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Abstract: Model Predictive Control (MPC) has many advantages in controlling an aero-engine, such
as handling actuator constraints, but the computational burden greatly obstructs its application. The
current multiplex MPC can reduce computational complexity, but it will significantly decrease the
control performance. To guarantee real-time performance and good control performance simultane-
ously, an intelligent reduced-dimensional scheme of MPC is proposed. The scheme includes a control
variable selection algorithm and a control sequence coordination strategy. A constrained optimization
problem with low computational complexity is first constructed by using only one control variable
to define a reduced-dimensional control sequence. Therein, the control variable selection algorithm
provides an intelligent mode to determine the control variable that has the best control effect at the
current sampling instant. Furthermore, a coordination strategy is adopted in the reduced-dimensional
control sequence to consider the interaction of control variables at different predicting instants. Finally,
an intelligent reduced-dimensional MPC controller is designed and implemented on an aero-engine.
Simulation results demonstrate the effectiveness of the intelligent reduced-dimensional scheme.
Compared with the multiplex MPC, the intelligent reduced-dimensional MPC controller enhances
the control quality significantly by 34.06%; compared with the standard MPC, the average time
consumption is decreased by 64.72%.

Keywords: model predictive control; computational complexity; reduced-dimensional; control
variable selection; aero-engine

1. Introduction

As the power source of flight, the aero-engine plays an important role in the modern
aircraft. During operation, the engine needs to not only meet the power requirement of
the flight mission but also to ensure its own safety [1]. These all impose strict demands on
the engine’s control system. With the increasing demands, traditional control techniques
cannot handle the tasks well [2,3]. Therefore, the engineering community of aero-engine
control is urged to seek more advanced control techniques. Model Predictive Control
(MPC), a model-based optimal control method, has attracted engineers’ attention [4–6].
MPC emerged in the 1970s and then rapidly flourished in process control [7,8]. MPC has an
online prediction model, which can estimate unmeasurable performance parameters. This is
lacking in other techniques (e.g., robust control, adaptive control) [9,10]. Additionally, MPC
solves a constrained optimization problem, which can achieve the control objective and
constrains management simultaneously. The constraints consider the physical limitations
of the actuators, whereas other techniques (e.g., anti-windup) require additional design to
handle them [11]. Therefore, researchers try to apply MPC to aero-engines [12–15].

Although MPC can enhance control performance, it has real-time implementation
issues. The main reason is that optimization in MPC leads to a huge computational
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burden [16]. The MPC controller mainly includes an optimization problem and a math-
ematical algorithm. At each sampling instant, a nonlinear optimization problem can be
constructed according to the control objective and the constraint conditions. Then, the
mathematical algorithm is employed to solve this optimization problem. Since there have
been many well-developed mathematical algorithms to be chosen, this paper focuses on
the optimization problem [17,18].

Among the existing methods, Bemporad aimed to perform the solution of the online
optimization problem offline and proposed the explicit MPC [19–21]. Based on multi-
parameter programming theory, the explicit MPC controller is designed offline in each
region of the state space. When implementing online, the corresponding control parameters
are searched according to the current state. The method of offline calculation and online
query greatly reduces the online computational complexity of the MPC controller and thus
improves the real-time property. Gu improved the control system’s real-time performance
by applying the multiparameter quadratic programming explicit model predictive con-
trol on a turboshaft engine [22], while Feng designed the explicit MPC controller for a
turbofan engine and demonstrated that it meets the requirement of real-time property by a
hardware-in-the-loop test [23]. However, this explicit implementation must satisfy that the
optimization problem can be simplified into a multiparameter programming. In addition,
the control parameters of all regions should be stored in the explicit MPC controller, placing
high demands on the memory of the control system. What is more, the explicit MPC
controller that has been designed offline may fail when the engine deteriorates.

From handling the online optimization problem itself, there are two directions to
reduce the computational complexity. The first is to decrease the order of the optimization
problem. Normally, the 2-norm is used to construct a quadratic cost function as the perfor-
mance index, resulting in the optimization problem being nonlinear [24]. Using 1/∞-norm
instead of 2-norm can construct a linear cost function which reduces the optimization
problem’s order and can be solved by simpler linear programming. Genceli employed
the 1-norm to form the cost function and thus solved the control law by online linear pro-
gramming [25]. Kerrigan utilized 1/∞-norm in a robustly stable MPC problem and found
that the ∞-norm has higher real-time performance, while the 1-norm has higher solution
accuracy [26]. However, compared with the 2-norm, the 1/∞-norm results in obvious
differences in the solution results, which hinders further development in this direction.

