the combination of the modified fast variable-power reaching law (MFVP) and a
nonsingular fast terminal (NFT) SMC, which is abbreviated as FVPTSM, is proposed for
the implementation of the controller.
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To suppress the chattering issue and realize the convergence to the sliding surface in
finite time, an SMC based on the MFVP is adopted in the form of Equation (26).

.
s = −k1|s|θsgn(s)− k2|s|α2 sgn(s)− k3s (26)

where k1, k2, k3, α1, and α2 are the tuning parameters of the reaching law with the definitions
of θ = α1 when |s|≥ 1 , and θ = 1 when |s|< 1 , while satisfying the conditions of k1 > 0,
k2 > 0, k3 > 0, α1 > 1, and 0 < α2 < 1.

When |s|≥ 1 , the reaching law can be transformed to:

.
s = −k1|s|α1 sgn(s)− k2|s|α2 sgn(s)− k3s (27)

From Equation (27), it can be seen that the reaching law equals the combination of
the double-power reaching law and the exponential reaching law. Due to the addition
of the exponential term in comparison to the double-power reaching law, the system
obtains a higher reaching speed when the system state is far from the sliding mode surface,
shortening the system response time and improving the response velocity.

The form of the reaching law can be described in the form of Equation (28) in the
circumstance of |s|< 1 .

.
s = −k2|s|α2 sgn(s)− (k1 + k3)s (28)

It can be observed that the current reaching law is equivalent to a combination of the
power and exponential laws from Equation (28). Compared to the single-power reaching
law, the incorporation of the exponential term allows for the selection of larger values of k1
and k3 to ensure faster convergence rates, and a smaller value of α2 to smoothly enter into
the sliding mode and effectively reduce chattering. Therefore, it exhibits superior dynamic
characteristics when dealing with external disturbances.

To address the singularity caused by a zero system state, due to the inclusion of a
negative power term of the system state in the controller design of the traditional fast
terminal sliding mode and the asymptotic convergence of the linear sliding mode surface,
the nonsingular fast terminal sliding surface is selected as per the following expression:

s = x +
1
β

.
x

p
q (29)

where x is the state variable, β, p, and q are the tuning parameters of the sliding surface,
and β > 0. 1 < p

q < 2, where p and q are the positive odd numbers.
The motion of the SMC can be divided into approach and sliding motions. Therefore, this

paper creatively introduces a controller that simultaneously satisfies Equations (26) and (29)
in order to achieve finite-time convergence, as well as guaranteeing an excellent dynamic
quality and static precision in each motion process.

The Lyapunov function is defined as:

V =
1
2

s2 (30)

Considering the differentiation of Equation (30) and combining it with Equation (29)
and the equation x = e, where x is the state variable of the NFT and e is the system error,
jointing the state–space model and the error definition of the system yields:
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.
V = s

.
s

= s(
.
x + p

βq
.
x(

p
q −1) ..

x)

= s(
.
e + p

βq
.
e(

p
q −1) ..

e)

= s(
.
e + p

βq
.
e(

p
q −1)

(
..

x3 −
..

x3
∗))

= s(
.
e + p

βq
.
e(

p
q −1)

(λ3
.

x4 − λ4
.

x2 − λ5
.

x3 −
..

x3
∗))

= s(
.
e + p

βq
.
e(

p
q −1)

(λ3(−λ6x4 + λ7um)− λ4
.

x2 − λ5
.

x3 −
..

x3
∗))

(31)

To satisfy the convergence process of either case and simplify the solution, the total
controller um can be decomposed into two components, u1 and u2, as follows.

um = u1 + u2 (32)

where the role of the controller u1 is that the system state converges to the equilibrium point
along the nonsingular fast terminal sliding surface, thus necessitating the establishment

of the equation
.
e + p

βq
.
e(

p
q −1)

(λ3(−λ6x4 + λ7um)− λ4
.

x2 − λ5
.

x3 −
..

x3
∗) = 0. The expression

u1 is obtained in the following form:

u1 =
1

λ3λ7
(− βq

p
.
e(2−

p
q ) + λ3λ6x4 + λ4

.
x2 + λ5

.
x3 +

..
x3

∗) (33)

