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Abstract: While reports on the generational inheritance of a parental response to stress have been
widely reported in animals, the molecular mechanisms behind this phenomenon have only recently
emerged. The booming interest in epigenetic inheritance has been facilitated in part by the discovery
that small non-coding RNAs are one of its principal conduits. Discovered 30 years ago in the
Caenorhabditis elegans nematode, these small molecules have since cemented their critical roles in
regulating virtually all aspects of eukaryotic development. Here, we provide an overview on the
current understanding of epigenetic inheritance in animals, including mice and C. elegans, as it
pertains to stresses such as temperature, nutritional, and pathogenic encounters. We focus on
C. elegans to address the mechanistic complexity of how small RNAs target their cohort mRNAs
to effect gene expression and how they govern the propagation or termination of generational
perdurance in epigenetic inheritance. Presently, while a great amount has been learned regarding the
heritability of gene expression states, many more questions remain unanswered and warrant further
investigation.

Keywords: small non-coding RNA; siRNA; miRNA; piRNA; tRF; transgenerational inheritance;
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1. What Is Epigenetic Inheritance?

In a controversial but influential study in 1942, Conrad Waddington reported changes
in Drosophila melanogaster’s wing structure due to heat shock stress that persisted for over
seven generations despite the lack of the original trigger [1]. This observation was the first
account of a phenomenon in which Waddington coined the term “epigenetic”, meaning
“above genetics”. Waddington’s well-known “epigenetic landscape” model illustrated
how fluctuations in environmental conditions during development can lead to significant
changes in phenotype [1,2]. Since then, the definition of the term “epigenetics” has evolved
as scientific advances in the field have been made and the molecular mechanisms promoting
the epigenetic regulation of gene expression have been identified [3]. The two conditions
that spark the least amount of controversy that must be satisfied for a phenomenon to
be labeled epigenetic are that stable gene expression changes must not be the result of a
modification to the DNA sequence and that these changes are reversible. The discovery
of DNA methylation, post-translational histone tail modifications, and non-coding RNAs
as the epigenetic mechanisms that regulate gene expression both spatiotemporally during
development and as a result of environmental factors satisfies these first two conditions [4].
The third requirement for a gene expression change to be labeled epigenetic is that it must
be heritable. However, the definition of what is considered “heritable” has evolved during
the modern era of molecular genetics [5]. Originally, the heritable component was only
valid when gene expression states were inherited across generations, but a more modern,
inclusive definition is that heritability can refer to the maintenance of gene expression
states across cell divisions, or even a prolonged change in gene expression for post-mitotic
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cells [4]. For the purposes of this review, we will focus on the mechanisms of epigenetic
inheritance across one or more generations.

Intergenerational epigenetic inheritance or parental inheritance refers to the passing
on of a parental (P0) trait to the next generation (F1), such as maternal provisioning via
the placenta in mammals. For example, a P0 gestating mother who is directly exposed to
an environmental factor is not only exposed herself but also exposes her F1 generation
progeny and their developing germ cells that will produce the F2 generation. Thus, in
mammals, the F3 generation is the first generation that was not exposed to the original
environmental factor (Figure 1). Transgenerational epigenetic inheritance (TEI) is the
durable epigenetic inheritance that persists beyond parental inheritance, and requires at
least two generations for paternal transmission and at least three generations for maternal
transmission in animals in which embryonic development occurs in utero [6]. In other
animals, such as Caenorhabditis elegans nematodes, the P0 hermaphrodite, its germ cells, and
any unhatched F1 embryos still in the uterus are exposed to the environmental factor. The
germline lineage in the F1 progeny is specified at the four-cell embryonic stage, before the
egg has been laid [7]. Thus, similar to mammals, the F3 generation is the first generation of
C. elegans not exposed to the original environmental factor (Figure 1). Epigenetic inheritance
is contingent on germ cells carrying an inherited “factor”, which then proceeds to transform
the epigenome of the descendant embryo to promote phenotypic changes [8–11].
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Figure 1. Intergenerational versus transgenerational inheritance. In mice and C. elegans, trans-
generational inheritance first occurs in the F3 generation. Colors indicate cells derived from the
same population.

Signs of potential epigenetic inheritance in humans can be found throughout recorded
history, where natural disasters, human-made or otherwise, have taken devastating tolls on
human populations. For example, two of the most notorious recent human famines include
the Dutch Winter Hunger of World War II (1944–1945) and the Great Chinese Famine
(1958–1962), the latter of which is widely regarded as the deadliest famine in human his-
tory with ~30 million deaths [12,13]. Individuals that survived in utero exposure to these
famines were more likely to exhibit metabolic disease in adulthood compared to unexposed
siblings [14]. In the case of the Dutch Hunger Winter, metabolic disease in the affected
individuals is correlated with changes in DNA methylation levels at cytosine-guanine
dinucleotides (CpGs) associated with genes that have functions in insulin signaling and
metabolism [15]. Simulations that model the correlations between famine exposure, cyto-
sine methylation levels, and metabolic disease suggest that selection, and not plasticity, may
play a role in shaping the epigenome of famine survivors. Fetuses with a favorable set of
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epialleles resulting from the stochastic re-methylation of the genome during development
may have had an increased rate of survival in adverse uterine conditions [16]. However,
generational studies have found that the descendants of famine survivors are also dispro-
portionately more vulnerable to disease [14,17,18]. Grandchildren of survivors from the
Dutch famine were more likely to experience obesity, cardiovascular disease, and metabolic
disorders, and the incidence of pulmonary tuberculosis increases for two generations
following prenatal or early-life exposure to the Great Chinese Famine [18]. Whether the
descendants of famine survivors exhibit metabolic disease due to the inheritance of specific
DNA methylation patterns established in the affected ancestor remains to be determined.
In addition, children of parents who experienced trauma-inducing events, such as the Holo-
caust, show increased vulnerability to physical, behavioral, and neurological disorders [19].
More recently, pregnant women that were significantly impacted by Hurricane Sandy on
the northeast coast of the United States in 2012 now have children with a higher incidence
of anxiety and aggression [20]. Each distinct, early-life stress results in different adult
phenotypes, presumably that allow the affected individual and their future generations to
better adapt to that particular environmental stress experience. However, disease can occur
when the adaptive phenotype and the current environment are mismatched [21].

Epigenetic inheritance due to the environmental experiences of the parental genera-
tion is not limited to humans and is well documented in the animal kingdom. Elevating
glucocorticoid hormones in meerkat pregnant females dampens the growth of their female
offspring while also increasing the offspring’s pup rearing and feeding behaviors [22].
Increased dietary sugar in Drosophila fathers reprograms the chromatin state and elicits
obesity in their offspring [23]. Maternal malnutrition in the crustacean Daphnia magna
results in the production of progeny that are slow-feeders [24]. Juvenile wild baboons
whose mothers experienced adversity (being orphaned before reaching adulthood) were
significantly more likely to die at a younger age than those whose mothers were not or-
phaned [25]. Abiotic (CO2 level, pollutants, salinity level) and biotic (viruses, predators)
environmental factors affect offspring phenotypes (metabolism, shell structure, growth,
morphology, lifespan) in various mollusk taxa [26]. In zebrafish, paternal exposure to the
common herbicide atrazine changes their offspring’s behavioral traits and causes seroton-
ergic system dysregulation [27]. Parental contact with aquaculture plastic contaminants
altered the swimming behavior, development, and growth of Pacific oyster progeny [28].
Finally, parental early-life starvation in turnip sawflies affects the life history and consump-
tion traits of their offspring larvae [29]. While this is not an exhaustive list of examples, the
common theme is that parental environmental experience triggers the inheritance of an
environmental “memory”, leading to altered phenotypes in the progeny.

