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Abstract: The mammalian sexes are distinguished by the X and Y chromosomes. Whereas males
harbor one X and one Y chromosome, females harbor two X chromosomes. To equalize X-linked gene
expression between the sexes, therian mammals have evolved X-chromosome inactivation as a dosage
compensation mechanism. During X-inactivation, most genes on one of the two X chromosomes in
females are transcriptionally silenced, thus equalizing X-linked gene expression between the sexes.
Two forms of X-inactivation characterize eutherian mammals, imprinted and random. Imprinted
X-inactivation is defined by the exclusive inactivation of the paternal X chromosome in all cells,
whereas random X-inactivation results in the silencing of genes on either the paternal or maternal
X chromosome in individual cells. Both forms of X-inactivation have been studied intensively in
the mouse model system, which undergoes both imprinted and random X-inactivation early in
embryonic development. Stable imprinted and random X-inactivation requires the induction of the
Xist long non-coding RNA. Following its induction, Xist RNA recruits proteins and complexes that
silence genes on the inactive-X. In this review, we present a current understanding of the mechanisms
of Xist RNA induction, and, separately, the establishment and maintenance of gene silencing on the
inactive-X by Xist RNA during imprinted and random X-inactivation.

Keywords: imprinted X-inactivation; random X-inactivation; Xist RNA induction; X chromosome
gene silencing

1. Introduction

The therian mammalian sex chromosomes differ in their gene contents; whereas the X
chromosome is gene-rich, the Y chromosome is gene-poor [1,2]. The unequal gene contents
on the X and Y chromosomes are hypothesized to reflect their evolution. The sex chromo-
somes are thought to have originated from a homologous pair of autosomes [3–7], and the
proto-Y emerged when one autosome accumulated genes favoring male sexual differen-
tiation [1,3,5,7]. To maintain the linked segregation of male sexual differentiation genes,
the proto-Y chromosome is thought to have undergone a series of crossover-suppressing
inversions to form the Y chromosome [7]. Suppressed crossing over is believed to have
contributed to the degradation of genes on the Y chromosome [1,3,5,8].

Gene loss on the Y chromosome created an imbalance in X–Y gene dosage relative to
the autosomes and between XX females and XY males. To compensate for gene loss on the
Y chromosome, homologous X-linked genes became upregulated in males [3,9,10]. This
upregulation also occurred from both X chromosomes in females, resulting in excessive
X-linked gene expression in females relative to males [3,9,10]. To rectify the overexpression
of X-linked genes in females, therian mammals are believed to have evolved X-chromosome
inactivation as a dosage compensation mechanism [3,11].

During X-inactivation, most genes on one of the two X chromosomes in females are
transcriptionally silenced, thereby equalizing X-linked gene expression between females
and males [11]. Two forms of X-inactivation characterize therian mammals. Metatherian
mammals (marsupials) exclusively inactivate the paternal X chromosome (Xp) in a process
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termed imprinted X-inactivation [12,13]. Eutherian mammals (‘placentals’) undergo im-
printed as well as random X-inactivation, which results in the silencing of genes on either
the Xp or the Xm (maternal-X) in individual cells [11,14]. Whereas some eutherian species,
e.g., mice and voles, exhibit both imprinted and random X-inactivation, others appear to
only undergo random X-inactivation, e.g., humans and rabbits [14–18].

Both imprinted and random X-inactivation are established early in embryogenesis
and have been studied extensively in the mouse model system. Shortly after the zygote
stage, all cells in the early mouse embryo initiate imprinted X-inactivation, resulting in
the silencing of genes exclusively on the Xp [18]. Imprinted X-inactivation of the Xp is
subsequently maintained in the extra-embryonic trophectodermal (placental) and primitive
endodermal (yolk-sac) lineages [18,19]. In the pluripotent epiblast cells of the late blastocyst
(~128-cell stage), the Xp becomes reactivated [20]. As the pluripotent epiblast differentiates,
each cell individually inactivates either the Xp or Xm and thus undergoes random X-
inactivation [11]. Replicated copies of the randomly inactivated X chromosome are then
stably maintained as inactive in most cells as the epiblast differentiates into the somatic
tissues of the developing embryo. That two X chromosomes become transcriptionally
divergent and that their transcriptional states are stably maintained across many cell
division cycles make X-inactivation a paradigm of non-sequence-dependent, or epigenetic,
transcriptional regulation.

Stable imprinted and random X-inactivation in eutherian mammals requires the Xist
long non-coding RNA (lncRNA). Xist RNA is upregulated from the future inactive-X [21]
and functions in cis to silence genes [22–24]. X-inactivation can be separated into at least
three phases: initiation, establishment, and maintenance. Initiation is defined as the
induction of Xist RNA from the future inactive-X. Once induced, Xist RNA ‘coats’ the
inactive-X and directly or indirectly recruits proteins and complexes to the inactive-X. In
the establishment phase, the proteins and complexes recruited by Xist RNA silence gene
expression on the future inactive-X. During the maintenance phase, the silenced state of
the inactive-X is stably propagated across cell divisions in descendant cells. Discussed
below is our current understanding of the mechanisms regulating Xist RNA induction and,
separately, establishment and maintenance of gene silencing on the inactive X chromosome
during imprinted as well as random X-inactivation.

2. Regulation of Xist in Imprinted X-Inactivation

In imprinted X-inactivation, Xist RNA is expressed exclusively from the Xp [18]. In
principle, Xist RNA expression from the Xp but not the Xm could be due to a chromatin-
based mark on the Xm or the Xp. The transmission of an Xm-specific epigenetic imprint
from the oocyte may prevent Xist expression from and inactivation of the Xm in the
embryo. Conversely, the inheritance of an Xp-specific imprint from the sperm might
facilitate Xist RNA expression from and inactivation of the Xp in the early female embryo.
One model of the Xp imprint posits that the silencing of the sex chromosomes during
meiosis in males, termed meiotic sex chromosome inactivation (MSCI), is the basis for the
selective inactivation of the Xp in the early embryo [25,26]. MSCI silences genes on the
X and Y sex chromosomes, which together form a heterochromatic ‘sex body’ during the
pachytene stage of meiotic prophase I during spermatogenesis [27,28]. However, much
work has shown that the Xp is active prior to the initiation of imprinted X-inactivation in
the early embryo [29–31], suggesting a lack of inherited silencing of the Xp in zygotes and
preimplantation embryos. Any impact of MSCI on imprinted X-inactivation must thus
manifest only after the Xp becomes transcriptionally active in the zygote.