The controller u2 is used to ensure the system’s dynamic and static quality of ap-
proaching motion according to Equation (26), which is deduced by the MFVP. Therefore,
u2 can be obtained in the form of:

u2 =
1

λ3λ7
(−k1|s|θsgn(s)− k2|s|α2 sgn(s)− k3s) (34)

Based on Equations (33) and (34), the combination controller um of the MFVP and NFT
can be expressed as:

um =
1

λ3λ7
(− βq

p
.
e(2−

p
q ) + λ3λ6x4 + λ4

.
x2 + λ5

.
x3 +

..
x3

∗ − k1|s|θsgn(s)− k2|s|α2 sgn(s)− k3s) (35)

3.3. Finite-Time Proof and Stability Analysis

Theorem 1. For the aerospace electro-hydraulic load simulator (22), including the bounded
displacement disturbance and the strong phase lag, under the controller as shown in Equation (35),
the force tracking error of the simulator can converge to a small neighbor range of the system’s
equilibrium point in finite time, and the system is asymptotically stable.

Proof of Theorem 1. Assuming that the system state varies from the arbitrary initial state
x(0) ̸= 0 to the equilibrium point x = 0 along the sliding surface as shown in Equation (29)
with x = e, the following expression can be obtained:

e +
1
β

.
e

p
q = 0 (36)

Computing the definite integral of the above equation yields:∫ t

0
dt =

∫ 0

e(0)
−β

− q
p e−

q
p de (37)

Subsequently, the convergence time can be obtained as:

ts = β
− q

p
p

p − q
|e(0)|1−

q
p (38)
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It can be concluded that the nonsingular fast terminal SMC not only improves the
convergence velocity in the vicinity of the equilibrium state, but also enhances the velocity
at locations that are far away from the equilibrium point. This feature enables the system
to reach equilibrium in finite time.

Substituting Equation (35) into Equation (31), the differentiation of the Lyapunov
function yields:

.
V =

p
βq

.
e(

p
q −1)

(−k1|s|θsgn(s)− k2|s|α2 sgn(s)− k3s) (39)

Since 1 < p
q < 2, 0 < p

q − 1 < 1, and combining it with β > 0 and the positive odd

numbers p and q, the inequality p
βq

.
e(

p
q −1)

> 0 can be obtained when
.
e ̸= 0. In order to

simplify the subsequent derivations, we define k1
/ = p

βq
.
e(

p
q −1)k1, k2

/ = p
βq

.
e(

p
q −1)k2, and

k3
/ = p

βq
.
e(

p
q −1)k3. Equation (39) can be transformed to

.
V = −k1

/|s|θsgn(s)− k2
/|s|α2 sgn(s)− k3

/s (40)

where k1
/ > 0, k2

/ > 0, and k3
/ > 0 when

.
e ̸= 0.

According to Equations (30) and (40), V ≥ 0,
.

V ≤ 0 and V = 0,
.

V = 0 if and only if
s = 0, satisfying LaSalle’s invariance principle. Therefore, it is observed that the system is
asymptotically stable during the process of approaching the sliding surface.

The approach motion of the system can be decomposed into three stages, namely
s = s0 to s = 1, s = 1 to s = α2, and s = α2 to s = 0.

During the first stage, the reaching law can be expressed as:

.
s = −k1|s|α1 sgn(s)− k2|s|α2 sgn(s)− k3s (41)

where k1 = k1
/, k2 = k2

/, and k3 = k3
/.

The approach process can be divided into two components in the form of:{ .
s + k1|s|α1 sgn(s) = −k3s
.
s + k2|s|α2 sgn(s) = −k3s

(42)

where
.
s + k1|s|α1 sgn(s) = −k3s and

.
s + k2|s|α2 sgn(s) = −k3s represent the influence of

k1|s|α1 sgn(s) and k2|s|α2 sgn(s), respectively. Therefore, the approach time required for
the entire system must be shorter than that of either of the aforementioned components,
indicating that the approach time is less than the solution derived from either of the above-
mentioned two equations. Adopting

.
s + k1|s|α1 sgn(s) = −k3s to compute the approach

time results in the following equation.