The above examples in humans and other animals are intriguing, but we are left to
wonder whether these observations are labeled “epigenetic” for lack of a better explanation.
Despite an explosion of research investigating the mechanisms of epigenetic phenomena in
the last few decades, we still understand very little about the mechanism of how different
environmental experiences can target specific gene expression changes in subsequent
generations. While there is clearly enough evidence of epigenetic inheritance, one of the
challenges is a concept known as the Weismann barrier, which states that germ cells and
somatic cells are separate and genetic information flows only from germ cells to soma,
not vice versa [30]. While clearly there is enough evidence to disprove this model now,
the mechanism of how sensory experiences of somatic tissue can reprogram germ cells to
retain a memory of environmental experience is not well understood. In this review, we
will highlight the most recent examples demonstrating how animals use small non-coding
RNAs (sncRNAs) to promote epigenetic inheritance. We also address recent advances in the
mechanisms of inheritance, such as how genes become targeted by sncRNAs to propagate
silencing across generations.
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2. Biogenesis and Functions of sncRNAs

One of the unanswered questions of epigenetic inheritance is how a “memory” is in-
herited via germ cells. Two constituents of epigenetic inheritance are histone modifications
and DNA methylation, but they are more cumbersome to establish or inherit, ostensibly
due to zygote resetting to ensure totipotency [31–33], while sncRNAs lend themselves
as more flexible for inheritance and propagation. Nevertheless, the roles of histone and
inheritance in living organisms is well chronicled, and the reader is invited to consider
several excellent reviews that cover the topic extensively [34–40]. DNA methylation is an
epigenetic footprint and the topic of its heritability has been covered elsewhere [41–43].
The biogenesis of small interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), and
microRNAs (miRNAs) has been discussed in detail elsewhere (see [44]); thus, here, we
present only a brief overview of the biogenesis and functions of different small RNA classes
that have been implicated in epigenetic inheritance.

2.1. Small Interfering RNAs

This class of siRNAs can be subdivided into two types that differ in the source of the
RNAi trigger: exogenous siRNAs (exo-siRNAs) and endogenous siRNAs (endo-siRNA).
RNA interference (RNAi) triggered by an externally provided source, such as feeding
worms with bacteria expressing double-stranded RNA (dsRNA), injection into the gonads,
or soaking in dsRNA, is referred to as exo-RNAi or commonly referred to as RNAi [45]. On
the other hand, the production of endo-siRNAs is stimulated by environmental factors [46],
such as biotic or abiotic stresses.

Epigenetic inheritance was one of the first characteristics described of RNAi [47,48].
The development of negative-strand nucleic acid as a laboratory tool to inhibit gene expres-
sion was based on reports that naturally occurring anti-sense nucleic acids interfere with
cellular processes, including ribosome function, plasmid replication, and RNA splicing [49].
An RNAi-type phenomenon was reported in the petunia plant when researchers manipu-
lating the anthocyanin biosynthesis pathway, responsible for its vibrant color, inadvertently
generated white petunias [47]. A similar phenomenon that caused a “quelling” effect of an
endogenous gene due to the introduction of homologous sequences was reported a couple
of years later in Neurospora crassa [50]. Similar gene silencing outcomes in an animal, using
either sense or anti-sense RNAs, were first documented in the C. elegans nematode [48,51].
It was not until several years later that Fire and colleagues reported in their seminal study
that dsRNA, rather than individual strands, results in robust mRNA-specific silencing
that propagates between tissues, indiscriminate of the soma and germline boundaries, and
is heritable by naïve progeny. Because only a few dsRNA molecules were necessary for
this RNA interference phenomenon, a propagatable mechanism for the intercellular and
intergenerational trafficking of silencing factors that can escape the degradation of RNA
transcripts during embryogenesis was postulated to exist [52]. Indeed, the introduction of
dsRNA into one tissue in a parental worm, its spread to other tissues, and its inheritance
by the progeny depended on the components of systemic RNAi, including the conserved
dsRNA channel, SID-1 [53–55].

In some species, such as Drosophila and C. elegans, dsRNA is the trigger for RNAi
processes to be initiated and propagated across generations [56–58]. DsRNA is recognized
by the RNase III ribonuclease, Dicer, which cleaves it into siRNAs ranging between 20 and
30 nucleotides depending on the species [59,60]. The siRNAs bind to an Argonaute (AGO),
which acts as an effector protein to silence gene expression via mRNA cleavage in the
cytoplasm (post-transcriptional gene silencing) or by targeting nascent RNAs in the nucleus
and recruiting heterochromatin formation complexes to the gene locus (transcriptional
gene silencing) [61,62]. SiRNAs direct AGOs to an RNA target by binding with perfect
anti-sense complementarity [46,63–65]. In order for gene silencing to be inherited, the
siRNAs must be propagated so that they do not dilute in concentration after many cell
divisions. In C. elegans and plants, new dsRNAs for Dicer processing are produced by
RNA-dependent RNA polymerases (RdRPs) generating an anti-sense copy of an mRNA.
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However, no RdRP or similar enzyme has been identified to date in Drosophila species or
mammals, so the propagation of siRNAs as a mechanism of epigenetic inheritance in these
animals is unclear [66].

In C. elegans, the biogenesis of siRNAs includes an extra step due to the addition of
an extra category of siRNAs. Primary siRNAs are 26 nucleotides long and are enriched
for a guanine at their 5′ end (26G siRNAs). This class of siRNA is generated via the
Dicer-dependent cleavage of dsRNAs and is found in relative low abundance. The second
class of siRNA is Dicer-independent and made by RdRPs making anti-sense RNAs that
are 22 nucleotides long and are enriched for a 5′ guanine (22G siRNAs). C. elegans has
19 functional AGOs, which have specificity based on the type of small RNA they bind,
the tissue types where they are expressed, and whether they act via transcriptional or
post-transcriptional gene regulation [63]. CSR-1 is the only essential AGO, and it functions
to protect “self” gene expression by promoting a favorable chromatin environment for tran-
scription [67–70]. Acting in opposition to CSR-1, the worm-specific Argonautes, or WAGOs,
act to silence “non-self” components of the genome. One WAGO, the germline-expressed
nuclear HRDE-1 (Heritable RNAi Deficient 1)/WAGO-9, is the principal Argonaute in the
maintenance of transgenerational inheritance. HRDE-1 is dispensable for the initial induc-
tion of this heritable process and shuttles between the cytoplasm (the loading site of small
RNAs) and the nucleus (the action site) and physically associates with 22Gs siRNAs [71].
The inheritance of an initiated silence state via HRDE-1 is dependent on the continued
amplification of 22G siRNAs by RdRPs, RRF-1, and EGO-1, and typically lasts between
three and five generations [71–74].