Much work has also explored whether and how the Xm carries the chromatin-based
imprint in imprinted X-inactivation. Early evidence for an Xm epigenetic imprint arose from
studies examining mouse embryos with supernumerary X chromosomes (e.g., XmXmY,
XmXmXp). Preimplantation-stage embryos with two Xm’s resist Xist induction and main-
tain both Xm’s in a transcriptionally active state [32–35]. In contrast, individual cells in
early embryos harboring two Xp’s initially express Xist RNA from both X chromosomes
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but later display Xist expression from only one of the two Xp’s [36]. These studies indi-
cated that whereas the Xm effectively repels Xist induction in the early embryo, the Xp
is more epigenetically labile and can both induce and repress Xist expression. The Xm is
thus believed to carry a stringent germline imprint that prevents its inactivation during
imprinted X-inactivation in the early embryo.

The Xist antisense lncRNA, Tsix, has been of particular interest to understand how inac-
tivation of the Xm is forestalled in the early mouse embryo. Whereas Xist is expressed from
the inactive-X, Tsix expression marks the active-X [37–39]. Xist is thus induced from the
paternal-X, and Tsix is expressed from the maternal-X in imprinted X-inactivation [37,39,40].
Embryos that inherit a Tsix mutation on the Xm ectopically express Xist from both the
Xm (Xm-Xist) and the Xp (Xp-Xist) in cells that would otherwise exclusively express Xp-
Xist [39,40], suggesting that Tsix is a cis repressor of Xm-Xist. The maternal germline
imprint may thus prevent Xm-Xist expression in the early embryo by inducing Tsix expres-
sion [40]. However, tests to determine the temporal requirement of Tsix in repressing Xist
during embryonic development revealed that Tsix is required to repress Xist on the Xm
beginning only at the late blastocyst stage [41]. Tsix is thus dispensable to repress Xm-Xist
at the onset of imprinted X-inactivation during the post-zygotic early mouse embryonic
stages [41]. A Tsix-independent regulatory mechanism thus represses Xm-Xist in the zygote
and preimplantation embryonic stages.

The H3 Lysine 27 tri-methylation (H3K27me3) chromatin mark emerged as a candidate
Xm germline epigenetic imprint upon the discovery that H3K27me3 is enriched in the
Xm-Xist locus in mouse oocytes and early embryos [42,43]. Xp-Xist, by contrast, is devoid
of H3K27me3 enrichment in the sperm and early embryos (Figure 1) [42,43]. H3K27me3
is catalyzed by the Polycomb Repressive Complex 2 (PRC2) [44–47]. Upon depletion of
PRC2 activity in oocytes, Xm-Xist is de-repressed in the early mouse embryo [43,48]. Early
embryos generated from PRC2-mutant oocytes express Xist RNA from both the Xm and
Xp [43,48]. In later-stage preimplantation embryos, this biallelic Xist RNA induction is
stochastically resolved into one or the other X chromosome expressing Xist in most cells,
thus resulting in randomization of X-inactivation in cells that would normally undergo
imprinted X-inactivation [43].

In addition to PRC2, the related PRC1 complex may also ensure the repression of
Xm-Xist. PRC1 catalyzes the gene silencing-associated histone modification H2A lysine
119 mono-ubiquitination (H2AK119ub1) [49]. H2AK119ub1, like H3K27me3, is enriched
at the Xm-Xist locus in mouse oocytes and zygotes, but not at the Xp-Xist locus in sperm
or early embryos [50,51]. Like the absence of PRC2 activity, the absence of the PRC1
subunits PCGF1 and PCGF6 in the oocyte results in ectopic Xm-Xist induction in early
embryos [51]. The enrichment dynamics of H3K27me3 and H2AK119ub1 at the Xm-Xist
locus differ during early embryogenesis. Whereas H3K27me3 is enriched at Xm-Xist across
preimplantation development of wild-type (WT) embryos, H2AK119ub1 becomes depleted
at Xm-Xist from the two-cell to blastocyst embryonic stages before being enriched again [50].
An interpretation of these findings is that both oocyte-derived marks are required to repress
Xm-Xist in the early embryo and that H3K27me3 may serve to recruit PRC1 and establish
H2AK119ub1 at Xm-Xist during preimplantation mouse embryogenesis [50].

In contrast to mice, human zygotes do not express the core PRC2 components until
zygotic genome activation at the ~eight-cell stage of embryogenesis [43,52]. Imprinted
X-inactivation may thus arise in a species-specific manner due to the presence of oocyte-
derived silencing complexes that target Xm-Xist for silencing, e.g., the PRC proteins. The
reasons why the oocyte-derived PRC proteins do not also target the Xp-Xist locus in the
early mouse embryo are unclear. The resistance of Xp-Xist to repression may in principle
arise from either the absence of factor(s) in the sperm and early embryo that function to
recruit the PRCs to Xm-Xist in the oocyte, or, formally, the presence of a paternally inherited
chromatin mark or chromosome conformation state, e.g., due to MSCI, that forestalls PRC2
occupancy at Xp-Xist.
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Figure 1. Induction of Xist RNA and establishment of gene silencing on inactive-X during imprinted
X-chromosome inactivation in the early mouse embryo. Top: Diagram of early 2-, 4-, 8-, or 16-cell
female mouse embryos. E, embryonic day. Middle: Depiction of the expression status of the two X
chromosomes in each cell. Xm, maternal-X; Xp, paternal-X. Bottom: Schematic of the Xist locus or
X-linked genes subject to silencing at different stages of X-inactivation. The Xm and Xp are both active
prior to the initiation of imprinted X-inactivation in the early embryo. Between the 2- and 4-cell stages,
the XistAR lncRNA and RNF12 protein promote Xp-Xist expression, whereas the Xm-Xist locus is
silenced by PRC2-catalyzed H3K27me3 and PRC1-catalyzed H2AK119ub1. Following induction,
Xp-Xist RNA directly or indirectly recruits gene silencing proteins and complexes, including PRC1,
PRC2, SPEN, and SMCHD1. These proteins and complexes establish and maintain gene silencing on
the Xp.