.
s + k3s = −k1|s|α1 sgn(s) (43)

For further derivation, substituting the definition x =|s|1−α1 and
.
x = (1 − α1) |s|

−α1

into Equation (43) yields:

.
x + k3(1 − α1)sgn(s)x = −k1(1 − α1)sgn(s) (44)

According to the derivation formula of the first-order differential equation, x can be
obtained as:

x = Ce−k3(1−α1)sgn(s)t1 − k1

k3
(45)

where C is the constant awaiting resolution.
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Due to the condition of x = |s|1−α1 , x can be rewritten as:

|s|1−α1 = Ce−k3(1−α1)sgn(s)t1 − k1

k3
(46)

When t1 = 0, the value of C can be solved as C = |s0|1−α1 + k1
k3

. Substituting C into
the equation yields:

|s|1−α1 = (|s0|1−α1 +
k1

k3
)e−k3(1−α1)sgn(s)t1 − k1

k3
(47)

On resolving the abovementioned equation, the approach time t1 is given by the
following expression.

t1 =
1

−k3(1 − α1)sgn(s)
ln

|s|1−α1 + k1
k3

|s0|1−α1 + k1
k3

(48)

Because s ranges from s0 to 1, the value of s is 1. The ultimate result of t1 can be
obtained as:

t1 =
1

k3(α1 − 1)
ln

1 + k1
k3

|s0|1−α1 + k1
k3

(49)

In the stage of s varying from s = 1 to s = α2, the reaching law can be expressed as:

.
s = −k1s − k2|s|α2 sgn(s)− k3s (50)

Similar to the first stage, the approach time required by this stage exceeds either of the
influences of k1s+ k2|s|α2sgn(s) or k3s+ k2|s|α2sgn(s). Therefore, select

.
s = −k2|s|α2sgn(s)− k3s

as the approach time of this stage, namely:

.
s + k3s = −k2|s|α2 sgn(s) (51)

Adopting the same computing method that resembles the preceding stage, the ap-
proach time t2 is calculated as:

t2 =
1

k3(α2 − 1)
ln

α2
1−α2 + k2

k3

1 + k2
k3

(52)

In the third stage, that changes s from α2 to 0, the reaching law is:

.
s = −k2|s|α2 sgn(s)− (k1 + k3)s (53)

Similarly, the approaching time t3 can be obtained as:

t3 =
1

(k1 + k3)(α2 − 1)
ln

k2
(k1+k3)

α21−α2 + k2
(k1+k3)

(54)

The approach time tr required by the whole approach motion is less than the total
sum of the aforementioned three stages based on the whole derivation. Thus, the following
inequity can be achieved:

tr < t1 + t2 + t3 (55)

Based on Equation (55), it can be observed that the approach motion can converge to
the sliding surface in finite time when

.
e ̸= 0.
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When
.
e = 0, defining x1 = e and x2 =

.
e in conjunction with the equation

e = x3 − x3
∗ yields:

.
x2 =

..
e =

..
x3 −

..
x3

∗ (56)

Substituting the controller from Equation (35) into Equation (56), the following expres-
sion is obtained:

.
x2 = −k1|s|θsgn(s)− k2|s|α2 sgn(s)− k3s (57)

From Equation (57) and the sliding surface in Equation (29), with the expression

s = x1 +
1
β x2

p
q , it is concluded that if s > 0, then x1 > 0 and

.
x2 < 0, and x2 decreases

rapidly. On the contrary, x2 increases dramatically; x1 < 0 and
.

x2 > 0 when s < 0. From the
phase trajectory diagram illustrated in Figure 4, it can be observed that when x2 = 0, that
is,

.
e = 0, the state of the system can ensure finite-time convergence to s = 0.
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In summary, whether
.
e = 0 or