2.2. Piwi-Interacting RNAs

Mobile genetic elements such as transposable elements (TEs) are present in almost all
prokaryotic and eukaryotic genomes. TEs can constitute about 16% of C. elegans, 20% of
Drosophila, 37% of mouse, 44% of human, and up to 85% of some plant genomes [75–79].
While selfish genetic elements are major contributors to genetic diversification and evolu-
tion [79–81], their ubiquitous parasitic presence poses a unique challenge to their host’s
effort to preserve the integrity of its genome and the perdurance of its species. A number of
human pathologies, including hemophilia, X-linked dystonia–parkinsonism, autoimmune
disorders, and certain cancers, have been linked to the uncontrolled transposition of mobile
genetic elements [82,83]. Some human pathological conditions, such as cancers caused by
the loss of the p53 tumor suppressor activity in repressing rampant transposon activity,
have been proposed to fall under a novel class of diseases called “transposopathies” [84–86].

Animals have devised a transposable element silencing strategy by which Piwi (p-
element induced wimpy testis)-clade AGO proteins and their associated 23-32-nucleotide-
long piRNAs, or piRISC complexes, function in the germline and the soma to detect and
silence complementary RNA targets [87–89]. The earliest indication of the function of
piRNAs in heritable silencing in the fruit fly Drosophila melanogaster was exhibited via
hybrid dysgenesis, a genome incompatibility phenomenon whereby the progeny of crosses
between different Drosophila strains may be sterile due to transposon activation [90–92]. Ev-
idence for the piRNA pathway in transgenerational epigenetic silencing has also emerged
in C. elegans where the PRG-1 Piwi protein can initiate, but not maintain, stable silencing
of a transgene or non-self RNA for multiple generations. In these cases, the maintenance
of transgenerational epigenetic silencing instead depends on RNAi and chromatin modi-
fiers [73,93–96].

Drosophila piRNAs originate from large piRNA gene clusters located in the pericen-
tromeric and sub-telomeric regions that can be several thousand base pairs long. These
piRNAs clusters are rich in repetitive sequences, mostly relics of transposable elements,
and are transcribed as long precursors that are processed into mature piRNAs [97,98].
Transcription of piRNA clusters is conducted by a non-canonical RNA II polymerase
and cluster-specific transcription accessory proteins governed by chromatin marks. Most
piRNA clusters are transcribed from both strands (dual-strand clusters) and are the primary
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source of Drosophila germ cell piRNAs [88,97,99–101]. Although the piRNA clusters in the
euchromatic–pericentromeric borders producing most the piRNAs in the Drosophila gonads
have been considered the main regulators of transposon activity [88,97,102], a recent study
presented evidence of their transitory nature and expendable role in transposon defense
and fertility at an evolutionary scale [103].

2.3. MicroRNAs

First reported 30 years ago in the nematode C. elegans, microRNAs (miRNAs) are the
founding class of sncRNAs. They were found not just to be peculiarities of a nematode
genome, but were highly conserved in other animals, including humans [104,105]. Since
then, miRNAs have been identified in nearly all eukaryotic genomes from plants to humans,
and their function encompasses virtually all aspects of organismal biology, including
human pathologies [106–111]. The mature miRNA sequences range in number from >400
in Arabidopsis thaliana, C. elegans, and D. melanogaster to >2000 in humans [112]. The
biogenesis of a miRNA begins with transcription from a genomic miRNA gene by RNA
polymerase II. The resulting hairpin-structured primary miRNA (pri-miRNA) is processed
by a microprocessor complex consisting of the RNase III enzyme, Drosha, and Pasha
(DGCR8) to yield a shorter double-stranded hairpin structure precursor miRNA (pre-
miRNA), which is exported to the cytoplasm by the Exportin5 and RAN-GTP complex.
Once in the cytoplasm, the pre-miRNA undergoes further processing by Dicer to produce a
~22-nucleotide-long mature miRNA. MiRNAs complex with AGOs in miRISC silencing
complexes to effect gene expression changes in a post-transcriptional or translational-
repressive manner via imperfect base-pairing to the 3’ untranslated region (3’UTR) of the
target mRNAs [107,113–115].

A necessary mechanism for epigenetic inheritance is the ability to amplify the small
RNA silencing agents in order to evade dilution in subsequent generations in the absence
of the original trigger, as is the case for piRNAs and siRNAs [72,88,116]. Since miRNAs
lack an amplification mechanism, the role of miRNAs in epigenetic inheritance is not clear.
However, studies in mice have suggested that miRNAs play a role in the inheritance of a
phenotypic trait by the offspring (i.e., intergenerational epigenetic inheritance) [117–122].
To this effect, the biogenesis of siRNAs in C. elegans has been reported to be orchestrated
by a miRNA [123], thus leaving open the mechanistic prospect that miRNAs can affect the
transgenerational transmission of an ancestral trait.

2.4. Transfer RNA-Derived Fragments

Transfer RNAs (tRNAs) are non-coding RNAs that bridge the processes of transcrip-
tion and translation. Their anticodon loops base-pair with mRNA codons in the ribosome
to deliver amino acids for polypeptide formation. While fragments of tRNAs were first
observed in the urine of cancer patients and in Escherichia coli following bacteriophage T4
infection [124,125], these transfer RNA-derived fragments (tRFs) were later revealed to
be not just debris from tRNA degradation or biogenesis by-products but instead result
from non-random tRNA processing events that are required for cell proliferation [126].
Also referred to as tsRNAs (tRNA-derived small RNAs) or tiRNAs (stress-induced tsR-
NAs) [127–130], several classes of tRFs (5′-tRNA half, 3′-tRNA half, tRF-1, 5′U-tRF, 3′-tRF,
5′-tRF, and i-tRF), ranging in size from ~13 to 48 nucleotides, have been classified based on
where they map on their pre-tRNA or mature tRNA precursors [131–133]. Following the
transcription of tRNA genes in the genome by RNA polymerase III [134], the maturation
of pre-tRNAs starts with the removal of the 5′ leader and 3′-poly U by endoribonuclease
RNase P and ribonuclease RNase Z (ELAC2), respectively, and the addition of a 3′ CCA
to the 3′ acceptor stem by tRNA nucleotidyltransferase [135–138]. It is during this tRNA
maturation process that a diverse class of tRFs is generated from the combinatorial action
of a diverse group of known and unknown endoribonucleases and exoribonucleases, in-
cluding RNase T2, ANG, RNase L, SFLN3 (RNase S13), and RNase Z (ELAC2), and tRNA
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modification enzymes, such as methyltransferases BCDIN3D, TRMT10A, NSUN2, DNMT2,
pseudouridine synthase PUS7, and tRNA demethylase ALKBH3 [139].

tRFs have been identified in all domains of life, and an appreciation for their crit-
ical roles in gene regulation and human health and disease has boomed in the past
decade [139–144]. Extracellular vesicles (EVs) secreted by most cells that function in cell-to-
cell communication and host–pathogen interactions [145,146] were found to be enriched
with tRFs, suggesting the important role of tRFs in the dissemination of signals between
tissues and with the environment of an organism [133,147,148]. In addition, tRFs are promis-
ing biomarkers and therapeutics for human disease [133,149–151], and function in the reg-
ulation of gene expression [127,148,152,153], stress or immune responses [128,147,154–156],
and intergenerational epigenetic inheritance via sperm [127,129,130,157,158].