Another direction is to lower the scale of the optimization problem by reducing
the dimension of the control sequence. In reality, the computational complexity of the
optimization problem relates to the cube of the control sequence’s length [27,28]. Different
from standard MPC that updates all the control inputs at the same time, multiplexed MPC
(mMPC), which is proposed by Ling, is employed to update only one control variable at a
time and all the control variables sequentially and cyclically in the implementation process,
resulting in the computation speed up [29,30]. Richter applied mMPC to a large commercial
turbofan engine and demonstrated the computational savings of this method [31]. Then,
Pang employed this method to control a gas turbine engine, and all the results showed that
the time consumption can be greatly reduced in comparison with the standard MPC [32,33].
Although it has shown superiority in reducing computational complexity, mMPC finds a
suboptimal solution to the original optimization problem actually, and the control variable’s
update mode is fixed and inflexible. Each control variable has the same possibility to be
used to control the system despite their different regulating abilities. Therefore, the control
quality actually witnesses a significant decrease. In the implementation in an aero-engine,
the mMPC controller has a much bigger control error than the standard MPC ones [31,32].

Aiming at the defect of existing methods, a novel MPC intelligent reduced-dimensional
scheme is proposed in this paper to realize great real-time performance and control perfor-
mance simultaneously. The main contributions are as follows:

(1) Different from mMPC, a selection algorithm is designed in the scheme to determine
the control variable with the best control effect at each sampling instant, which is an
intelligent update mode and helps to enhance the control performance;
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(2) To search for a better sub-optimal solution, a coordination strategy is developed in the
scheme, which considers the interaction of the control variables at different predicting
instants in the control sequence;

(3) By constructing an optimization problem with low computational complexity, the intel-
ligent reduced-dimensional scheme guarantees the superiority in time consumption.

The remainder of this paper is organized as follows. Section 2 details the methodology
of the proposed intelligent reduced-dimensional scheme. Section 3 shows the simulation re-
sults to demonstrate the effectiveness of the proposed method. Finally, Section 4 concludes
this paper.

2. MPC Intelligent Reduced-Dimensional Scheme
2.1. MPC Optimization Problem with Low Computational Complexity

Consider a linear state-space model with forms of discrete-time and small deviation
as the predictive model: 

xk+1 = Axk + Buk
yk = Cxk + Duk
uk+1 = uk + ∆uk

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, the output vector y ∈ Rr

contains the controlled parameters yctrl ∈ Rs and the constrained parameters ycon ∈ Rt,
and k is the sampling instant. The system matrices A, B, C and D have dimensions of n by
n, n by m, r by n and r by m, respectively. Note that the symbol ∆, which represents a small
deviation, is omitted for simplifying the expression.

In Equation (1), the third formula introduces integral action to the MPC, and ∆uk actu-
ally represents the increment of input vector with a small deviation form, i.e.,
(∆)uk+1 = (∆)uk + (∆)∆uk [31].

After augmenting the state vector with the input vector, Equation (1) can be rewritten as
xa,k+1 = Aaxa,k + Ba∆uk

yctrl,k = Ca,ctrl xa,k
ycon,k = Ca,conxa,k

(2)

where xT
a,k = [xT

k uT
k ] ∈ R1×(n+m), Aa =

[
A B
0 I

]
∈ R(n+m)×(n+m), Ba =

[
0
I

]
∈ R(n+m)×m,

Ca,ctrl =
[
Cctrl Dctrl

]
∈ Rs×(n+m), Ca,con =

[
Ccon Dcon

]
∈ Rt×(n+m).

For the MPC, the computation complexity of its optimization problem depends on the
dimension of ∆uk in Equation (2) to a great extent. Therefore, the input vector is encouraged
to lower the dimension from m to 1 to minimize the computation complexity.

Without loss of generality, consider the ith control variable ∆ui,k as the available one
and ∆uj,k = 0, j ̸= i. ∆ui,k can be obtained by removing all the zero elements from ∆uk.
Then, the first formula in Equation (2) is revised as

∆ui,k = Ei∆uk
xa,k+1 = Aaxa,k + (BaET

i )∆ui,k
(3)

where Ei ∈ R1×m is a transfer matrix, and its ith element is 1, while the others are zero.
It should be noted that the other control variables keep their previous values when

selecting ui at sampling instant k.
Then, a reduced-dimensional control sequence in the MPC can be defined as

∆Ũ = [∆uT
i,k, ∆uT

i,k+1, . . . , ∆uT
i,k+Nc−1]

T
(4)

where Nc is the control horizon.
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According to Equations (2)–(4), the predicted output vector over the prediction horizon
can be denoted as

Yctrl = Pctrl xa,k + Hctrl∆Ũ
Ycon = Pconxa,k + Hcon∆Ũ

(5)

where Yctrl = [yT
ctrl,k+1, yT

ctrl,k+2, . . . , yT
ctrl,k+Np]

T , Ycon = [yT
con,k+1, yT

con,k+2, . . . , yT
con,k+Np]

T ,

Np is the prediction horizon. The Pctrl ∈ RsNp×(n+m), Pcon ∈ RtNp×(n+m), Hctrl ∈ RsNp×Nc

and Hcon ∈ RtNp×Nc are

Pctrl =



Ca,ctrl Aa
Ca,ctrl A2

a
...