.
e ̸= 0, the system can achieve finite-time convergence

from the initial state to the sliding surface, i.e., s = 0. Additionally, from the proof of
the nonsingular terminal sliding mode, it can be observed that, on once reaching the
sliding surface, finite-time sliding can be achieved towards the equilibrium point e = 0.
Consequently, the control strategy proposed by this paper enables finite-time convergence
of the state of the system and ensures the asymptotic stability of the system. □

3.4. DPTSM Controller Design

To completely verify the effectiveness of the proposed control strategy of the FVPTSM,
a double-power terminal sliding mode control strategy (DPTSM) is designed as one of
the comparisons. Adopting the double-power reaching law as the approach process
simultaneously ensures fast convergence at positions far away from the sliding surface
and the suppression of effective chattering near it. Moreover, the nonsingular fast terminal
sliding surface is used to ensure finite-time convergence to the equilibrium point after
reaching the sliding surface.

The expression of the double-power reaching law is as follows:

.
s = −k1|s|α1 sgn(s)− k2|s|α2 sgn(s) (58)
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where k1, k2, α1, and α2 are the constant parameters, satisfying k1 > 0, k2 > 0, α1 > 1, and
1 > α2 > 0.

The nonsingular fast terminal sliding surface can be described as:

s = x +
1
β

.
x

p
q (59)

Similar to the design process of the FVPTSM controller, the Lyapunov function can be
defined as:

V =
1
2

s2 (60)

Differentiating the Lyapunov equation in conjunction with the state–space model of
the loading system, we obtain:

.
V = s

.
s

= s(
.
x + p

βq
.
x(

p
q −1) ..

x)

= s(
.
e + p

βq
.
e(

p
q −1) ..

e)

= s(
.
e + p

βq
.
e(

p
q −1)

(
..

x3 −
..

x3
∗))

= s(
.
e + p

βq
.
e(

p
q −1)

(λ3
.

x4 − λ4
.

x2 − λ5
.

x3 −
..

x3
∗))

= s(
.
e + p

βq
.
e(

p
q −1)

(λ3(−λ6x4 + λ7um)− λ4
.

x2 − λ5
.

x3 −
..

x3
∗))

(61)

To simultaneously satisfy the double-power reaching law and fast terminal sliding,
the controller is designed by including two sections, that is, um = u1 + u2, where u1 can be
derived as:

u1 =
1

λ3λ7

(
− βq

p
.
e(2−

p
q ) + λ3λ6x4 + λ4

.
x2 + λ5

.
x3 +

..
x3

∗
)

(62)

The expression for the controller u2 is obtained as:

u2 =
1

λ3λ7

(
−k1|s|α1 sgn(s)− k2|s|α2 sgn(s)

)
(63)

Based on the expression of u1 and u2, the controller um of the designed DPTSM can
finally be obtained as:

um =
1

λ3λ7
(− βq

p
.
e(2−

p
q ) + λ3λ6x4 + λ4

.
x2 + λ5

.
x3 +

..
x3

∗ − k1|s|α1 sgn(s)− k2|s|α2 sgn(s)) (64)

4. Simulation and Experimental Verification
4.1. Simulation Verification

To validate the effectiveness and superiority of the aforementioned control strategies,
simulations and analyses are conducted on the PID, DPTSM, and FVPTSM control strate-
gies under both disturbed and undisturbed conditions. Meanwhile, a comparative analysis
is performed to evaluate their respective control effects. Firstly, under interference-free
conditions, a simulation comparison of the three control strategies is adopted to assess
their force-tracking accuracy and the rapidity of the system response, aiming to deter-
mine whether the performance meets requirements. Additionally, the anti-interference
performance and effectiveness of the FVPTSM controller are demonstrated by simulation
comparison under the influence of disturbances. The simulation conditions are listed in
Table 1.
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Table 1. Simulation conditions of electro-hydraulic load simulator.