2.5. Small Nucleolar RNAs

Small nucleolar RNAs (snoRNAs) are an ancient class of short non-coding RNAs
present in plants and animals. While their integral roles as modifiers of RNA (e.g., ribose
2′O-methylation and pseudouridylation of rRNAs) and as components of the spliceosome
are well established, their possible functions in post-transcriptional regulation have begun
to emerge. Similar to tRFs derived from tRNA processing, snoRNA-derived RNAs (sdR-
NAs) are generated from the cleavage of different types of mature snoRNAs. One type of
sdRNA fragment has been shown to associate with AGO1 and AGO2 in human embryonic
kidney cells and target an endogenous mRNA, suggesting that some sdRNAs may function
similarly to miRNAs [159,160]. SdRNAs have also been associated with PIWI proteins and
regulate gene expression via mRNA decay and the recruitment of histone modification
complexes [161,162]. While sdRNAs have not yet been demonstrated to promote epigenetic
inheritance across generations, their ability to regulate gene expression with miRNA and
piRNA-like mechanisms suggests their repertoire of functions may expand in the future to
include emissaries of epigenetic inheritance [163–166].

3. Germ Granules and Epigenetic Inheritance

Germ granules, also referred to as nuage, are germline-specific membrane-less perinu-
clear assemblages of RNA-binding proteins and RNAs located outside the nucleus that have
been identified in numerous species throughout the animal kingdom. They are important
for germ cell development, mRNA translation, and RNA metabolism. It is estimated that
most mRNAs depart to the cytoplasm from the nucleus via these germ granules [167–169].
In C. elegans, germ granules consist of a collection of at least four neighboring, yet separate,
condensates with distinguishable roles: P granules, Z granules, Mutator foci, and SIMR
foci. It is in these compartments that certain proteins involved in the sncRNA pathways
localize [170–172].

The largest and best characterized germ granule component is the P granule, where
numerous proteins localize, including PGL-1/-3, Vasa-DEAD like helicases GLH-1/-2/-
3/-4, RdRP EGO-1, and six AGOs (ALG-3/-4/-5, PRG-1, CSR-1, and WAGO-1). The P
granule is hypothesized to be where C. elegans RNA surveillance or recognition takes
place [67,72,173–179]. Z granules are enriched for the RNA helicase ZNFX-1, piRNA
biogenesis factor PID-2/ZSP1, and AGO WAGO-4. Increasing evidence suggests that
Z granules are vital for RNAi inheritance [169,170,180–183]. SncRNA amplification is
hypothesized to occur in the Mutator foci, where the proteins required for siRNA biogenesis
localize, including endoribonuclease RDE-8, RdRP RRF-1, the Mutator proteins MUT-
2/RDE-3, MUT-7, MUT-8/RDE-2, MUT-14, and MUT-15, and the Mutator scaffold protein
MUT-16 [169,172,184–187]. The core protein in the SIMR focus is the Tudor domain protein
SIMR-1, which functions downstream of PRG-1-dependent biogenesis but upstream of the
Mutator complex siRNA amplification complex [171]. Also residing in the SIMR foci is the
RSD-2 protein, which is required for exogenous RNAi in C. elegans [171].

Recent studies have revealed the important roles of germ granules in C. elegans epige-
netic inheritance, particularly the Z granules. In an effort to identify genes important to



Epigenomes 2024, 8, 1 8 of 31

epigenetic inheritance, two groups contemporaneously performed genetic screens and iden-
tified mutations in znfx-1/zk1067.2 and wago-4 as disrupting RNAi inheritance [170,180].
Znfx-1 is predicted to encode a protein with a superfamily one (SF1) RNA helicase domain
and a zinc-finger domain with orthologs in most eukaryotes. While znxf-1 and wago-4
mutants responded normally to exogenous RNAi against germline-expressed genes, their
progeny were unable to inherit the silencing response. Moreover, ZNFX-1 colocalizes
with WAGO-4 and CSR-1 in adult germ cells, but they form distinct foci from P granules
and Mutator foci [170,180]. To reflect the unique identity of the ZNFX-1 and WAGO-4
foci, one group coined them Z granules and proposed the existence of PZM (P granule/Z
granule/Mutator foci) tri-condensate assemblages in the adult germ cells [170]. Because
components of the Mutator foci and P granules were previously found to affect RNAi in-
heritance [53,73,94], PZM assembly was deemed as required for the epigenetic inheritance
of exogenous RNAi silencing [170].

A subsequent study conducted by Ouyang and colleagues asked whether Z granules
function with the germline-specific and nuclear-localized HRDE-1, the chief effector in the
inheritance of RNAi-induced transcriptional silencing states [71,188]. Using fluorescent in
situ hybridization (FISH) to visualize the germline-specific mex-6 RNA in hermaphrodites,
the authors fed adult worms a mex-6 dsRNA trigger and spatiotemporally tracked what
happened to mex-6 [188]. A reduction in the cytoplasmic mex-6 signal was detected 4 h
after initiating RNAi, feeding followed by an increase in the mex-6 signal 2–4 h later in
the nuclear puncta (i.e., nascent transcripts) of the pachytene and diplotene regions in the
gonad, where meiotic prophase occurs. They also observed an aggregation of mex-6 RNA
clusters in the cytoplasm of developing oocytes that overlapped with PRG-1 (P granules),
MUT-16 (Mutator foci), and ZNFX-1. Although cytoplasmic- and nuclear-localized mex-6
signals were reduced in the F1 and F2 descendants of P0 hermaphrodites fed mex-6 RNAi,
the perinuclear puncta that overlapped with PRG-1 and ZNFX-1 remained detectable in
pachytene, suggesting that the nuclear export of the mex-6 mRNA persisted in the germ
granules of the F1 and F2 generations. HRDE-1 was found to be necessary for silencing
mex-6 in the nucleus of the P0 and F1 generations, but ZNFX-1 was required for the
accumulation of mex-6 germ granule signals. This suggested that the HRDE-1 nuclear
RNAi machinery functioned independently of the cytoplasmic response by ZNFX-1 of
corralling transcripts targeted for silencing in the germ granules of P0 and F1 animals.
Moreover, ZNFX-1 was found to be required for the amplification of mex-6 sncRNAs and
mex-6 transcripts with a pUG (the addition of untemplated UGs to the 3′ end of an RNA, or
“pUGylation”. See Section 5.1) in the F1 but not the P0 generation. Collectively, this study
posits a novel concept of two parallel sncRNA amplification loops being dependent on the
nuclear HRDE-1 targeting nascent transcripts and ZNFX-1 aggregating targeted RNA in
perinuclear condensates [188].

