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Abstract: The high-power engine exhaust elbow has a complex construction, which makes it sus-
ceptible to casting flaws that could negatively impact its functionality. Therefore, the investment
casting scheme was established and optimized in this study in order to cast structurally complete
exhaust elbows for high-horsepower engines. ProCAST software was used to simulate and optimize
the casting and solidification processes. The optimal process parameters were determined as follows:
pouring temperature of 1650 ◦C, pouring speed of 1.5 kg/s, and shell preheating temperature of
1050 ◦C. The optimization of the primary parameters of the casting process, along with the results of
dimensional accuracy analysis, shape and positional deviation, and defect detection, were validated
through testing. The results indicated that the optimized castings had no casting defects and complied
with the design specifications.

Keywords: investment casting; exhaust elbow; ProCAST software; high-powered engine

1. Introduction

The exhaust pipe is a crucial component of the engine and is necessary for it to operate
properly [1–3]. Exhaust pipes for high-horsepower engines, like those found in specialty
vehicles, maritime vessels, and huge internal combustion engines, must be structurally
strong and perform exceptionally well for the engine to run properly [4,5]. However, the
exhaust pipes for high-horsepower engines that are currently being manufactured have
some defects, particularly in the case of the exhaust pipes with a curved shape, which has
an impact on the exhaust pipes’ performance and the advancement of high-horsepower
engines [6–9]. These defects are caused by problems in the process of preparing exhaust
pipes for high-horsepower engines. Therefore, it is crucial to research and optimize the
exhaust elbow manufacturing process for high-horsepower engines to produce high-quality
exhaust elbows.

Currently, the manufacturing methods for exhaust elbows mainly include castings,
machining, welding–forming, and other technologies [10–14]. Setiyorini Yuli et al. [15]
fabricated an acetabular prosthesis using the investment casting technique. In order to
reduce the production cost, the casting scheme was optimized using process simulation.
According to Kumar P’s research on the investment casting process, shrinkage-related cast-
ing flaws can be minimized by applying a thin layer of wax coating to the plastic model [16].
Smruti Ranjan Pradhan [17] compared the mechanical, dimensional, and biocompatibility
features of canine dental crowns fabricated by direct metal laser sintering (DMLS) and
DMLS-waste-assisted investment casting using two different alloys. The study found that
investment casting is cost-effective and offers better mechanical properties compared to
DMLS parts. Chander Prakash [18] contrasted the technology of additive manufacturing
with a few other methods, and the findings indicated that additive manufacturing is a
quick, affordable, and environmentally friendly production process. The majority of parts
are now made utilizing casting and welding–machining procedures, even though additive
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manufacturing is a relatively new technology that is utilized to make some sophisticated
parts. It has been discovered that the investment casting technique offers several notewor-
thy benefits when it comes to creating intricate castings with thin walls [19–21]. Complex
castings can be produced in a single process thanks to investment casting, which lowers
manufacturing costs and speeds up production [22–25]. However, casting flaws including
shrinkage and shrinkage holes, as well as air bubble holes, are frequently present in castings
made using the investment casting process [26–29].

In this work, the investment casting process has been refined using the numerical
modeling technique to prepare exhaust elbows for high-horsepower engines with structural
integrity that are free of flaws. Through simulation optimization, an ideal set of process
parameters was discovered and used in the manufacturing of exhaust elbows for high-
horsepower engines. The manufactured exhaust elbows were subjected to industrial CT
testing in order to confirm the outcomes of the improved process.

2. Program Design
2.1. Structural Design of Exhaust Elbow Casting

A three-dimensional model of the exhaust elbow is shown in Figure 1. The exhaust
elbow construction consists of a straight pipe, flange, and elbow, with external dimensions
of approximately 217 × 150 × 120 mm. Figure 1a shows the straight section of the exhaust
elbow which has a length of 93 mm, an outer diameter of 90 mm, an inner diameter of
87 mm, and an average wall thickness of 1.5 mm. Figure 1b shows a flange between the
two end faces which is 16 mm thick with an annular groove of 13 mm depth and less
than 6 mm width on the inside. This flange has an outside diameter of 91 mm and its
annular groove wall thickness is not more than 2.5 mm. Figure 1c shows the bent portion
of the exhaust elbow, which has an average wall thickness of less than 2 mm. The bend
is approximately 90◦, and the end of the bend is 20◦ outward-flared. It can be seen by
analyzing the structure of the exhaust elbow that the exhaust elbow has a thin wall and a
large curvature. Therefore, shrinkage holes, hot cracks, and other casting defects can easily
occur during the casting process.
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Figure 1. Three-dimensional diagram of the exhaust elbow and its cross-section: (a) three-dimensional
drawing of exhaust elbow; (b) side view; (c) front view.