Signal Type Amplitude Frequency (Hz)

Step loading signal 20,000 N -
Sine loading signal 20,000 N 2

Sine position disturbance 30 mm 2

As shown in Figure 5, the difference between the force feedback from the electro-
hydraulic loading simulator and the loading signal is utilized as the error function. The
input signal corresponds to the loading instruction, while accounting for positional dis-
turbances in the tested servo actuator. The step and sinusoidal signal simulations of the
PID controller are conducted under two conditions: without actuator disturbance and with
actuator disturbance. This enables the generation of output force and loading error data
from the electro-hydraulic loading simulator, thereby evaluating the system’s force-tracking
performance and anti-interference capability under controller influence. The swarm in-
telligence method [38] is adopted in the tuning of the PID parameters, and the optimal
control gains are KP = 0.0015, KI = 0.015, and KD = 0 without actuator disturbance and
KP = 0.0004, KI = 0.001, and KD = 0 with actuator disturbance. From the simulation
results illustrated in Figures 6–9, it is observed that under undisturbed loading conditions,
the PID controller ensures a certain response speed and steady-state control accuracy;
however, it exhibits significant oscillation and overshoot during step loading, as well as a
phase lag phenomenon during sinusoidal loading. Under disturbed loading conditions,
there is even an greater overshoot and phase lag compared to those in an undisturbed
loading, which significantly impacts the tracking accuracy of the load spectrum in the
electro-hydraulic loading simulator.
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hydraulic loading simulator, as depicted in Figure 10. As shown in Figures 11–14, under
undisturbed loading conditions, the steady-state error of the step response is effectively
eliminated, resulting in a system with zero overshoot. The phase lag of the sine response
is significantly reduced, leading to an error peak of 12 N. In the presence of disturbance
loading, the steady-state error peak for the step response reaches approximately 47.1 N,
while maintaining the absence of overshoot behavior. Similarly, the sine response exhibits
a peak error of 50.3 N.
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According to the FVPTSM derived from the design, it is incorporated into the sliding
mode controller. Subsequently, loading simulations are conducted under two conditions—no
actuator disturbance and actuator disturbance—as shown in Figure 10, analyzing the effec-
tiveness and superiority of the proposed controller. Under undisturbed loading conditions,
as illustrated in Figures 15 and 16, the step response exhibits a virtually eliminated steady-
state error with no overshoot observed in the system’s behavior. Additionally, a significant
reduction in phase lag is achieved for the sine responses, resulting in an error peak of
12 N. From Figures 17 and 18, it is observed that a steady-state error peak of approximately
22.6 N is observed in the step response, while maintaining a zero overshoot within the
system’s dynamics under disturbed loading conditions. Furthermore, a peak error of 28.3 N
is recorded for the sine responses.
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As depicted in Figure 19, under step loading without actuator position disturbance, the
PID controller, DPTSM, and FVPTSM exhibit a zero steady-state error, with no significant
difference observed in their control effects based on the two reaching laws. However, the
PID controller exhibits a large overshoot and oscillation, with a slow convergence time,
whereas the sliding mode controller demonstrates no overshoot, a fast convergence speed,
and a higher loading accuracy. As shown in Figure 20, for sinusoidal loading without
actuator disturbance, both the DPTSM and FVPTSM yield similar control effects. As
compared to the PID controller, sliding mode controllers based on the two reaching laws
significantly reduce the loading error, while eliminating high-frequency oscillations from
the error curve.

From the comparison of the simulation results in Figures 21 and 22, a noticeable
increase is demonstrated in the loading error of the PID controller when subjected to
disturbance loading. This result is primarily due to the surplus force generated by position
disturbances, resulting in an inadequate suppression of the excess forces. In contrast, the
sliding mode controller exhibits a significantly improved force-loading accuracy compared
to the PID controller. Furthermore, the FVPTSM outperforms the DPTSM in terms of
force-loading accuracy and offers a superior suppression of excess forces.
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The analysis of the aforementioned results reveals that the proposed sliding mode
controller exhibits a significantly superior excess force suppression effect compared to
the traditional PID controller. Moreover, in the presence of disturbances, the FVPTSM
outperforms the DPTSM in terms of excess force suppression.