4. Examples of Epigenetic Inheritance Induced by Biotic and Abiotic Stress
4.1. Heat Stress

Given that one of the first descriptions of epigenetic phenomena resulted from Wadding-
ton’s experiments with heat stress [2], it is not surprising that high temperature can trigger
TEI responses across organisms. In this section, we highlight the advances made in C.
elegans, which are highly sensitive to heat stress, regarding the role of small RNAs in
the ancestral memory of high temperature. Cultivating a C. elegans population for one
generation (~3 days) at the mild heat stress of 25 ◦C, followed by a return to its standard
growth temperature of 20 ◦C, resulted in altered expression in 20 genes that endured for at
least four generations. This list of genes was highly enriched for oocyte-expressed genes
that are known targets of piRNAs and HRDE-1-bound siRNAs [189]. Once PRG-1/Piwi
and its associated piRNAs induce silencing, the production of WAGO-associated siRNAs is
required in subsequent generations to maintain TEI [73,93–96,190,191]. Interestingly, the
piRNA-targeted transcripts whose levels change upon the shift to an elevated temperature
are more than 10 times more likely to be transmitted transgenerationally when the animals
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were returned to the normal growth temperature; thus, PRG-1-dependent germline small
RNAs are predictors of the generational transmission of ancestral temperature stress. In ad-
dition, the heritable effect of temperature was abrogated in strains carrying mutations in the
mut-2/rde-3 and mut-16 Mutator genes, which are required for siRNA production [184,185].
Altogether, this study was one of the first showing an ecological stimulus effectively trig-
gering a transgenerational heritable change in gene expression that depended on the action
of small RNAs.

A broader genome-wide study examining the effect of heat stress across generations in
C. elegans included transcriptomic analysis of wild-type and hrde-1 mutant animals grown
under a fluctuating regime of low (15 ◦C) and high (23 ◦C) temperatures for 12 generations.
The authors identified 288 genes that were upregulated due to heat stress in hrde-1 adults
compared to the wild-type as nuclear RNAi-repressed heat-inducible genes (NHGs) [192]. A
subset of 41 NHGs exhibited a > 2-fold heat stress-dependent increase in expression in hrde-
1 mutants compared to the wild-type, which were named “high-stringent” NHGs. While
most of the high-stringent NHGs were protein-coding, approximately 40% overlapped
with LTR (long terminal repeat) retrotransposon elements, indicating that one of the key
functions of HRDE-1 is to hamper certain LTR retrotransposons from activating upon heat
stress [192]. ChIP-Seq analysis of these NHG regions indicated a correlation of increased
expression in hrde-1 adults with increased RNA polymerase II occupation and decreased
histone H3K9me3 heterochromatic modifications, demonstrating a connection between
HRDE-1 and chromatin modification pathways. Two subsequent studies have also found a
role for histone H3K9me3 modifications in the TEI of heat stress response via transgene
expression and lifespan extension, although the connection to endo-siRNA pathways in
those instances has not been thoroughly explored [181,193]. These results indicate that gene
silencing due to ancestral temperature stress is transgenerational and that the germline
nuclear RNAi pathway plays a role in this repression via chromatin remodeling. Together,
these studies indicate siRNA-mediated regulation of histone H3K9me3 modifications in
propagation of heat stress memory and the corresponding changes in gene expression
and physiology.

An outstanding and controversial issue in the TEI field is whether the inheritance of
ancestral experiences is adaptive to a species. Evolutionary biologists have derived a new
“unified evolution theory” to incorporate the effects of TEI into how natural selection im-
pacts populations [194,195]. This new theory seems especially relevant when TEI impacts
mating behaviors. C. elegans is androdioecious, meaning it can self-propagate or outcross.
However, exposure to stressful conditions in C. elegans and other species increases the
frequency of outcrossing, and hence the genetic variability essential for increasing survival
in environmental fluctuations [196,197]. Upon the depletion of a finite number of self-made
sperm, aging hermaphrodites secrete a volatile sex pheromone which attracts males via
the SRD-1 receptor in their AWA sensory neurons [198,199]. However, after continuously
maintaining animals for 10-15 generations at 25 ◦C, adult hermaphrodites precociously
secreted a male-attracting pheromone that resulted in increased male attraction and mating.
Interestingly, the premature attraction of males to hermaphrodites was preserved for up to
three generations following the shift back to 20 ◦C and required HRDE-1/AGO, indicat-
ing that the phenotype was siRNA-based [200]. By screening strains carrying mutations
for genes with functions in various small RNA pathways, four additional mutant strains
(alg-5, dcr-1, prg-1, and the meg-3/4 double mutant) were found to prematurely produce
the sex pheromone, but only the meg-3/4 double mutant exhibited TEI of the increased
attractiveness to males [200]. All of the RNA pathway proteins whose lesions result in
precocious male attraction localize to germline-specific structures called P granules, which
are cytoplasmic condensates that house RNA and RNA-interacting proteins and are re-
quired for germline maintenance and TEI [201]. P granules are acutely disrupted in the
meg-3/4 mutant and are smaller in wild-type animals grown at high temperature [202,203].
Analysis of the mRNA and small RNA levels in precociously attractive hermaphrodites
cultivated at a high temperature revealed the enrichment of sperm-related genes, which is
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consistent with the disruption in the structural integrity of P granules [204]. Production
of the sex pheromone is dependent on the lack of a sperm and egg fusion signal [198];
thus, these observations suggest that the premature attractiveness of worms grown at
25 ◦C may be due to inappropriate gene expression in the germ cells and the inability to
reproduce [200]. By performing multi-generational mating competition experiments, the
authors showed that the proportion of the meg-3/4-descendent lineage increased over seven
generations, suggesting that the production of the sex pheromone transgenerationally in-
creases mating of the meg-3/4-descendent lineage, leading to its increased frequency within
a population [200]. Altogether, high temperature affects the production and inheritance of
siRNAs, which can result in a generational shift in population structure due to a change in
pheromone production and the attractiveness of hermaphrodites.

4.2. Nutritional Stress

Epigenetic marks, including DNA methylation, histone modifications, and small RNAs,
depend on metabolites for their biogenesis, and thus, are ultimately tied to metabolism [205].
However, how the parental diet can affect the metabolism of offspring is less understood.
It is clear from human famine data that maternal under-nutrition during gestation con-
tributes to metabolic disorder in offspring, in some cases transgenerationally [206,207].
The effects of the common Western high-fat and high-sugar diet (WD) have also been
shown to have transgenerational effects [208–210]. Eggs contain material from the maternal
somatic tissue, such as proteins, lipids, and mRNAs, the latter of which can jumpstart
embryonic development after fertilization and the initiation of maternal-to-zygotic transi-
tion (MZT) [211–213]. Additionally, for most mammals, embryonic development occurs
entirely in utero, making the developing fetus susceptible to the effects of maternal over- or
under-nutrition [214–216]. However, the paternal contribution to the offspring’s metabolic
phenotype has only become to be largely appreciated in the last decade. In this section,
we will focus on recent studies examining the effects of paternal stress and diet on the
offspring’s metabolic phenotype in mammals.