2.2. Exhaust Elbow Materials

Table 1 shows the main components of the materials used for casting exhaust el-
bows. High-chromium–nickel austenitic stainless steel (1Cr20Ni14Si2) alloy is used for the
exhaust elbows.

Table 1. The main components of 1Cr20Ni14Si2 alloy (adapted from Ref. [30]).

Elemental C Cr Ni Si Mn P S Fe

Standard Range Value ≤0.2 19–22 12–15 1.5–2.5 ≤1.5 ≤0.035 ≤0.03 Remainder
Actual Value 0.0629 21.66 12.44 1.7 1.02 0.0296 0.0055 Remainder
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2.3. Pouring System Design

ProCAST casting simulation software (version 2021.5) is used to simulate the casting
process. Ease of filling and avoiding casting flaws should be taken into account while
designing the casting system [31–34]. There are high dimensional accuracy requirements
for the exhaust elbow’s straight pipe and elbow at the thin-walled construction, so avoid
setting up in these inner-runner sections. Nonetheless, an inner runner with a sizable
cross-sectional area at the flange is achievable due to the comparatively thick flange. For
two primary reasons, the inner runner is arranged with a large cross-sectional area: first, it
guarantees a smooth flow of the molten metal liquid; second, it provides sufficient pressure
to fill the areas of the casting with metal liquid, preventing casting flaws. The inner runner
is positioned on the flange of the casting, and a side-injection type is utilized to establish
four inner runners on the four lugs of the flange. The three-dimensional diagram and the
mesh model are illustrated in Figure 2 below. The mesh-edge length of the casting system
part and other non-focused parts is 3 mm, while the mesh-edge length of the exhaust pipe
casting is 1 mm. The number of casting face meshes is 658,572, the number of casting
system face meshes is 104,176, and the total number of body meshes is 2,055,150. The mesh
division of the 3D group tree model of the pouring system is shown in Figure 3.
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In the simulation process, the castings are built up with an alloy casting system type
and a 1550 ◦C temperature. The exhaust casting’s stress type is configured to an elastoplastic
model, while the casting system part’s default stress type is a linear–elastic model.

The type of mold shell is Mould Shell, the material is Chemical Mold Shell Sand, the
filling is 100%, and the temperature of the mold shell is 800 ◦C. The rest of the parts are set
to rigid.

3. Casting Process Simulation
3.1. Analysis of the Simulation Results of the Filling Process

Figure 4 shows the exhaust pipe casting pouring system filling process. The liquid
metal is injected from the riser and flows into the inner gate at the bottom after filling
the cross gate below from the middle straight gate when the mold is filled to a quarter
of its capacity. As the liquid metal moves from the gate through the straight gate to the
bottom of the cross gate during liquid splashing, gas may be produced; however, this only
happens in the pouring system and has no bearing on the casting. Because of its wider
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cross-section, the inner gate makes it easier to fill with metal liquid and prevents flaws. As
shown in Figure 4c, when 75% of the mold is filled, the liquid metal has completely filled
the two castings, and the top-two inner sprues are also filled. Cooling and solidification
begin from the thin-walled part of the casting. When 98% of the mold is filled, the entire
3D model is filled, and cooling and solidification start at the thinnest part of the casting
wall. Until the entire cavity was filled, the temperature of the alloy liquid continuously
decreased throughout the filling process, and there was no underpouring of the casting.
The total filling time was 9.81 s.
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3.2. Analysis of Simulation Results of Solidification Process

Figure 5 shows the solidification process of the exhaust elbow casting system. When
the solidification volume fraction reaches 25%, the casting is essentially solidified. At
this point, only the sprue and casting-connection position have a solid-phase rate of 0.6,
while the rest of the casting shows a solid-phase rate between 0.9 and 1. Throughout the
casting process from the position distant from the gate, the solid-phase rate hits 1 when the
solidification volume fraction reaches 50%. The casting is nearly entirely solidified when
the volume percentage of solidification reaches 75%, with the exception of the solid-phase
ratio of 0.5 at the upper-gate intersection. The total time required for complete solidification
is calculated to be 1743 s.
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3.3. Location Distribution of Casting Defects