Ca,ctrl ANc
a

...
Ca,ctrl ANp

a


, Hctrl =



Ca,ctrl BaET
i 0 0 · · · 0

Ca,ctrl AaBaET
i Ca,ctrl BaET

i 0 · · · 0
...

...
...

...
...

Ca,ctrl ANc−1
a BaET

i Ca,ctrl ANc−2
a BaET

i Ca,ctrl ANc−3
a BaET

i · · · Ca,ctrl BaET
i

...
...

...
...

...
Ca,ctrl ANp−1

a BaET
i Ca,ctrl ANp−2

a BaET
i Ca,ctrl ANp−3

a BaET
i · · · Ca,ctrl ANp−Nc

a BaET
i



Pcon =



Ca,con Aa
Ca,con A2

a
...

Ca,con ANc
a

...
Ca,con ANp

a


, Hcon =



Ca,conBaET
i 0 0 · · · 0

Ca,con AaBaET
i Ca,conBaET

i 0 · · · 0
...

...
...

...
...

Ca,con ANc−1
a BaET

i Ca,con ANc−2
a BaET

i Ca,con ANc−3
a BaET

i · · · Ca,conBaET
i

...
...

...
...

...
Ca,con ANp−1

a BaET
i Ca,con ANp−2

a BaET
i Ca,con ANp−3

a BaET
i · · · Ca,con ANp−Nc

a BaET
i



(6)

Equation (5) is considered to have a high prediction accuracy, and with the help of
it, a constrained optimization problem under the reduced-dimensional control sequence
Equation (4) can be constructed as follows.

A common quadratic performance index that contains the control error and the control
energy consumption is defined as the cost function of the optimization problem.

J = eTQe + ∆ŨT R∆Ũ (7)

where e = rctrl − Yctrl is the error vector, and rctrl = [rT
k+1 rT

k+2 . . . rT
k+Np]

T is the command
vector. Q and R are two weight matrices to balance the control error and the control energy
consumption. In other words, larger coefficients in Q denote smaller control errors of the
controlled parameters, while larger coefficients in R indicate less energy consumption,
which reduces the system’s response speed when applying the ith control variable.

Q =


Q̃

. . .
Q̃

 ∈ RsNp×sNp, Q̃ =

Q1
. . .

Qs

 ∈ Rs×s, R =

Ri
. . .

Ri

 ∈ RNc×Nc (8)

where Qi, i = 1, 2, . . . , s is the weight for each controlled parameter, and Ri is the weight for
the ith control variable.

The constraint conditions of the output parameters and the control variable can be
represented in the form of ∆Ũ, as follows.{

Hcon∆Ũ ≤ Yub
−Hcon∆Ũ ≤ Ylb{
∆Ũ ≤ dUub
−∆Ũ ≤ dUlb{
Lcon∆Ũ ≤ Uub
−Lcon∆Ũ ≤ Ulb

(9)
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with {
Yub = [It,1, It,2, . . . , It,Np]

Tycon,ub − Pconxa,k

Ylb = −[It,1, It,2, . . . , It,Np]
Tycon,lb + Pconxa,k{

dUub = [dui,ub, dui,ub, . . . , dui,ub]
T

dUlb = −[dui,lb, dui,lb, . . . , dui,lb]
T{

Uub = [ui,ub, ui,ub, . . . , ui,ub]
T

Ulb = −[ui,lb, ui,lb, . . . , ui,lb]
T

(10)

Lcon =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

...
1 1 1 1 1

 ∈ RNc×Nc (11)

where the subscripts ub and lb denote the upper limit and the lower limit.
Since Equation (2) has a form of small deviation, ycon,ub = [ycon,1,ub, ycon,2,ub, . . . , ycon,t,ub]

T

and ycon,lb = [ycon,1,lb, ycon,2,lb, . . . , ycon,t,lb]
T are the constrained parameters’ increment up-

per and lower limit, respectively. dui,ub and dui,lb are the ith control variable increment rate’s
upper and lower limit, respectively. ui,ub and ui,lb are the ith control variable increment
magnitude’s upper and lower limit, respectively.

Finally, a constrained optimization problem with low computation complexity is
summarized as

min J = eTQe + ∆ŨT R∆Ũ
s.t. M∆Ũ ≤ C

(12)

where M =



Hcon
−Hcon

I
−I
Lcon
−Lcon

, C =



Yub
Ylb

dUub
dUlb
Uub
Ulb

.

Some well-developed methods can cope with the constructed optimization problem.
Among them, the interior point method is accessible. For the solution ∆Ũ, the first element
∆ui,k is utilized to update the ith control variable and control the aero-engine at sampling
instant k.

2.2. Control Variable Selection Algorithm

In fact, the control effect on the engine during the regulating process is accumulated
by the control effect at each sampling instant, and the control effect at each sampling instant
depends on the regulating ability of the selected control variable. Therefore, it is extremely
necessary to consider which control variable is to be chosen at each sampling instant for
better control results. However, the existing method, such as mMPC, does not pay enough
attention to this selection issue. It changes the control variable sequentially and cyclically
as the sampling instant increases, as shown in Figure 1. Essentially, it is an inflexible
and non-intelligent selection mode. Since the regulating ability of each control variable
is evidently not equivalent, an intelligent mode is needed to choose the suitable control
variable at each sampling instant.