Developing germ cells undergo massive reprogramming during development, erasing
most epigenetic information. Sperm were previously thought to contribute very little
beyond haploid DNA content to the zygote, much less any “experience” of the parental
condition. Sperm contain proteins, lipids, and RNA that can influence gene expression in
a developing embryo [130,158,217,218]. The fundamental steps of spermatogenesis begin
with germ cell differentiation into spermatocytes via mitotic division and the production of
haploid spermatids from the tetraploid primary spermatocytes via meiotic division. This
is followed by spermiogenesis when motile spermatozoa are produced from spermatids.
In C. elegans, spermatogenesis in hermaphrodites is restricted to the last larval stage (L4)
prior to the onset of oogenesis at adulthood and occurs in the spermatheca of the gonads,
while in mammals, spermatogenesis occurs in the male testes [219,220]. Studies have
found that miRNAs and tRFs transfer from the epididymis to the spermatozoa in mice,
showing a direct way to transfer information between the somatic tissue and germline in
males [148,221].

While both sperm and oocytes harbor miRNAs, most of the evidence for miRNAs in
intergenerational inheritance comes from studies of paternally inherited sperm [121]. Male
mice exposed to chronic stress before breeding sired offspring that exhibited higher inci-
dences of neuropsychiatric disorder due to the dysregulation of the hypothalamic–pituitary–
adrenal (HPA) stress axis. Analysis of the miRNA population in the sires with reduced HPA
stress axis reactivity revealed higher levels of nine miRNAs (miR-29c, miR-30a, miR-30c,
miR-32, miR-193-5p, miR-204, miR-375, miR532-3p, and miR-69) [120]. Microinjection of
these nine miRNAs into zygotes, which were later implanted into surrogate females and
reared under normal conditions, reprised the reduced HPA stress axis reactivity of the
paternally stressed sires [119]. Another example of intergenerational inheritance via sperm
is the mouse trauma model of unpredictable maternal separation combined with unpre-
dictable maternal stress (MSUS), which results in changes in behavioral traits and glucose



Epigenomes 2024, 8, 1 11 of 31

metabolism across generations. Assessment of the small RNA population from MSUS F1
sperm showed decreased levels of piRNAs and several miRNAs (miR-375-3p, miR-375-5p,
miR-200b-3p, miR-672-5p, and miR-466-5p), the latter of which could potentially target over
70 genes involved in the regulation of DNA, epigenetics, RNA binding, RNA processing,
stress response, and metabolism. A causal nexus between the MSUS sperm small RNA
pool and its consequence across generations was proposed when RNA extracted from
MSUS male sperm was microinjected into wild-type fertilized oocytes, resulting in the
recapitulation of the MSUS acquired traits [117].

Two types of diets have been recently investigated for their role in regulating offspring
metabolism: a high-fat diet (HFD) and low-protein diet (LPD). The consumption of a HFD
results in a predisposition to obesity and metabolic disorders across generations [222–225].
One of the first studies showing that paternal diet influenced offspring metabolism ex-
amined the consequences of males fed a HFD mated with females fed a control diet. The
HFD males themselves exhibited increased body weight and adiposity compared to control
males, as well as insulin resistance and decreased glucose tolerance. Among the offspring
of HFD males, only the females showed a change in body weight, exhibiting a trend toward
lower day-1 body weights compared to the controls and also developing impaired glucose
tolerance and insulin secretion as adults [226]. DNA methylation was investigated as a
potential mechanism for the inheritance of intergenerational metabolic memory; however,
the evidence of a correlation between methylation states and metabolic phenotypes was
not conclusive.

Subsequent studies of the heritable effects of a paternal HFD implicated non-coding
RNAs as a mechanism of metabolic memory. First, one group importantly demonstrated
that other factors, such as seminal fluid, were not necessary for the inheritance of metabolic
disorders by using in vitro fertilization of gametes followed by implantation into control
females. As described above, female offspring were more susceptible to obesity phenotypes
from a paternal HFD, and the effects of maternal and paternal HFDs can be additive with
respect to weight gain in the offspring [227]. The sufficiency of information from sperm
to inherit metabolic disease was further demonstrated by injecting mouse embryos with
RNA extracted from sperm taken from HFD males. Analysis of the testis RNAs from HFD
and control diet mice indicated that over a dozen miRNAs were differentially expressed.
Microinjection of one of most abundantly dysregulated miRNAs, miR-19b, into one-cell
embryos from the control diet parents was sufficient to induce metabolic disease [118].
Additionally, transcriptomic analysis of HFD male testes found differential expression of
some miRNAs and piRNAs, including miRNA let-7c, indicating that non-coding RNAs
transmitted via sperm could be the epigenetic factor regulating metabolic phenotypes [118].

Contemporaneously, two additional studies found that tRF levels were altered in
the sperm of HFD males in addition to miRNAs and piRNAs [127,228]. Interestingly, the
injection of purified tRFs from HFD sperm into embryos could recapitulate the metabolic
disorder phenotypes [127]. However, synthetically derived tRFs had no effect on the off-
spring, suggesting that modifications made to the tRFs are essential to their functions [127].
Indeed, deletion of the tRNA methyltransferase, DNMT2, abolished the inheritance of
metabolic phenotypes from high-fat-diet males [229]. In addition, although male offspring
of HFD males typically do not display metabolic phenotypes on control diets, their inheri-
tance of altered levels of tRFs can occur up to the F3 generation via the male lineage [230].
Together, these results suggest that paternal high-fat diets can sex-specifically program
offspring to perpetuate metabolic phenotypes via altered miRNA and tRFs levels in sperm.

Unlike the offspring of HFD males, the offspring of LPD males did not exhibit obesity
phenotypes, but instead had upregulated expression of lipid and cholesterol biosynthesis
genes in their livers [231]. In this study, modest changes in miRNA expression, including
upregulation of let-7, and DNA methylation were observed in the offspring livers, but they
were not correlated with the levels observed in sperm of LPD males [231]. A follow-up
study focused on the mechanism of the above observations by sequencing small RNAs
(<40 nt) isolated from the cauda sperm of males on low-protein or control diets. Although
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this study focused primarily on the most abundant small RNA species, tRFs, it is of note
that let-7 was downregulated in the sperm from LPD males. A small candidate screen of the
effects of abundant tRFs using embryonic stem cells found that ~70 genes were upregulated
when a specific tRF, tRF-Gly-Gcc, was inhibited. These genes are known to be regulated
by the MERVL retroelement and are expressed in preimplantation embryos. Strikingly,
the increased abundance of tRF-Gly-Gcc in the LPD sperm correlated with the decreased
expression of MERVL-regulated genes in the embryonic offspring of LPD males [157].
How regulation of these genes corresponds to metabolic phenotypes in adulthood is yet
to be determined. Overall, these studies demonstrate that male diet can impact offspring
metabolism, and that miRNAs and abundant tRF species inherited via sperm may have
tissue-specific effects on gene expression in the next generation.