4.2. Experimental Verification

The experimental verification of the proposed controller is essential to demonstrate its
effectiveness. The 3D model, test rig, and hydraulic schematic, as shown in Figures 23 and 24,
incorporate a double-rod symmetrical hydraulic cylinder controlled by a servo valve for
force loading, while a servo electric cylinder is employed to simulate the position distur-
bance experienced by the actual tested servo actuator. Moreover, closed-loop control is
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achieved through feedback from the force sensor. The specifications of the key components
adopted in the test rig are listed in Table 2. The PID, DPTSM, and FVPTSM controllers are
embedded in the host computer software. The step- and sine-command loading experi-
ments are conducted under both disturbed and undisturbed conditions for comparative
verification. The experimental conditions are listed in Table 3.
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Table 2. Specification of key components in simulator test rig.

Signal Type Amplitude Frequency (Hz)

Hydraulic supply Customized System pressure: 25 MPa
Max flow rate: 40 L/min

Loading hydraulic cylinder SFG-50-36-260 Rated pressure: 25 MPa
Max output force: 50,000 N

Servo valve D633-313B Rated flow: 40 L/min

Force sensor CYB-602S-5T Range: 0~50,000 N
Accuracy: 0.1% FS

Displacement sensor Magnetostrictive
displacement sensor

Range: 0~270 mm
Accuracy: 0.005% FS

Data acquisition card USB1902 Voltage acquisition channels: 16

Linear electric cylinder FDR075 Stroke: ±50 mm
Max output force: 10,000 N

Servo driver SV-DA200 AC380V
pulse I/O control
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Table 3. Experimental conditions of electro-hydraulic load simulator.

Signal Type Amplitude Frequency (Hz)

Step loading signal 3000 N -
Sine loading signal 3000 N 0.05

Sine position disturbance 10 mm 0.4

As shown in Figure 25, both the PID controller and the sliding mode controllers of
the two reaching laws ensure a smaller steady-state loading error for step instruction
loading without interference. The loading accuracy of the two reaching laws is essentially
equivalent. However, the PID controller exhibits a significant overshoot and a longer
convergence time. As illustrated in Figure 26, for sinusoidal command loading with sine
position disturbance, a similar loading accuracy with a reduced phase lag and loading
error is demonstrated by the two sliding mode controllers, as compared to those by the
PID controller. The experimental results for undisturbed loading are consistent with the
simulation outcomes.

From the results of the step and sine response with sine position disturbance, as
shown in Figures 27 and 28, respectively, due to the influence of excess force, under the step
command signal, the loading accuracy of the PID controller is significantly compromised,
and the overshoot and oscillation are more pronounced. In contrast, both sliding mode
controllers, with their respective reaching laws, achieve superior suppression effects on
the excess force, ensuring a high loading accuracy without any overshoot. Furthermore,
the FVPTSM controller demonstrates a slightly better loading accuracy than the DPTSM
controller, while also displaying a shorter rising time and faster response speed. The
PID controller exhibits a poorer suppression of excess force, a lower loading accuracy,
and greater phase lag than that of the sliding mode controllers in response to sinusoidal
command loading. Meanwhile, the force-tracking performance of the FVPTSM is slightly
superior to the DPTSM, which is similar to the step loading condition.
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10 mm, 0.4 Hz sinusoidal position disturbance.

5. Conclusions

In this work, a modified fast variable-power terminal sliding mode control strategy
(FVPTSM) is proposed for overcoming the system’s strong phase lag and position distur-
bance, to achieve the accurate force-tracking performance of the large-load and high-inertia
aerospace electro-hydraulic load simulator. According to the system characteristics ana-
lyzed by the precise mathematical model and state–space model built by the authors, the
feasibility and applicability of the algorithm is verified for rapid force tracking and high
robustness. Furthermore, the FVPTSM is adopted in the design of the system controller,
combined with the state–space model, and the finite-time convergence and asymptotic
stability of the system are validated utilizing the Lyapunov stability analysis and proof.
Additionally, the simulation and experimental results demonstrate the effectiveness of the
proposed control algorithm, as compared to the conventional PID and the designed DPTSM
methods, ensuring superior dynamic performance and stronger anti-interference ability
and meeting the system requirements completely.
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