Figure 6 shows the simulation results of casting flaws. The figure indicates that
shrinkage holes are the primary flaws at the corners of the casting system and at the riser–
cross-gate connections. There is comparable shrinkage in both castings, mostly on the
flanges, in terms of both place and proportion. However, a small amount of shrinkage was
observed at the straight pipes and elbows. Calculations reveal that the total volume of
shrinkage inside both castings amounts to approximately 2.12 cc, with each casting having
around 1.06 cc.
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Figure 6. Exhaust elbow shrinkage distribution results: (a) Shrinkage distribution with casting
system; (b) Distribution of shrinkage in castings without pouring system.

A diagram illustrating the tendency of exhaust elbow castings to crack thermally is
shown in Figure 7. In the figure, (a) and (b) indicate two specific locations where thermal
cracking defects may occur, respectively. Area A is the section with the highest curvature on
the exhaust pipe (the vulnerable point on the exhaust pipe casting), exhibiting an average
effective stress of 439.5 MPa and an HTI (Horizontal Transverse Isotropy) value of 0.000163,
whereas area B shows an average effective stress of 258 MPa and an HTI value of 0.000760.
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Figure 7. Thermal cracking tendency diagram and effective stress of exhaust pipe casting: (a) Exhaust
pipe bend maximum position HTI value: 0.000163; (b) Maximum position of exhaust elbow HTI:
0.000760; (c) Effective stress at area A: 439.5 MPa; (d) Effective stress at area B: 258 MPa.

3.4. Programme Optimization
3.4.1. Optimization of Casting Parameters

The casting technique was adjusted to address casting problems that showed up in the
first simulations, including shrinkage, shrinkage holes, and thermal cracks. Seven groups
with different pouring temperatures were utilized for simulation experiments, and the
results are presented in the Table 2. At a pouring temperature of 1650 ◦C, the shrinkage
volume of the exhaust elbow casting is minimized. Particularly, the shrinkage defects in
the thin-walled part of the casting are eliminated. Shrinkage on the flange can be ignored
as the flange needs to be machined later. At 1650 ◦C, the stress at the maximum HTI value
is 272 MPa, while the ultimate yield strength of the alloy is not less than 295 MPa, and no
thermal cracking defects are produced at points A and B.
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Table 2. The effect of different pouring temperature on the volume of internal shrinkage of exhaust
pipe castings, HTI values, and effective stresses in A and B regions of exhaust pipe castings 1.

Pouring Temperature (◦C) Crude Volume (cc) HTI
(Region A)

HTI
(Region B)

Effective Stress A
(Mpa)

Effective Stress B
(Mpa)

1530 2.75 0.000190 0.000837 416 264.9
1550 2.12 0.000240 0.000751 435.7 275.6
1570 2.54 0.000441 0.000640 447.8 276.9
1590 1.73 0.000495 0.000554 454.6 283.6
1610 1.97 0.000270 0.000608 371.5 265.6
1630 1.49 0.000398 0.000543 477.1 337.8
1650 1.45 0.000339 0.000486 379.4 272

1 Pouring temperature 1550 ◦C, Shell preheating temperature 800 ◦C.

Seven different casting speeds are set for simulation experiments. The casting temper-
ature and shell preheating temperature are initialized with 1550 ◦C and 800 ◦C parameters,
respectively. The casting speed is simulated by taking one parameter every 0.5 s in the
range of 1.5–4.5 kg/s and the results are shown in Table 3.

Table 3. The effect of different pouring speed on the volume of internal shrinkage of exhaust
pipe castings.

Pouring Temperature (◦C) Shell Preheating
Temperature (◦C) Pouring Speed (kg/s) Crude Volume (cc)

1550 800

1.5 1.77
2.0 1.93
2.5 2.37
3.0 2.12
3.5 3.42
4.0 3.51
4.5 3.91

Seven groups with different shell preheating temperatures are established for the
simulation. The results are presented in Table 4, indicating that elevating the preheating
temperature of the shell can effectively minimize the shrinkage defects within the casting.

Table 4. The size of internal shrinkage volume of exhaust pipe castings under different shell preheat-
ing temperatures.