To achieve the intelligent mode, a control variable selection algorithm is designed to
select the control variable that has the best control effect at the current sampling instant.
According to the system information of the current sampling instant and the control target,
the control effect of each control variable can be predicted for selection. The control variable
selection algorithm is conducted as follows.

Firstly, the value range of each control variable at the first predicting instant is calcu-
lated. For example, at sampling instant k, the ith control variable at predicting instant k (i.e.,
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∆ui,k) should be able to meet the requirements of the constraints, that is, the limits of the
control variable increment rate, the limits of the control variable increment magnitude and
the limits of the constrained parameters’ increment.

dui,lb ≤ ∆ui,k ≤ dui,ub
ui,lb ≤ ∆ui,k ≤ ui,ub

(13)

ycon,lb ≤ ycon,k+1 = Ca,con Aaxa,k + Ca,conBaET
i ∆ui,k ≤ ycon,ub (14)

According to Equations (13) and (14), the value range of ∆ui,k can be calculated as[
∆ui,k,min ∆ui,k,max

]
(15)
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Then, the value range of the controlled parameters at predicting instant k + 1 can be
computed as

{
yctrl,k+1,min(∆ui,k) = min(Ca,ctrl Aaxa,k + Ca,ctrl BaET

i ∆ui,k,min, Ca,ctrl Aaxa,k + Ca,ctrl BaET
i ∆ui,k,max)

yctrl,k+1,max(∆ui,k) = max(Ca,ctrl Aaxa,k + Ca,ctrl BaET
i ∆ui,k,min, Ca,ctrl Aaxa,k + Ca,ctrl BaET

i ∆ui,k,max)
(16)

By comparing rk+1 with
[
yctrl,k+1,min(∆ui,k) yctrl,k+1,max(∆ui,k)

]
, the possible value

of ∆ui,k can be obtained.

∆ui,k =


∆ui,k,min or ∆ui,k,max, i f rk+1 < yctrl,k+1,min(∆ui,k)
rk+1−Ca,ctrl Aaxa,k

Ca,ctrl BaET
i

, i f yctrl,k+1,min(∆ui,k)< rk+1 < yctrl,k+1,max(∆ui,k)

∆ui,k,max or ∆ui,k,min, i f rk+1 > yctrl,k+1,max(∆ui,k)

(17)

In Equation (17), the first formula represents the value of ∆ui,k that corresponds to
yctrl,k+1,min(∆ui,k) and so does the third formula.

Subsequently, a merit function that considers the minimum control error and the
possible control energy consumption is used to evaluate the control effect of ∆ui,k.

J̃(∆ui,k) =


Q̃(rk+1 − yctrl,k+1,min)

2 + Ri∆ui,k
2, i f rk+1 < yctrl,k+1,min(∆ui,k)

Ri∆ui,k
2, i f yctrl,k+1,min(∆ui,k)< rk+1 < yctrl,k+1,max(∆ui,k)

Q̃(rk+1 − yctrl,k+1,max)
2 + Ri∆ui,k

2, i f rk+1 > yctrl,k+1,max(∆ui,k)

(18)
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In Equation (18), ∆ui,k takes the corresponding value in Equation (17). The second
formula indicates the case in which the control objective is in the range of the control
variable’s regulating ability.

Finally, the merit functions of m control variables are calculated separately, and the
control variable with the smallest merit function value is taken as the selected one.

The flowchart of the control variable selection algorithm at the current sampling
instant can be illustrated as in Figure 2.

2.3. Control Sequence Coordination Strategy

Despite only the first element ∆ui,k in the control sequence being fed to the engine,
MPC actually predicts all the other elements, i.e., ∆ui,k+1, . . . , ∆ui,k+Nc−1, by solving the
constructed optimization problem. In the solution process, the result of each element
will affect the others. For example, if the second element is another variable ∆uj,k+1, the
solution result of ∆ui,k changes accordingly. Among the elements, each one represents the
predictive value of the control variable at the corresponding sampling instant. According
to Section 2.2, each sampling instant can select the best variable to be the control action.
Assume that the variable at sampling instant k + 1 is ∆uj; it is better to employ ∆uj as the
second element in the control sequence of sampling instant k. This is true for the other
sampling instants (k + 2, . . . , k + Nc − 1). Under this arrangement, ∆ui,k can obtain a
better solution to enhance the control performance since each element is selected properly,
whereas all the elements are the same in mMPC, which neglects the interaction among the
predicting instants in the control sequence.
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The arrangement is called a control sequence coordination strategy. The strategy is
conducted as follows to optimally select the variables at subsequent predicting instants in
the control sequence.
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Based on Section 2.2, the first element and its potential value in the control sequence
can be determined as ∆ui,k. Assuming that the second element is ∆uj,k+1, it should also
satisfy the constraints of control variable and constrained parameters.