4.3. Pathogens

Before the discovery of RNA interference, many genes with RNAi functions were
initially identified and characterized for their roles in promoting genome integrity via
the suppression of transposon activity. Currently, we understand that RNAi pathways
function to distinguish “self” versus “non-self” transcripts to protect the cells against
foreign nucleic acids [65,232–234]. Naturally, these functions could be extended to external
pathogens, such as viruses and bacteria. However, in C. elegans, the siRNA and behavioral
responses toward pathogens, whether intergenerational or transgenerational, is dependent
upon the nature and duration of parental exposure [190,235–237]. For example, presenting
Pseudomonas vranovensis only during the parental generation restrains the survival benefit
to only the next generation, while persistent exposure to the P. vranovensis pathogen for
several generations can enhance the survival of descendants transgenerationally [236]. In
addition, C. elegans mothers that experienced Pseudomonas aeruginosa PA14 in a 4-h training
window gave rise to progeny with an increased attraction to PA14, while an 8-h training
period resulted in progeny with a PA14 aversive reaction [237]. These observations are
suggestive of the complex networks governing the inheritance process [238–240].

A series of recent studies have uncovered a mechanism by which the behavior of P.
aeruginosa avoidance in C. elegans is transmitted transgenerationally, resulting from an inter-
kingdom gene regulation event. Exposure to the pathogenic bacterium P. aeruginosa PA14
for 24 h during the transition to adulthood in the parental generation resulted in avoidance
that persisted for four generations [190]. In C. elegans, the DAF-7 ligand of the transforming
growth factor beta (TGF-β) pathway is typically expressed in the pair of ASI chemosensory
neurons [241]. Upon exposure to PA14, the expression of daf-7/TGF-β in the ASI neurons
increases and its expression in the ASJ sensory neuron pair is also activated [241]. The
loss of increased daf-7 expression in the ASI neurons does not impede the hermaphrodite’s
evasion of PA14 but rather abrogates PA14 avoidance in the F1 progeny, while loss of
daf-7 expression in the ASJ pair had no effect. Moreover, the increased daf-7 expression
in the ASI neurons extended until the F4 generation, mirroring their transgenerational
learned avoidance behavior [190]. Additionally, animals carrying a mutant allele of the
nuclear Argonaute HRDE-1 exhibited normal attraction to PA14 but were defective in
PA14 avoidance learning [190]. Small RNA sequencing from parental worms fed OP50 or
PA14 revealed the differential expression of miRNAs (mostly upregulated) and piRNAs
(mostly downregulated) upon exposure to PA14. While some of the differentially expressed
miRNAs have previously been reported to play a role in PA14 avoidance [242–246], Piwi
had yet to be identified as a mediator of the transgenerational inheritance of pathogen
response. The F1 generation of prg-1 mutants exhibited defective avoidance to PA14, likely
due to the lack of increased daf-7 expression in the ASI neurons, indicating that PRG-1 is
required for the generational transmission of learned aversion behavior.

Interestingly, small RNAs extracted from PA14 were sufficient to confer learned
pathogen evasion for four generations. Using differential expression analysis to com-
pare the sRNA of virulent PA14 and less-virulent PA14, the authors identified a single
RNA of 137 nucleotides, referred to as P11, as necessary and sufficient for PA14 learned



Epigenomes 2024, 8, 1 13 of 31

avoidance and transgenerational memory [191]. P11 had the most complementarity to
C. elegans mRNA expressed from a gene homologous to the mammalian macoilin gene,
maco-1, which encodes a member of a family of highly conserved and broadly expressed
transmembrane proteins that are primarily expressed in the nervous system [247]. MACO-1
is expressed in the ASI and other neurons and functions in neuronal excitability, locomotion,
thermotaxis, chemotaxis, and dauer formation [248–250]. How is the P11 signal transmitted
across tissues and generations? Crude whole-worm lysates or the liquid culture media
used to grow worms (conditioned media or CM) from the grand-progeny of PA14-trained
worms could pass the learned memory of PA14 aversion to naïve animals [251]. Using
density-fractionated F2 lysates coupled with electron microscopy, viral-like particles (VLPs)
were identified that coincided with the induction of PA14 avoidance in naïve animals that
endured into their F4 generation. These VLPs were of similar size to the capsids formed
by Cer1, an age- and temperature-dependent retrotransposon related to the Gypsy/Ty3
family of retroelements that is mostly expressed in C. elegans germ cells [252]. While
hermaphrodites with mutant Cer1 were still capable of PA14 avoidance, the avoidance
behavior was not inherited by the F1 generation. Interestingly, Cer1 expression was not
detected in the neurons, and the neuronal expression of Cer1 did not rescue PA14 avoidance,
suggesting that Cer1 acts upstream of daf-7 since the loss of Cer1 results in increased daf-7 ex-
pression in the ASI neurons. While vertical transfer of pathogen memory requires Cer1, this
transposon is also required for the horizontal transmission of the transgenerational memory
from exposed to naïve worms. By using generational-specific RNAi knockdowns of Cer1
and previously identified contributors of transgenerational epigenetic memory [191], the
authors found that Cer1 is not uniquely required by the germline but that it functions more
as a germline-to-soma courier of PA14 avoidance memory in every generation [251]. Taken
as a whole, these results illustrate that C. elegans has repurposed a potentially detrimental
retrotransposon as a vehicle to communicate the environmental pathogen status to their
naïve relatives and provide survival and evolutionary advantages [251].

5. Progress on Open Questions in Epigenetic Inheritance Biology

The idea of the long-lasting inheritance of acquired traits being heritable across mul-
tiple generations in animals is conceptually difficult to reconcile given the established
knowledge that gametes undergo robust and extensive chromatin reprogramming. Epige-
netic modifications regulating the parental genome, such as DNA methylation and histone
modification, are erased so that their zygotic product is reset to its pluripotent state. How-
ever, a decade ago, several studies showed that environmental RNAi in C. elegans could
establish an epigenetic memory inherited for multiple generations in the absence of the
primary trigger. Using feeding RNAi against germline-expressed reporter transgenes with
fluorescent tags, investigators demonstrated that a stable form of epigenetic inheritance
was dependent upon initial silencing by piRNAs, followed by secondary siRNA production
and nuclear RNAi via HRDE-1. Additionally, the putative histone H3K9 methyltransferases
(HMTs), SET-32 and SET-25, were found to be required starting in the F1 progeny to main-
tain the silencing transgenerationally [73,93,94]. Collectively, these studies prompted the
shift to more mechanistic questions of how particular mRNAs become targets of RNAi
silencing, how gene expression states become re-established in the next generation, and
how epigenetic inheritance terminates (Figure 2). In this section, we highlight findings that
provide insights regarding these open questions in the understanding of the molecular
mechanisms of transgenerational epigenetic inheritance.