SMCHD1 (structural maintenance of chromosomes hinge domain containing protein 1)
also contributes to Xm-Xist repression in pre-implantation embryos [53]. SMCHD1 is
thought to function primarily as a chromatin remodeler and compactor [54,55]. The absence
of oocyte-derived SMCHD1 results in the incompletely penetrant de-repression of Xm-Xist
in ~75% of female and ~50% of male early embryos [53]. However, Xm-Xist repression is
restored upon zygotic SMCHD1 expression [53]. Evidence further suggests that SMCHD1
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functions downstream of PRC2 and PRC1, suggesting that SMCHD1 enforces rather than
initiates Xm-Xist silencing [53,56].

The induction of Xist RNA from the Xp requires an antisense transcript at the 5′ end
of Xist called XistAR (Figure 1) [57]. Like Xist RNA, XistAR is expressed exclusively from
the Xp in early mouse embryos and in cultured extraembryonic endoderm (XEN) and
trophoblast stem cells (TSCs) that stably maintain imprinted X-inactivation ex vivo [57].
Xp-XistAR mutant embryos fail to properly upregulate Xist RNA and perish early in
embryogenesis [57,58].

The X-linked loci Ftx and Xert have also been tested as cis-regulators of Xp-Xist in im-
printed X-inactivation. Ftx resides ~150 kb upstream of Xist and encodes a lncRNA [59–61].
Xert is located ~200 kb upstream of Xist, contains an Xist enhancer cluster, and transcribes a
lncRNA [62]. The Ftx locus is dispensable for imprinted X-inactivation in pre-implantation
embryos [63]. However, recent findings demonstrate that deleting two enhancer elements
within the Xert and Ftx loci, respectively, abrogates Xist RNA induction in eight-cell em-
bryos [64]. This observation suggests that coordination between these cis-acting loci in the
X-inactivation center may be necessary to upregulate Xist expression during imprinted
X-inactivation.

The induction of Xp-Xist RNA also requires the X chromosome-encoded protein
RNF12 (also known as RLIM; Figure 1). RNF12 is an E3 ubiquitin ligase that functions in
part to ubiquitinate and mark proteins for degradation [65,66]. A female-specific function
of RNF12 is supported by mouse breeding data. Whereas Rnf12–Y hemizygous-mutant
males are viable and fertile, heterozygous Rnf12−/+ female mice that inherit an Rnf12-
mutant allele on the Xm but not the Xp are inviable [67]. Rnf12−/+ female embryos exhibit
defective Xp-Xist upregulation and X-linked gene silencing, which may contribute to their
lethality [67].

RNF12 is expressed more highly in female pre-implantation embryos relative to
males [67]. This elevated expression of RNF12 might underpin the induction of Xist
selectively in females. Rnf12−/− female embryos, though, initiate but do not maintain Xp-
Xist expression in the absence of both oocyte-derived and zygotically expressed RNF12 [68].
Furthermore, although RNF12 is required to maintain the expression of Xp-Xist in the early
mouse embryo, it is insufficient to induce Xist from the Xm. These observations suggest
that (1) an epigenetic imprint, i.e., H3K27me3 or H2AK119ub1, prevents RNF12-mediatied
induction of Xm-Xist; and/or, (2) RNF12 expression is below the threshold required to
induce Xm-Xist. In support of the latter, overexpression of RNF12 in early mouse embryos
results in Xist induction from both the Xm and Xp [69].

3. Mechanisms of Gene Silencing on the Inactive-X during Imprinted X-Inactivation

PRC2 and PRC1 not only deposit the H3K27me3 and H2AK119ub1 marks, respec-
tively, to repress Xm-Xist, but may also contribute to gene silencing on the inactive-Xp
during imprinted X-inactivation. Xist RNA either directly or indirectly recruits both PRC
complexes to the inactive-X [70,71]. Soon after Xp-Xist RNA induction, the Xp becomes
enriched for the core components of both PRC2 and PRC1 as well as for the H3K27me3
and H2AK119ub1 marks that the two complexes catalyze [70–75].

Tests to determine the contributions of oocyte-derived and zygotic PRC2 revealed that
PRC2 may contribute to the establishment of X-linked gene silencing during imprinted
X-inactivation. Mutant female embryos lacking both the maternal (oocyte-derived) and
zygotic (mz−/−) PRC2 core component EED as well as embryos lacking only maternal
EED (m−/−) equally induce Xist randomly from either the Xm or Xp [43]. However,
Eed mz−/− embryos exhibit a greater defect in Xp gene silencing relative to Eed m−/−

embryos [43]. These observations suggest that oocyte-derived and zygotic PRC2 together
may be required to establish gene silencing on the inactive-Xp during the establishment of
imprinted X-inactivation [43].