Pouring Temperature (◦C) Pouring Speed (kg/s) Shell Preheating
Temperature (◦C) Crude Volume (cc)

1550 3

750 1.77
800 1.93
850 2.37
900 2.12
950 3.42

1000 3.51
1050 3.91

When the preheating temperature of the shell reaches 1050 ◦C, it is observed that the
shrinkage defects in all thin-walled parts disappear, and only a small amount of shrinkage
defects are concentrated in the flange lugs. This indicates that an increase in the preheating
temperature of the mold will significantly slow down the cooling and solidification rate
of the alloy liquid. This can effectively guarantee continuous shrinkage of the alloy liquid
in thin-wall and flange-wall sections during casting, thereby reducing the likelihood of
shrinkage defects occurring.

3.4.2. Simulation of Optimal Casting Solutions

Three characteristics were combined to model the exhaust casting process and reduce
faults. As shown in Figure 8, the distribution of internal shrinkage in the exhaust pipe
casting is illustrated. Under these process parameters, shrinkage and shrinkage holes inside
the casting are primarily concentrated in the thickest part of the flange. No shrinkage or
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shrinkage hole defects occur in the thin-walled sections of the casting, such as straight
pipes and elbows.
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Under ideal process conditions, the dynamics of the mechanical behavior of particular
exhaust bend sections A and B are depicted in Figure 9. As the temperature increases,
the effective stress in the corresponding region decreases. At the end of solidification, the
effective stress in regions A and B is less than 100 MPa. The corresponding elastic strain
fluctuates in the range of 0.4–1%, which is small and does not show any obvious change.
The mechanical behavior for both locations suggests a low probability of flaws resulting
from thermal cracking at the end of solidification.
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In summary, the process parameters are as follows: alloy temperature at casting is
1650 ◦C, casting filling speed is 1.5 kg/s, and shell temperature is 1050 ◦C.

4. Casting Trial Production and Process Inspection
4.1. Preparation and Production for Investment Casting

The wax molds, shells [35], and castings with a pouring system used in the trial
production are shown in Figure 10. Investment casting mold shells are constructed in a
continuous fashion, with the final layer sealed with slurry, for a total of four and a half
layers with a wall thickness of 9–10 mm. The viscosity of the slurry used for sealing the
layers is presented in Table 5.

Table 5. Slurry viscosity and drying process parameters for each layer.

Storey Slurry Composition Stickiness Type of Sanding Grits Drying Time (H)

Top layer Zirconium Powder Silica Sol 40 ± 5 s Zircon Sand 120 15
Second layer Mullite Powder Silica Sol 35 ± 5 s Mullite Sand 60 24
Third layer Mullite Powder Silica Sol 25 ± 2 s Mullite Sand 30 24

Fourth layer Mullite Powder Silica Sol 20 ± 2 s Mullite Sand 30 24
Seal coat Mullite Powder Silica Sol 12 ± 1 s - - 24

Ambient temperature: 22–28 ◦C Humidity: 40–60%.
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Figure 10. Exhaust Bend Module Shell Making: (a) Surface sanding; (b) Sanding of the transition
layer; (c) Backing slurry.

The castings are poured separately using the original and optimized parameters. After
the casting is molded, insulation is spread on the sprue location, and then it is air-cooled.
After cooling, the sand shell outside the casting was removed by vibration using a vertical
shell-vibration machine with a vibration impact frequency of not more than 1200 times per
minute. After that, the casting was cut, polished at the sprue area, and subjected to shot
blasting and pickling passivation.

As can be clearly seen in Figure 11, the connection parts of the integrated molding
process of investment casting are significantly better than those of the traditional machining–
welding process. The appearance of castings before and after optimizing process parameters
is essentially the same.
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4.2. Quality Verification of Exhaust Pipe Castings

In the trial production stage of the product, a total of 12 trial production pieces were
made, resulting in the successful production of 10 exhaust bend castings, with a yield
rate of 83.3%. The remaining two pieces have obvious casting defects on the surface.
Two factors contribute to this: first, shape damage from workers’ unavoidable operational
errors during the production process; second, holes from the mold shell formed in the
flange’s two annular grooves during the shell formation process: iron clamping happens
when alloy liquid enters the holes during pouring. The latter was significantly improved
by extending the drying time of the prepared shell.