duj,lb ≤ ∆uj,k+1 ≤ duj,ub
uj,lb ≤ ∆uj,k+1 ≤ uj,ub

(19)

ycon,lb ≤ ycon,k+2 = Ca,con Aaxa,k+1 + Ca,conBaET
j ∆uj,k+1 ≤ ycon,ub (20)

In Equation (20), xa,k+1 can be obtained with the help of Equations (2) and (3).
Similarly, the value range of ∆uj,k+1 and the value range of the controlled parameters

at predicting instant k + 2 can be derived as[
∆uj,k+1,min ∆uj,k+1,max

]
(21){

yctrl,k+2,min(∆uj,k+1) = min(Ca,ctrl Aaxa,k+1 + Ca,ctrl BaET
j ∆uj,k+1,min, Ca,ctrl Aaxa,k+1 + Ca,ctrl BaET

j ∆uj,k+1,max)

yctrl,k+2,max(∆uj,k+1) = max(Ca,ctrl Aaxa,k+1 + Ca,ctrl BaET
j ∆uj,k+1,min, Ca,ctrl Aaxa,k+1 + Ca,ctrl BaET

j ∆uj,k+1,max)
(22)

Then, the possible value of ∆uj,k+1 is

∆uj,k+1 =


∆uj,k+1,min or ∆uj,k+1,max, i f rk+2 < yctrl,k+2,min(∆uj,k+1)
rk+2−Ca,ctrl Aa xa,k+1

Ca,ctrl Ba ET
j

, i f yctrl,k+2,min(∆uj,k+1)< rk+2 < yctrl,k+2,max(∆uj,k+1)

∆uj,k+1,max or ∆uj,k+1,min, i f rk+2 > yctrl,k+2,max(∆uj,k+1)

(23)

In the same way, to evaluate the control effect of ∆uj,k+1, the merit function can be
constructed as

J̃(∆uj,k+1) =


Q̃(rk+2 − yctrl,k+2,min)

2 + Rj∆uj,k+1
2, i f rk+2 < yctrl,k+2,min(∆uj,k+1)

Rj∆uj,k+1
2, i f yctrl,k+2,min(∆uj,k+1)< rk+2 < yctrl,k+2,max(∆uj,k+1)

Q̃(rk+2 − yctrl,k+2,max)
2 + Rj∆uj,k+1

2, i f rk+2 > yctrl,k+2,max(∆uj,k+1)
(24)

By computing the m merit functions, the second element and its potential value in
the control sequence can be determined. Then, accordingly, the variable that yields the
optimal control effect at each predicting instant can be selected to form a coordinated
control sequence, as illustrated in Figure 3.
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2.4. Intelligent Reduced-Dimensional MPC

Denote the coordinated control sequence as

∆
⌢
U = [∆ui,k, ∆uj,k+1, ∆ul,k+2, . . .]T (25)

where i, j and l separately represent the selected control variable at their correspond-
ing predicting instants.

Based on Equation (25), a new constrained optimization problem can be constructed
as follows. Firstly, Equation (5) can be rewritten as

Yctrl = Pctrl xa,k +
⌢
Hctrl∆

⌢
U

Ycon = Pconxa,k +
⌢
Hcon∆

⌢
U

(26)

where
⌢
Hctrl has a difference from Hctrl in that the transfer matrix ET

i in each column should

be changed according to Equation (25). The same is true for the matrix
⌢
Hcon.

The cost function is also changed as

⌢
J = eTQe + ∆

⌢
U

T⌢
R∆

⌢
U (27)

where
⌢
R =


Ri

Rj
Rl

. . .

 ∈ RNc×Nc.

Then, for the constrained parameters and control variables, the corresponding equa-
tions about limitation are { ⌢

Hcon∆
⌢
U ≤ Yub

−
⌢
Hcon∆

⌢
U ≤ Ylb{

∆
⌢
U ≤ d

⌢
Uub

−∆
⌢
U ≤ d

⌢
Ulb{ ⌢

L con∆
⌢
U ≤

⌢
Uub

−
⌢
L con∆

⌢
U ≤

⌢
Ulb

(28)

where  d
⌢
Uub = [dui,ub, duj,ub, dul,ub, . . .]T

d
⌢
Ulb = −[dui,lb, duj,lb, dul,lb, . . .]T

⌢
Uub = [ui,ub, uj,ub, ul,ub, . . .]T
⌢
Ulb = −[ui,lb, uj,lb, ul,lb, . . .]T

(29)

⌢
Lcon ∈ RNc×Nc is a lower triangular matrix with diagonal elements all equal to 1. Except for the

diagonal, for any two variables in the control sequence {∆ui(k1) ∆ui(k2)|k1 < k2, i = 1,2, · · · , m},
⌢
Lcon(k2, k1) = 1.