In addition to enforcing the silencing of Xm-Xist, SMCHD1 may contribute to the
establishment of gene silencing on the inactive-X during imprinted X-inactivation. Sm-
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chd1−/+ mutant female embryos that lack oocyte-derived SMCHD1 ectopically express a
subset of paternal X-linked genes that are normally silenced in the placenta at embryonic
day (E) 14.5 [53]. Formally, either the initial absence of oocyte-derived SMCHD1 or the
haploinsufficiency of SMCHD1 during embryogenesis might explain this gene silencing
defect. However, relative to these Smchd1−/+ mutant embryos, female heterozygotes mu-
tant for paternal Smchd1 and WT for maternal Smchd1 (Smchd1 +/−) show a milder paternal
X-linked gene silencing defect in the placenta [53]. Therefore, oocyte-derived SMCHD1
appears to be required to establish or maintain silencing of a subset of Xp-linked genes.
Zygotically-expressed SMCHD1 may additionally contribute to the maintenance of gene
silencing of a set of X-linked genes during imprinted X-inactivation [76,77]. SMCHD1
homozygous mutant (Smchd1−/−) female post-implantation embryos exhibit de-repression
of a handful of X-linked genes tested thus far in the extraembryonic ectoderm and tro-
phoblast lineages [76,77]. However, X chromosome-wide gene expression changes in the
extraembryonic tissues of Smchd1−/− female embryos await further testing. Smchd1−/−

female embryos display defective trophoblast giant cell development and do not survive
past mid-gestation, whereas Smchd1−/− males are viable [76]. The female-specific lethality
of Smchd−/− later-stage embryos is consistent with a role for SMCHD1 in maintaining
imprinted X-inactivation.

The autosomally encoded SPEN protein (also known as MINT or SHARP) is another
key regulator that establishes gene silencing on the inactive-Xp (Figure 1). SPEN interacts
with histone deacetylases (HDACs) [78], which help silence genes by removing acetyl marks
on histones [79]. Mouse blastocyst-stage embryos lacking both oocyte-derived and zygotic
SPEN (Spen mz−/−) exhibit a pronounced defect in the establishment of gene silencing
on the Xist-expressing Xp [80]. However, early embryos lacking oocyte-derived SPEN
but expressing zygotic SPEN (Spen−/+) are not defective in Xp gene silencing [80]. This
suggests that expression of zygotic SPEN is sufficient to establish gene silencing during
imprinted X-inactivation. Both zygotically-mutant Spen−/− female and male embryos
perish during mid-gestation between E12.5 to E14.5 [81]. The lethality of both Spen−/−

female and male embryos at a similar and relatively late embryonic stage argues against a
broad and female-specific role for SPEN in X-inactivation.

PRC2 and PRC1 are also required to maintain gene silencing on the inactive-Xp
(Figure 1). When zygotic PRC2 or PRC1 are absent, defects in Xp-linked gene silencing
emerge in the post-implantation embryonic stages in differentiating extraembryonic cells,
which normally maintain imprinted inactivation of the Xp [82–84]. Female embryos lack-
ing the PRC2 subunit EED (Eed−/−) exhibit prominent Xp-linked gene silencing defects
in the extraembryonic ectoderm and to some extent in the extraembryonic endoderm of
post-implantation gastrulation-stage embryos [83]. Furthermore, relative to Eed−/− male
embryos, Eed−/− female embryos exhibit reduced development of trophoblast giant cells,
possibly due to defective imprinted X-inactivation in the trophectoderm lineage [85]. Simi-
larly, female embryos lacking the PRC1 subunit RNF2 (also known as RING1B; Rnf2−/−)
exhibit de-repression of X-linked genes in the extraembryonic ectoderm, albeit to a lesser
extent than Eed−/− female embryos [83]. The de-repression of X-linked genes in the ex-
traembryonic cells of later-stage embryos in the absence of either EED or RNF2 supports
the requirements of both PRC2 and PRC1 in maintaining imprinted X-inactivation of the
Xp. The presence of oocyte-derived PRC2 and PRC1 components, though, may mask a
broader Xp-linked gene silencing defect in the Eed−/− and Rnf2−/− zygotically mutant
early embryos.

The absence of PRC2 or PRC1 results in defective silencing of both overlapping and
unique sets of Xp-linked genes in the extra-embryonic tissues [82,86], suggesting both
redundant and independent targeting of genes on the inactive-X by PRC2 and PRC1 during
imprinted X-inactivation. Loss of both PRC2 and PRC1 together in the early embryo may
reveal a synergistic role for the two complexes in silencing Xp-linked genes.
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4. Regulation of Xist in Random X-Inactivation

Random X-inactivation initiates when the pluripotent embryonic epiblast begins to
differentiate, just after implantation of the mouse embryo [87–89]. The onset of random
X-inactivation has been studied to some extent in developing mouse embryos and more
extensively in differentiating mouse embryonic stem cells (ESCs). Like the pluripotent
epiblast cells in the developing embryo, pluripotent female ESCs harbor two active X
chromosomes [90–93]. And, like the differentiating pluripotent epiblast cells in the female
embryo, differentiating female ESCs randomly inactivate one of their two X chromosomes
in individual cells [93].

In random X-inactivation, Xist RNA is induced from either the Xm or Xp in individ-
ual cells [11]. Early models of random X-inactivation posited that cellular mechanisms
‘counted’ the number of X chromosomes and then ‘chose’ one of the two X chromosomes
for silencing [92,94,95]. If a cell counts two or more X chromosomes per diploid set of
autosomes, it will trigger inactivation of all X chromosomes except for one. The choice step
would subsequently decide which of the X chromosome(s) to inactivate.

The counting, choice, and inactivation steps underlying random X-inactivation have
long been thought to be controlled by a several-hundred kilobase region of the X chromo-
some termed the X-inactivation center (XIC) [93,96,97]. Xist maps to the XIC and the XIC
is thought to encode all sequences that regulate Xist (Table 1) [93,96,97]. The XIC is thus
thought to be both necessary and sufficient to induce X-inactivation [93,96,97].