4.2.1. Exterior Inspection of Exhaust Elbows

The dimensions of the exhaust elbow castings were measured using a Coordinate
Measuring Machine (CMM) and vernier calipers, as illustrated in Table 6. Following testing,
the dimensions of the produced castings align with the design specifications, and the
tolerances fall within the acceptable range.

Table 6. Exhaust elbow casting dimensional inspection results.

Dimensions Required Size (mm) Maximum Deviation
Detection Value Number of Tests (Pieces) Test Results

Straight tube inner diameter φ86+0.3
0 φ86.2 10 Qualified

Outer diameter of straight tube φ910
−0.2 φ91 10 Qualified

Flange thickness (plus allowance) 220
−0.3 22 10 Qualified

Ring groove size φ120+0.2
0 φ120.18 10 Qualified

Flange outer diameter φ1280
−0.2 φ127.9 10 Qualified

Elbow Size 610
−0.5 60.8 10 Qualified

Wall thickness of exhaust pipe 2 2 10 Qualified
Exhaust elbow centre distance 70+0.5

−0.5 70.2 10 Qualified
Straight pipe + flange length 99.50

−0.5 99.5 10 Qualified

Visual inspection of the casting surface quality reveals a relatively high standard, with
no signs of oxidized skin, mottled scars, wrinkled skin, or other defects.

4.2.2. Internal Quality Inspection of Exhaust Pipe Castings

X-ray inspection equipment used: ICT-450 for industrial CT inspection [36], following
inspection standards as per GB/T 29070-2012 [37]. Voltage: 430 kV, current: 1.5 mA, focal
size: 0.4 mm, integration time: 1000 ms, ray source-detection distance: 1100 mm, ray
source-sample distance: 700 mm. The acquisition method is a standard cone beam, with an
amplitude of 1600 and a voxel size of 0.127 mm. The test method is shown in Figure 12.
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After X-ray inspection, the exhaust elbow castings produced under the initial process
parameters (casting temperature 1550 ◦C, casting speed 3 kg/s, shell preheating temper-
ature 800 ◦C) were found to have shrinkage, shrinkage holes, and porosity defects, as
shown in Figure 13. The casting shrinkage in the elbow part is generally consistent with
the simulation results, and no cracks were detected.
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Figure 13. CT inspection results of exhaust elbow castings under initial pouring process parame-
ters: (a) Shrinkage of bent pipe sections; (b) Dimensions of blowhole defects in straight sections;
(c) (Analogue) Bend section corresponding to shrinkage position.

The CT section of the optimized exhaust pipe is illustrated in Figure 14. Figure 14a
represents a cross-section along the center of the ring for the bend section. Figure 14b depicts
a transverse section for the straight section. Figure 14c displays DR (Digital Radiography)
result, and Figure 14d shows a cross-section at the flange. No shrinkage hole defects are
observed in the exhaust bend castings within the bend section, straight section, and flange
area. Additionally, no shrinkage phenomenon is detected in thin-walled parts or casting
system hot joints, and there are no signs of thermal cracks present. The internal quality of
these castings meets all requirements.
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5. Conclusions

In this paper, the precision casting process design and optimization of a high-horsepower
engine exhaust pipe bend through an investment casting program are discussed.

1. Determine the optimal process parameters: pouring temperature of 1650 ◦C, pouring
speed of 1.5 kg/s, and shell preheating temperature of 1050 ◦C.

2. Analysis of individual process parameter changes on the casting of the internal size of
the volume of shrinkage: it is indicated that an increase in the preheating temperature
of the mold will significantly slow down the cooling and solidification rate of the alloy
liquid, thereby reducing the likelihood of shrinkage defects occurring.

3. The process flow was summarized and analyzed, along with the castings manufac-
tured before and after parameter optimization. Dimensional testing, visual inspection,
and industrial CT testing were conducted to demonstrate that optimization can effec-
tively produce castings with high internal quality, surface quality, and dimensional
accuracy to achieve the desired outcomes for whole casting forming.

4. The research resulted in a reduction in material and labor costs associated with
machining and welding, while significantly improving product pass rates.

5. The casting system has some limitations: its structure is complex, there are many
redundant parts, the casting requirements are high, and maintaining a high pass rate
is difficult. Future research can enhance the pouring system to decrease production
costs and complexity, consequently boosting the product qualification rate.
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