Finally, the constrained optimization problem in the intelligent reduced-dimensional
MPC can be abstracted as

min
⌢
J = eTQe + ∆

⌢
U

T⌢
R∆

⌢
U

s.t.
⌢
M∆

⌢
U ≤

⌢
C

(30)
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where
⌢
M =



⌢
Hcon

−
⌢
Hcon
I
−I
⌢
L con

−
⌢
L con


,
⌢
C =



Yub
Ylb
⌢
Ub
⌢
Ua
⌢
Uub
⌢
Ulb


.

In summary, the proposed intelligent reduced-dimensional scheme has three key
points. Firstly, reduce the dimension of control variables from m to 1 to lower the compu-
tational complexity of the optimization problem in MPC; secondly, determine the control
variable with the best control effect at the current sampling instant by the control variable
selection algorithm; finally, define a coordinated reduced-dimensional control sequence as
Equation (25) with the help of the control variable coordination strategy and thus construct
the constrained optimization problem Equation (30). By solving the optimization problem
and applying the solution to the aero-engine, a receding horizon control process can operate.
The flowchart of the proposed method is shown in Figure 4.
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3. Simulation and Discussion
3.1. Simulation Cases

A twin-shaft turbofan engine with core driven fan stage (CDFS) is selected as the
controlled object. The engine has components of intake, fan, CDFS, high-pressure compres-
sor (HPC), combustor, high-pressure turbine (HPT), low-pressure turbine (LPT), duct and
nozzle. By referring to the modeling method in [34,35] and using the Simulink Toolbox
for the Modeling and Analysis of Thermodynamics Systems (T-MATS), the component-
level model of this engine is constructed. In the model, all the co-operation equations are
formulated based on aero-thermodynamics principles, flow continuity equations, pres-
sure balance equations and rotor dynamics equations and are solved with the help of the
Newton-Raphson method. All the components’ maps and performance data are acquired
from GasTurb [36].

The input of the component-level model includes the flight condition [H, Ma] and the
following control variables: the fuel flow W f , the nozzle area A8 and the variable guide

vane angle of LPT αLPT , i.e., ∆u = [∆W f ∆A8 ∆αLPT ]
T . The output parameters are

composed of the low-pressure rotor speed nL, the high-pressure rotor speed nH , the HPC
exhaust pressure P3 and the LPT exhaust temperature T5. Among them, nL is selected
as the controlled parameter due to the strong correlation with thrust, while nH , P3 and
T5 are considered the constrained parameters for safety operation, i.e., yctrl = nL and
ycon = [nH P3 T5]

T .
To demonstrate the effectiveness of the proposed intelligent reduced-dimensional

scheme, simulations are conducted at two flight conditions: [H, Ma] = [0, 0] and [H, Ma]
= [11,000 m, 1.2]. In these conditions, the configuration of the engine is listed in Tables 1
and 2, wherein Ts = 20 ms is the sampling period.

Table 1. The configuration of the engine at [H, Ma] = [0, 0].

Parameters Initial Steady-State Value Magnitude Limit Rate Limit Unit

Output

nL 98 %
nH 99.7 nH ≤ 102 %
P3 2618.4 P3 ≥ 2500 kPa
T5 1198.2 T5 ≤ 1300 K

Control variable
W f 0.768 0.1 ≤ W f ≤ 1 0.03/Ts kg/s
A8 100 90 ≤ A8 ≤ 110 0.5/Ts %

αLPT 1 0 ≤ αLPT ≤ 5 0.2/Ts
◦

Table 2. The configuration of the engine at [H, Ma] = [11,000 m, 1.2].

Parameters Initial Steady-State Value Magnitude Limit Rate Limit Unit

Output

nL 98 %
nH 98.6 nH ≤ 102 %
P3 1425.4 P3 ≥ 1300 kPa
T5 1189 T5 ≤ 1300 K

Control variable
W f 0.429 0.1 ≤ W f ≤ 1 0.03/Ts kg/s
A8 100 90 ≤ A8 ≤ 110 0.5/Ts %

αLPT 1 0 ≤ αLPT ≤ 5 0.2/Ts
◦

A set value of ∆nL = 2% is given as the control objective of both cases. A method is
adopted to determine the reference trajectory based on the set value and the current value
of the controlled parameter [37], wherein α is a softening factor.

rk+j = αjyctrl,k + (1 − αj)∆nL, j = 1, 2, . . . , Np (31)
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For each case, an intelligent reduced-dimensional linear MPC controller, denoted as
“irdMPC” and shown in Figure 5, can be designed according to Section 2 and implemented
to achieve the control targets. Concurrently, both the standard MPC controller and the
multiplex MPC controller, denoted as “sMPC” and “mMPC”, respectively, are designed for
comparative analysis.