The XIC-derived Xist antisense Tsix lncRNA was put forth as a regulator of both
counting and choice by controlling Xist expression and thus X-inactivation [37,98]. The
requirement of Tsix in X chromosome counting was initially tested in XY male and XO
ESCs. In XY and XO cells, the counting process would prevent Xist induction from and
X-inactivation of the single X chromosome. If Tsix controls counting, loss of Tsix is expected
to trigger ectopic Xist expression and inactivation of the single X chromosome in the XY
and XO cells. Initial studies provided conflicting results for the role of Tsix in counting. One
study suggested that deleting a 65 kb sequence containing a ~37 kb proximal portion of the
Tsix locus might interfere with counting, as mutant XO cells ectopically expressed Xist [94].
Other studies with Tsix-mutant (Tsix −Y) male ESCs reported transient ectopic Xist expres-
sion in a subset of the cells, which became extinguished upon extended culture [37,99],
suggesting that the counting step was largely intact in the absence of Tsix. To test the func-
tion of Tsix in choice, Tsix heterozygous mutant (Tsix +/−) female ESCs were differentiated
to induce Xist. These Tsix +/− ESCs exhibited biased inactivation of the Tsix-mutant X
chromosome in all cells, consistent with a defect in choice [37,40]. That only a single X is
inactivated, though, suggested that X chromosome counting remained intact in Tsix +/−

females [37,40].
To reconcile the disparate roles attributed to Tsix in X chromosome counting and choice,

a set of studies examined the temporal impact of Tsix loss on Xist induction in developing
embryos and differentiating pluripotent cells [41,100,101]. If Tsix is required for counting,
Xist should be ectopically expressed from the single X chromosome in Tsix −Y males during
the early stages of differentiation corresponding to when random X-inactivation initiates
in female cells. However, Tsix −Y males failed to ectopically induce Xist early in the
differentiation of pluripotent cells [100,101]. Instead, Tsix −Y males ectopically expressed
Xist RNA from their sole X chromosome upon further differentiation, corresponding to
the stage when X-inactivation is in the maintenance phase in females [100,101]. This result
suggests that Tsix is not required for the counting step in X-inactivation but is required
to prevent inactivation of the single active-X only upon further differentiation of the
cells [100,101].

If Tsix is required for the choice step of X-inactivation, Tsix +/− females should only
exhibit Xist induction from the Tsix-mutant X chromosome and not from the WT X chro-
mosome during the initiation stage of random X-inactivation. However, Tsix +/− female
early embryonic epiblast cells and cultured epiblast stem cells (EpiSCs), which capture
the epiblast lineage just after the establishment of X-inactivation, were found to induce
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Xist randomly from either the WT or the Tsix-mutant X chromosome [100,101]. After the
induction of random X-inactivation, however, differentiating Tsix +/− cells that initially
inactivated the WT X chromosome ectopically induced Xist from and silenced genes on
the Tsix-mutant X chromosome, thus inactivating both X chromosomes [100,101]. Due to
deficient X-linked gene expression, these cells became subject to rapid counter-selection,
resulting in a surviving population of cells that had originally inactivated the Tsix-mutant
X chromosome [100,101]. Tsix is thus required to prevent inactivation of the active-X only
after random X-inactivation has commenced appropriately in females [100]. These findings
suggest that Tsix is not required for the choice step in X-inactivation.

The Jpx locus in the XIC has also been proposed to regulate X chromosome counting
and choice. Jpx resides ~10 kb upstream of Xist on the X chromosome [102]. The Jpx gene
lacks an open reading frame and encodes a lncRNA [102,103]. Initial studies proposed that
the Jpx lncRNA functions as a trans-acting dosage-sensitive factor to regulate X chromosome
counting and choice [102,103]. Heterozygous loss of Jpx (Jpx +/−) in differentiating female
ESCs led to defective Xist induction from either of the two X chromosomes and cellular
lethality [102]. Furthermore, overexpression of an autosomally integrated Jpx transgene
caused a modest level of ectopic Xist induction in differentiating male ESCs [103].

Follow-up investigations, however, have not recapitulated the initial observations
of Jpx function. An independent study found that Jpx +/− heterozygous differentiating
female ESCs were viable and could induce Xist [104]. These Jpx +/− female ESCs were
also able to robustly contribute to chimeras [104]. Furthermore, independent analysis of
differentiating male ESCs harboring autosomal integrations of multi-copy Jpx transgenes
did not recapitulate the ectopic Xist induction by Jpx overexpression [105].

In addition to these findings, a recent study revealed that Jpx −/− female mice are
viable and are born at near-expected Mendelian ratios [106]. Moreover, embryonic fibrob-
lasts derived from these Jpx −/− female embryos exhibit Xist expression equivalent to that
of WT female fibroblasts [106]. Collectively, the above observations indicate that Jpx is
dispensable in regulating Xist and random X-inactivation.

The XIC-derived Ftx lncRNA is also a proposed positive regulator of Xist [59–61].
Differentiating Ftx +/− female ESCs display biased Xist expression from the WT X chromo-
some [60]. Transcription of the Ftx locus, not the lncRNA that it produces, is thought to
be required for Xist regulation since inhibition of Ftx transcription diminishes Xist upreg-
ulation [60]. However, Xist can still be upregulated in cis in the absence of Ftx and other
nearby putative X-linked Xist regulators [104]. Furthermore, Ftx −/− females are born and
survive to adulthood [61]. Xist is downregulated in Ftx −/− female mice, though, and a
subset of X-linked genes are de-repressed, suggesting that Ftx is required for robust Xist
induction and X-inactivation [61]. The mild phenotype of Ftx −/− female mice suggests
that other factors/sequences induce Xist in cis.

The Xert locus and enhancer cluster within the XIC is another proposed positive cis-
regulator of Xist [62]. In female ESCs, heterozygous loss of Xert biases Xist induction, with
65–80% of cells inducing Xist RNA from the WT X chromosome [62]. Furthermore, overex-
pression of Xert in male ESCs in cis by CRISPR activation causes ectopic Xist induction [62].
Xert may work additively with Ftx to induce Xist in cis, as heterozygous deletion of Xert
and Ftx in ESCs together leads to expression of Xist RNA exclusively from the WT X [62].
The additive functions of Xert and Ftx in vitro suggest that the combined loss of Xert and
Ftx may result in a more pronounced developmental phenotype relative to Ftx −/− female
mice. A definitive test of the requirement of Xert alone or together with Ftx in inducing
Xist and random X-inactivation awaits the generation of mutant mice.

In contrast to Ftx and Xert, the X-linked Linx locus is thought to negatively regulate
Xist in cis [107,108]. Linx maps within the XIC ~150 kb downstream of the Xist promoter and
is co-expressed with Tsix in the embryonic lineage before random X-inactivation [107,108].
Linx could, therefore, function independently or through the regulation of Tsix to negatively
regulate Xist. Heterozygous deletion of the Linx promoter, though, does not alter Tsix
expression [107]. In female post-implantation embryos, heterozygous deletion of the
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Linx promoter results in a modest bias (54%) in X-inactivation, favoring the mutant X
chromosome [107]. More recently, the Lppnx lncRNA has been described to arise from
the region corresponding to the Linx locus [109,110]. Deletion of the Lppnx promoter,
which appears to be nearly identical to the Linx promoter, similarly results in a modest
bias in X-inactivation of the mutant X in mid-gestational female embryos [109,110]. Due
to the repetitive sequences in the Linx/Lppnx region, whether these two loci are distinct
remains unclear [111]. The mild effects observed upon deletion of the Linx/Lppnx promoters,
however, suggest that other factors contribute to Xist repression.

A competing model posits that physical pairing of the two X chromosomes at the
onset of random X-inactivation in females underlies X chromosome counting and choice.
Early studies using DNA fluorescent in situ hybridization in differentiating female ESCs
demonstrated that loci near Xist on the two X chromosomes transiently co-localize at
the onset of random X-inactivation [112–114]. These studies posited that this transient
co-localization facilitates counting and choice of only one of the two X chromosomes for the
induction of Xist and X-inactivation [112–114]. Several XIC loci have been nominated to
modulate X-pairing, including Tsix, Xite, and Xpr [112,113,115]. Xite is a lncRNA-expressing
sequence thought to enhance Tsix expression [116,117]. Xpr (X-pairing region) contains the
Xpct (Slc16a2) gene, which encodes for a thyroid hormone transporter [113]. Initial work
showed that the Xpr sequence could trigger ectopic Xist expression in a subset of cells when
autosomally integrated [112,113].

Several pieces of evidence collected more recently suggest that X-pairing may not be
essential for counting and choice in females. Large heterozygous deletions encompassing
the putative X-pairing loci Tsix, Xite, and the Xpr do not abrogate Xist induction [104,118].
Furthermore, XX-XY heterokaryons that contain separate XX and XY nuclei in a shared
cytoplasm nevertheless exhibit Xist RNA coating of the sole X chromosome in the XY nuclei
at a frequency consistent with independent initiation of X-inactivation of one of the three
X chromosomes in these cells [104]. This finding suggests that in the absence of pairing,
the X chromosome in the XY nucleus of an XX-XY heterokaryon is capable of inducing
Xist [104]. Separately, another set of experiments attempted to prevent pairing in female
ESCs by tethering one or both X chromosomes to the nuclear lamina and found that Xist
RNA was still induced from one of the two X chromosomes upon the tethering [119]. Taken
together, these experiments suggest that X-pairing is not required for either the counting or
choice steps of X-inactivation.

Recent time-course observations of Xist RNA expression challenge the counting and
choice model of X-inactivation. These analyses have revealed transient biallelic expression
of Xist from the two parental X chromosomes when Xist is first induced in the epiblast
lineage of developing WT female mouse embryos (Figure 2) [87,88,120,121]. The counting
and choice model predicts monoallelic induction of Xist from one of the two X chromosomes
at the onset of random X-inactivation in female cells [121,122]. Thus, biallelic induction of
Xist from both X chromosomes at the onset of random X-inactivation argues against the
counting and choice model of random X-inactivation (Figure 2). Rather, the induction of
Xist from both X chromosomes suggests that the activity and expression dose of one or
more X-linked trans-acting factors suffices to induce Xist during the initiation of random
X-inactivation [121–123]. Upon the stochastic and non-synchronous induction of Xist from
both alleles, the expression of X-linked inducer(s) of Xist is expected to be reduced, thereby
preventing robust Xist induction from both X chromosomes (Figure 2) [121,122].

Rnf12, which may fall within the XIC, was the first X chromosome encoded protein
proposed to be a stochastic inducer of Xist [121]. Rnf12 +/− female ESCs exhibit reduced
Xist expression levels [104]. Conversely, transgenic overexpression of RNF12 in male ESCs
results in ectopic Xist induction [105]. Rnf12 is amongst the earliest genes to be silenced
when X-inactivation is being established [29,105,121], thereby potentially preventing robust
Xist induction from both X chromosomes. RNF12, therefore, matches the stipulations of
an X-linked factor that stochastically induces Xist in female cells. However, the epiblast-
specific loss of RNF12 in female mouse embryos does not ablate Xist expression or cause
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lethality [124]. These Rnf12−/− epiblast cells, though, do show reduced Xist RNA expres-
sion relative to WT female epiblast cells [124]. RNF12 may thus be required for robust Xist
induction during random X-inactivation [124]. Nevertheless, these results suggest that
additional X-linked factors act in trans to stochastically induce Xist, either independently of
or together with RNF12.
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Figure 2. Stochastic Xist induction during random X-chromosome inactivation in the mouse embryo.
The Xp is reactivated by embryonic day (E) ~4.5 in the female embryo. At this stage, both the Xm
and Xp express activators of Xist. Increased expression of X-linked activators stochastically induces
Xist on the Xm and/or Xp between E5.0 to E5.5. Individual embryonic epiblast cells transiently
exhibit distinct patterns of Xist induction. In cases where both X chromosomes induce Xist, both
X chromosomes may initiate silencing, which in turn results in a reduction of expression of the
X-linked Xist activators. Reduced expression of Xist activators leads to a loss of Xist induction. This
feedback loop resolves only when Xist RNA is expressed from a single X chromosome and that
single X chromosome is transcriptionally silenced in female cells. Upon inactivation of a single X
chromosome, the expression of X-linked activator(s) of Xist reaches an intermediate level, thereby
preventing induction of Xist from the active X chromosome in female cells.