3.2. Control Effect Comparison

Firstly, a simulation is conducted at the flight condition [H, Ma] = [0, 0] to illustrate
the effectiveness of the proposed method in control performance. During the simulation,
the designed MPC controllers, which are “irdMPC”, “sMPC” and “mMPC”, adopt the
same parameter settings, i.e., prediction horizon Np, control horizon Nc, weight matrices
Q and R, in order to intuitively reflect the differences in control quality. By trial-and-
error simulations, they can be well tuned. The controlled parameter’s response under the
three MPC controllers is depicted in Figure 6. The constrained parameters are depicted in
Figure 7.
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Although all the MPC controllers can accomplish effective command tracking and
constrains management, they actually have different performances. From Figure 6, it can
be seen that “mMPC” witnesses a noticeable overshoot and long tracking response time.
Thus, it has a poorer control outcome in command tracking than the others. “irdMPC”
outperforms “mMPC”, but it is still slightly inferior to “sMPC”. The reason is that “irdMPC”
and “mMPC” degrade their regulating ability by reducing the dimension of the control
sequence. Nevertheless, “irdMPC” can track the reference trajectories well and has smaller
tracking errors than “mMPC”, demonstrating the effectiveness of the intelligent reduced-
dimensional scheme in achieving good control quality. In terms of constraint management,
the constrain parameters of the three MPC controllers reach different values after the
transition process, as shown in Figure 7. Similarly, “irdMPC” is closer to “sMPC” than
“mMPC”, which represents that “irdMPC” derives a better operating state than “mMPC”.
Moreover, “mMPC” has a certain oscillation during transition in Figure 7b.

The parameters’ response originates from the control variables’ changes. During
the process, the control variables’ changes are shown in Figure 8. During transition, the
selected control variable in “irdMPC” at each sampling instant is represented as “o” and is
displayed in Figure 9.

In Figure 8, the control variables have various changes in the MPC controllers. Unlike
“sMPC”, only one control variable is optimized in “mMPC” and “irdMPC” at each sampling
instant. Moreover, the control variable to be optimized among them is also different. Thus,
the results of solving constraints’ optimization problems, namely the changes of control
variables, are different, resulting in their corresponding control outcomes. From Figure 9, it
can be seen that the intelligent reduced-dimensional scheme selects W f for adjustment in the
initial stage of transition, while it selects the three variables separately in the middle stage
and A8 in the final stage. This intelligent update mode makes the variables of “irdMPC”
nearer to those of “sMPC” and thus leads to a better parameter response than “mMPC”.
Although the αLPT change is different from the others, it has only a small impact on the
overall results since the regulating ability of αLPT is the lowest among the variables.

For further comparison, the Root Mean Squared Error (RMSE) of the controlled pa-
rameter nL is calculated by Equation (32) to quantify the control errors of the controllers.
Table 3 shows the RMSE of the three MPC controllers.

RMSE =

√√√√√ N
∑

i=1
(ri − yctrl,i)

2

N
(32)

where N is the number of sample points.

Table 3. RMSE comparison of “sMPC”, “mMPC” and “irdMPC”.

sMPC mMPC irdMPC

RMSE (×10−2) 3.8146 8.046 5.3057

By comparing the controllers’ RMSE, it can be seen that the multiplex MPC controller
has much larger RMSE compared with the standard one. The RMSE of the “mMPC” is 2.11
times and differs by 4.2314 × 10−2 from that of “sMPC”. While “irdMPC” greatly decreases
the control errors, it has an RMSE of 5.3057 × 10−2 and a 34.06% improvement in control
performance over “mMPC”. Compared with “mMPC”, “irdMPC” significantly reduces
the RMSE deviation from 4.2314 × 10−2 to 1.4911 × 10−2, which indicates the superiority
of the proposed intelligent reduced-dimensional scheme to the existing method, i.e., the
multiplex MPC, in control performance.
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3.3. Time Consumption Comparison

To illustrate the effectiveness of the proposed method in real-time performance, some
simulations of different control horizons are conducted at the flight condition [H, Ma] =
[0, 0]. During the simulation, the time required for the optimization solving processes in
“irdMPC”, “sMPC” and “mMPC” are recorded and compared. Since the MPC controllers
adopt the same configuration and the simulations implement the same test environment,
the results make sense. Table 4 lists the average time of the optimization problem solving,
which is defined as Equation (33) and denoted as “tavg”.

tavg =

N
∑

i=1
ti

N
(33)

Table 4. Average time comparison of the “sMPC”, “mMPC” and “irdMPC”.

Nc
tavg (ms)

sMPC mMPC irdMPC

3 6.3461 4.858 4.9351
4 7.4579 4.9323 5.1989
5 9.1945 5.0723 5.4687
6 11.111 5.2522 5.6339
7 13.2113 5.3438 5.8783
8 15.2596 5.5492 6.008
9 17.4286 5.6789 6.148

In Table 4, the prediction horizon Np is equal to 10. It can be seen that the average
time consumption of these MPC controllers increases as the control horizon increases. The
increase in the control horizon leads to an increase in the dimension of the control sequence.
Therefore, the computational complexity increases, resulting in the time required for the
optimization solutions increasing, while under the same control horizon, “irdMPC” has
a lower dimension of the control sequence compared with “sMPC” and thus has lower
computational complexity and a shorter average time consumption. The average time
consumption of “irdMPC” is 4.9351 ms when the control horizon is 3, while that of the
“sMPC” is 6.3461 ms. The tavg of “sMPC” is 1.286 times that of “irdMPC”. When the
control horizon is 9, the tavg of “irdMPC” is 6.148 ms, while that of “sMPC” is 17.4286
ms. The tavg of “sMPC” becomes 2.835 times that of “irdMPC”. As the dimension of
the control sequence increases, “irdMPC” reduces the tavg of “sMPC” at most by 64.72%.