The X-linked KDM5C demethylase of histone H3 lysine 4 di- and trimethylation
(H3K4me2/3) [125–127] has also been recently shown to induce Xist in a dose-dependent
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manner [128]. Kdm5c −/− females are inviable, whereas Kdm5c −Y males are viable and
fertile [128,129]. Kdm5c −/− female embryos and differentiating female ESCs exhibit a
>80% reduction in Xist induction relative to WT female embryos [128]. KDM5C over-
expression ectopically induces Xist in male ESCs, suggesting that KDM5C functions in a
dose-dependent manner to induce Xist [128]. Kdm5c escapes X-inactivation and is expressed
from both the active and the inactive-X chromosomes in females [130]. However, upon the
establishment of X-inactivation, Kdm5c expression is reduced relative to when both Xs are
active prior to X-inactivation [130,131]. Thus, although Kdm5c escapes X- inactivation, the
downregulation of KDM5C expression upon the commencement of X-inactivation may
forestall robust Xist induction and inactivation of the second X chromosome. KDM5C
function and expression dynamics, therefore, are consistent with KDM5C inducing Xist in
a dose-dependent and stochastic manner.

Like KDM5C, KDM6A is an X-inactivation escapee that has also been suggested to
induce Xist RNA [130,132]. KDM6A functions as a demethylase of H3K27me3 [133–135].
Loss of KDM6A results in defective Xist induction in differentiating female ESCs [132].
Kdm6a homozygous mutant female (Kdm6a−/−) mice perish midway through gestation
between E10.5 to E12.5, whereas Kdm6a−Y males are viable and fertile [136]. Whether the
lethality of Kdm6a−/− female mice is related to defective random X-inactivation awaits the
characterization of Kdm6a−/− embryos. The absence of Rnf12, Kdm5c, or Kdm6a individually
does not appear to completely abrogate Xist RNA induction [124,128,132]. It is thus likely
that multiple X-linked factors function cooperatively in a dose-dependent manner to
robustly induce Xist in females.

The Kdm5c and Kdm6a loci both reside far outside the XIC. That these non-XIC-encoded
factors are required for Xist induction during random X-inactivation challenges the notion
that all Xist regulators reside in the XIC. These observations prompt the exploration of
other non-XIC X-linked loci in regulating Xist and random X-inactivation.

Emerging evidence also suggests that the autosomally encoded SPEN protein induces
Xist during random X-inactivation [137]. Spen−/− female ESCs were initially reported to
exhibit defective Xist induction upon differentiation [137]. However, a separate study of
Spen−/− female ESCs did not replicate this observation [138]. Since SPEN is autosomally
encoded, its expression is expected to be equal between females and males. To induce
Xist selectively in females, SPEN may need to be recruited to the Xist locus either directly
or indirectly by X chromosome-encoded factors that are differentially expressed between
females and males.

5. Mechanisms of Gene Silencing on the Inactive-X during Random X-Inactivation

SPEN has a significant role in establishing X-linked gene silencing during random
X-inactivation. By profiling the proteins that bind Xist RNA, several independent groups
found that SPEN directly interacts with Xist RNA [78,139,140]. SPEN interacts with Xist
RNA’s repeat A through an RNA-recognition motif (RRM) [78,139,141]. Xist repeat A is
required for robust Xist RNA-mediated X-linked gene silencing, and the loss of SPEN
results in a similar X-linked gene silencing defect relative to the loss of repeat A [142,143].

SPEN is recruited to the inactive X concomitantly with Xist RNA induction, suggesting
that SPEN contributes to the establishment of X-linked gene silencing during random
X-inactivation [80]. SPEN harbors a SPOC domain (Spen paralog and ortholog C-terminal
domain) that is necessary for SPEN-mediated X-linked gene silencing [78,80,144]. The SPEN
SPOC domain interacts with the SMRT/NCoR co-repressor complex, which recruits histone
deacetylases (HDACs) to target loci [78,80,144,145]. By deacetylating histone tails, HDACs
may contribute to X-linked gene silencing [144]. However, ablation of the SPOC domain
does not completely abrogate X-linked gene silencing [146], suggesting that other domains
of SPEN and/or other factors contribute to the establishment of X-linked gene silencing
during random X-inactivation. The absence of any reported female-specific defects and the
relatively late lethality of Spen-/- female and male embryos (E12.5–E14.5), though, argue
against an essential role of SPEN in the establishment of random X-inactivation [81].
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PRC2 and PRC1 also contribute to X-linked gene silencing establishment during ran-
dom X-inactivation. Loss of the core PRC2 subunit SUZ12 in female ESCs leads to defective
establishment of silencing of a subset of X-linked genes upon differentiation [143]. Similarly,
ablation of the PRC1 subunits PCGF3 and PCGF5 in differentiating female ESCs results in
defective silencing of a subset of X-linked genes [146]. The loss of PCGF3 and PCGF5 also ab-
rogates Xist RNA-mediated recruitment and accumulation of PRC1-catalyzed H2AK119ub1
and to some extent PRC2-catalyzed H3K27me3 on X-linked genes [143,147,148]. The im-
pact of PCGF3 and PCGF5 loss on H3K27me3 accumulation has led to the proposal that
PRC1 recruits PRC2 to loci on the inactive-X [143,147,148]. The order of recruitment of the
two PRC complexes to the inactive-X has been the subject of much recent debate.

Some studies have suggested that PRC2 and PRC1 directly interact with Xist RNA [149],
whereas others propose that PRC2 and PRC1 are recruited through indirect interactions
with Xist RNA [147,148,150]. Various approaches using crosslinking followed by mass
spectrometry (MS) have not consistently shown direct interactions between the subunits
of PRC2 or PRC1 with Xist RNA. One study that employed UV-crosslinking identified
the PRC2 subunit EZH2 as one of more than 100 hits inferred to be direct Xist RNA inter-
actors [140]. A different study using formaldehyde crosslinking found several subunits
of PRC1, but not PRC2, to directly interact with Xist RNA [139]. However, profiling of
direct protein–Xist RNA interactions using UV-crosslinking after stable isotope labelling
of amino acids in culture (SILAC) for quantitative MS did not yield any subunits of PRC2
or PRC1 [78]. Xist RNA may thus recruit PRC2 and PRC1 to the inactive-X indirectly.
PRC2 may be indirectly recruited to the inactive-X through a direct interaction of the PRC2
accessory subunit JARID2 with Xist RNA [151]. Similarly, the direct Xist RNA-binding
protein hnRNPK may be an indirect recruiter of PRC1 to the inactive-X [139,148].

SMCHD1 is also thought to maintain X-linked gene silencing during random X-
inactivation downstream of the PRCs and SPEN [146]. SMCHD1 has been proposed to
interact directly with Xist RNA [140]. However, a study using PAR-CLIP (photoactivatable
ribonucleoside-enhanced cross linking and immunoprecipitation) found that SMCHD1
does not directly interact with any RNAs, including Xist RNA [152]. Instead, evidence
suggests that SMCHD1 is indirectly recruited to the inactive-X through its interaction with
hnRNPK, similar to the proposed mechanism of hnRNPK recruiting PRC1 to the inactive-
X [148,152]. In support of this mechanism, loss of Xist RNA repeats B and C, to which
hnRNPK binds, ablates SMCHD1 accumulation on the inactive-X [152]. The recruitment of
SMCHD1 downstream of PRC1 is consistent with a primary role of SMCHD1 in maintaining
X-linked gene silencing [146].

6. Open Questions

Our understanding of the necessity of cis-acting loci within the XIC in regulating Xist
expression during imprinted X-inactivation is limited relative to random X-inactivation
(Table 1). The XistAR and Tsix lncRNAs have established roles in Xp-Xist induction and in
the maintenance of Xm-Xist repression, respectively, during imprinted X-inactivation [41,57].
In contrast, other cis-acting loci either do not appear to have a role or await further testing
as regulators of Xist in imprinted X-inactivation.
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Table 1. Summary of factors regulating Xist RNA induction during imprinted vs. random X-
inactivation. All studies were performed in mouse embryos or cells.

Region Regulatory Factor Imprinted X-Inactivation Random X-Inactivation

XIC

Xist Expression in Mutants Xist Expression in Mutants

Tsix lncRNA Xm-Xist ↑↑↑
Tsix −/+ pre-implantation embryos [41]

Xist ↑↑↑ from WT active-X
Tsix +/− post-implantation
embryonic epiblasts [100]

XistAR lncRNA Xp-Xist ↓↓↓
XistAR +/− pre-implantation embryos [57]

Biased Xist expression from WT X
XistAR +/– EpiSCs [57]

Jpx lncRNA Awaits further testing No reported change
Jpx −/− mouse embryonic fibroblasts [106]

Ftx locus and/or
lncRNA

No change
Ftx +/− pre-implantation embryos [63]

Biased Xist expression from WT X
Differentiating Ftx +/− ESCs [60]

Xert locus and/or
lncRNA Awaits further testing

Biased Xist expression from WT X
Xert +/− promoter deletion;

differentiating ESCs [62]

Linx/Lppnx locus
and/or lncRNA Awaits further testing

Biased Xist expression from mutant X
Linx/Lppnx +/− promoter deletion;

post-implantation embryonic epiblasts
[107,109]

RNF12
Xp-Xist ↓↓↓

Rnf12 −/+ and Rnf12 −/−

pre-implantation embryos [67,68]

Xist ↓
Rnf12 −/− post-implantation

embryonic epiblasts [124]

Non-XIC
KDM5C No reported change

Kdm5c −/− pre-implantation embryos [128]

Xist ↓↓↓
Kdm5c −/− post-implantation

embryonic epiblasts [128]

KDM6A Awaits further testing Xist ↓↓
Differentiating Kdm6a–/– ESCs [132]

Auto-
somal

SPEN No reported change
Spen −/− pre-implantation embryos [80] Variable reports [137,138]

PRC2/1
Randomized Xist expression

Pre-implantation embryos lacking
oocyte-derived PRC2 or PRC1 [43,48,51]

No reported change
PRC2 or PRC1 null post-implantation

embryonic epiblasts [82,153]

SMCHD1
Incompletely penetrant Xm-Xist ↑
Pre-implantation embryos lacking

oocyte-derived SMCHD1 [53]

No reported change
Smchd1 −/− post-implantation embryos [76]

Distinct trans-acting factors regulate Xist during imprinted vs. random X-inactiva-
tion [121,122] (Table 1). For example, PRC2 and PRC1 are required to prevent Xist expres-
sion from the active X (the Xm) during imprinted X-inactivation but not during random
X-inactivation [67,68]. Conversely, KDM5C and SPEN appear to be required for Xist
induction during random but not imprinted X-inactivation [80,128].

Testing the requirement of factors for Xist induction in both imprinted and random
X-inactivation can be made more conclusive through the examination of mutant mouse em-
bryos. Many factors implicated in the induction of random X-inactivation have been tested
in stem cells but not in embryos (Table 1). Some factors, e.g., SPEN, exhibit varied results in
stem cell models of random X-inactivation [103,104,137,138]; therefore, conducting tests in
embryos may provide deeper insights.

7. Conclusions

Our improved understanding of Xist RNA induction as well as the establishment and
maintenance of X-linked gene silencing during X-inactivation derives from technological
advances, which have propelled a re-examination of previous conclusions. Although
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the mechanisms of Xist RNA induction during imprinted and random X-inactivation are
distinct, both forms of X-inactivation appear to rely largely on the same set of factors to
establish and maintain X-linked gene silencing. The use of mouse embryos has provided
valuable insights into the mechanisms of both imprinted and random X-inactivation, as
the embryos undergo both types of inactivation. The extent to which the models derived
from the mouse apply to the onset of X-inactivation in other therian mammals, including
humans, remains largely unknown and will be important to elucidate in the future.
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