Actuators 2024, 13, 140 16 of 19

Compared with “mMPC”, “irdMPC” has a slightly bigger time consumption as a result of
the control variable selection algorithm and control sequence coordinate strategy embedded
in the scheme bringing extra computational tasks. For the tavg of “irdMPC” and “mMPC”,
the ratio fluctuates between 1.016 and 1.1, which is small and acceptable considering a
significant improvement in control performance. Furthermore, this ratio does not have a
growing trend as the control horizon increases.

In the case of Nc = 5, some single-step time consumption results are listed in Table 5 to
show details about the real-time performance comparison.

Table 5. Single-step time comparison of “sMPC”, “mMPC” and “irdMPC”.

Sampling Instant
t (ms)

sMPC mMPC irdMPC

k + 1 9.1861 5.2361 4.8048
k + 2 8.3069 5.3285 6.2879
k + 3 9.2412 4.9081 6.1662
k + 4 9.6713 4.9276 5.6472
k + 5 13.01 5.7536 4.8898
k + 6 10.3904 5.104 6.2612
k + 7 7.2827 5.2765 5.421
k + 8 7.7749 4.976 5.3001
k + 9 9.7422 4.8451 5.6359

Table 5 records the time consumption of solving optimization problems at nine sam-
pling instants. It can be seen that the results of these sampling instants are close to the
values in Table 4. For each sampling instant, “sMPC” has larger solving time than “mMPC”
and “irdMPC”. Owing to extra computational tasks, the time consumption of “irdMPC” is
slightly bigger than that of “mMPC” at most of the sampling instants. Nevertheless, their
results have a similar level, and there exist two sampling instants at which “irdMPC” has
smaller results.

The above results and analysis demonstrate the superiority of the intelligent reduced-
dimensional MPC controller in time consumption over the standard MPC controller. In
a fixed sampling period during the control process, the intelligent reduced-dimensional
MPC controller has the potential to operate under a bigger control horizon.

3.4. Further Verification

Under another flight condition [H, Ma] = [11,000 m, 1.2], simulations are implemented
to further illustrate the effectiveness of the proposed method. Similar results can be seen in
Figure 10 and Table 6.

Table 6. Simulation results for real-time performance at [H, Ma] = [11,000 m, 1.2].

Nc
tavg (ms)

sMPC mMPC irdMPC

3 6.3336 5.0491 5.1505
4 8.0574 5.0809 5.3599
5 9.8516 5.1691 5.603
6 11.8859 5.4101 5.7942
7 14.5266 5.4756 5.9671
8 16.6374 5.6881 6.1405
9 19.3425 5.8344 6.2934

Through the results under two flight conditions, the ability of the proposed intelli-
gent reduced-dimensional scheme in achieving both good control performance and real-
time performance is demonstrated, and the prospect of the designed intelligent reduced-
dimensional MPC controller in regulating the aero-engine is validated.
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4. Conclusions

For good control performance and real-time performance simultaneously, an intelli-
gent reduced-dimensional scheme of model predictive control is proposed in this paper.
By reducing the dimension of the control vector in the control sequence to 1, a reduced-
dimensional optimization problem with low computational complexity is constructed. In
the proposed scheme, a novel selection algorithm is proposed to intelligently select the
control variable with the best control effect as the available one in the optimization problem.
In addition, the scheme embeds a coordination strategy to take into account the interaction
among the control variables at different predicting instants in order to obtain a better
optimization solution.

Simulation examples are implemented to illustrate the effectiveness of the proposed
method. The results are as follows: (1) by applying the intelligent reduced-dimensional
scheme, the control error of the multiplex MPC is greatly improved by 34.06%; (2) the
intelligent reduced-dimensional scheme guarantees superiority in computational com-
plexity. Compared to the standard MPC, it can save average time consumption by up to
64.72% when the control horizon increases to nine. All the results demonstrate that the
proposed method has not only a better control outcome than the multiplex MPC but also
less computation time than the standard MPC and thus helps the implementation of the
MPC controller in the aero-engine.

The limitation of the proposed intelligent reduced-dimensional scheme is that this
methodology is currently suitable for linear MPC, so the extension to nonlinear MPC needs
further research. In addition, only numerical simulations are conducted in this paper to
illustrate the effectiveness of the method. For further verification, the hardware-in-the-loop
experiment will be considered in future research.
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