5.1. How Do Specific mRNAs Become Targets of sncRNA Regulation?

During environmental or feeding RNAi, animals ingest bacteria that contain dsRNA
with sequences homologous to the intended mRNA target in C. elegans. Once ingested, the
dsRNA is imported into cells by the systemic RNAi machinery and spreads throughout
the animal. All cells except in the neurons express the dsRNA import channel, SID-
1, which preferentially imports dsRNA into the cells to feed into the exogenous RNAi
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pathway [54,253,254]. Mutations in the SID-1 gene result in a lack of gene silencing in
the dsRNA-treated animal as well as its progeny [54,255]. DsRNA crosses the somatic
barrier into the germline via SID-1, but also non-specifically through the vitellogenin or
yolk lipoprotein receptor protein, RME-2 [256,257]. SID-1 homologs have been identified in
numerous other species of invertebrates and vertebrates, including humans [55,258–262].
The observation that human SIDT1 facilitates the bidirectional transfer of dsRNA in the
cell culture leads to the intriguing hypothesis that the systemic spread of RNAi signals
from the soma to the germline may be a potential mechanism of epigenetic inheritance in
mammals [259].
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Once dsRNA triggers systemic RNAi in C. elegans animals, how is silencing of a target
gene maintained in subsequent generations? Recent results suggest that targets of RNAi
silencing become “marked” by untemplated nucleotides. First, PUP-1/CDE-1/CID-1 is
a poly-U polymerase that adds untemplated uridines to the 3′ ends of targeted mRNAs
and small RNAs [263]. PUP-1 is required for the inheritance of gene silencing resulting
from environmental RNAi and stabilizes the interaction of siRNAs with WAGO-4, which
is a cytoplasmic Argonaute required for TEI upstream of HRDE-1 [182,264]. For RNAe to
occur, nuclear RNAi via HRDE-1 must promote the production of tertiary siRNAs, which
allow maintenance of trigger-independent silencing for many generations [73,265]. The
inheritance of these siRNAs appears to precede the formation of heterochromatin at the
targeted locus in each generation [266].

Second, another untemplated dinucleotide, UG, has also been recently implicated in
TEI [267]. In an unbiased screen to identify enzymes that add untemplated nucleotides
to RNAs, a C. elegans RNAi protein, RDE-3/MUT-2, was found to add stretches of un-
templated UG dinucleotides, or poly(UG), to the 3′ end of transposon and protein-coding
mRNAs [267,268]. RDE-3/MUT-2 is homologous to other ribonucleotidyltransferases and
was initially identified as necessary for Tc1 transposon silencing in C. elegans and later as
part of the RNAi pathway [269–272]. The addition of at least eight UGs to the 3′ end of
an RNA, or “pUGylation”, functions to mark mRNAs as targets of RdRPs [267,273]. The
stretches of UGs form a G-quadraplex structure that is bound by the RdRP RRF-1, which
produces anti-sense 22G secondary siRNAs of mRNA targets [273,274]. These pUGylated
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RNA fragments promote TEI in C. elegans, and de novo pUGylation of targets occurring
in each generation is required for the maintenance of silencing [267]. What remains to be
determined is how pUGylation may be used by endogenous RNAi pathways to respond to
environmental stress, and whether this mechanism is conserved in other animals (Figure 2).
Additionally, considerable evidence now suggests that G-quadraplex structures in DNA
and RNA have functional roles in transcription, translation, telomere biology, and genome
stability [275]. A recent study found that cellular stress in human cells promotes the for-
mation of RNA G-quadruplexes [276], highlighting a need for investigation of how RNA
secondary structures may play a role in mRNA targeting for post-translational regulation.

pUGylation likely plays a role in transgenerational silencing by promoting target
mRNAs to localize to perinuclear granules where siRNAs are generated [267]. In C. ele-
gans, multiple germ granules in seemingly distinct domains play a role in sncRNA gene
regulation and inheritance (reviewed in Section 3). In germ cells, P granules localize to the
nuclear pores [277]. They contain numerous RNAs and RNA-binding proteins with intrin-
sically disordered domains and numerous RNAi inheritance factors, including AGOs [278].
Mutator foci are adjacent to P granules and are where endo-siRNAs are generated [185].
RDE-3/MUT-2 and RRF-1 RdRP both localize to the Mutator focus, making it the likely
location of de novo pUGylation and the amplification of the siRNA of pUGylated tar-
gets [279]. Other granules, such as the Z granule and SIMR focus, are predicted to facilitate
RNAi inheritance and piRNA targeting, respectively [171,180]. While these granules are
considered “hubs” of sncRNA regulation of gene expression, how they function together to
sort and regulate mRNA targets, or whether their compartmentalization has evolved to
limit their function, is an area of intense study (see Section 3) (Figure 2) [169,280].

5.2. How Does Epigenetic Inheritance Propagate over Generations?

Examples of epigenetic inheritance of parental responses to environmental stresses are
abundant across the animal kingdom [19,25,26,28,29,237,281,282]. In humans, a number of
pathological conditions stem from the inheritance of detrimental ancestral experiences driv-
ing phenotypes that are favorable under specific stressful conditions but are incongruous
with the current environment [6,283–288]. In C. elegans, epigenetic inheritance is commonly
triggered by exogenous dsRNA and typically lasts for one to four generations [289]. With
continuous selection, however, the heritable response to RNAi can endure for more than
80 generations [290]. This exceptionally long perdurance of RNAi cannot simply be ex-
plained by the inheritance of RNAi factors by each generation since C. elegans produces
~250–300 progeny per generation, resulting in a dilution of ~4–8 billion in just four genera-
tions. What factors determine whether an epigenetic event is forgotten or preserved, and is
it possible to mitigate those factors to prevent human diseases?

Studies in C. elegans support a model where the role of histone modifications in trans-
generational inheritance is dependent on the context. As described above, the putative his-
tone H3K9 methyltransferases (HMTs), SET-32 and SET-25, were found to act downstream,
and non-redundantly, of piRNAs to maintain silencing transgenerationally [73,93,94]. How-
ever, subsequent studies determined that SET-25 and SET-32 were required for the onset, but
not maintenance, of transgenerational silencing triggered by environmental RNAi against
germline-specific genes, and for the establishment of silencing of certain HRDE-1 endoge-
nous targets [291,292]. In another study, SET-32 and SET-25 were required for the onset of
silencing triggered by anti-gfp dsRNA in the parental generation expressing a germline-
expressed pie-1::gfp::h2b transgene but not for the maintenance of silencing in subsequent
generations. The maintenance of gfp silencing was mediated by HRDE-1 [293]. Interest-
ingly, mutations in set-32 or the H3K9me2 HMT gene, met-2, result in a mortal germline
phenotype (Mrt), whereby fertility is progressively lost over generations [264,293–295]. The
Mrt phenotype is likely due to the unchecked biogenesis of the initial parental small RNA
population and the aberrant accumulation of heritable small RNAs over generations [296].
Consistent with this hypothesis, the loss of HRDE-1 in the met-2 mutant fully rescued both
the Mrt phenotype and the stable heritable RNAi responses [296]. MET-2 and the SPR-5
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histone H3K4me2 demethylase were previously found to reset the epigenetic ground state
of the germline that is necessary to sustain germline immortality across generations [297];
thus, the generational endurance of RNAi silencing appears to be a calibrated process
involving both germline chromatin and inherited small RNA populations. Additionally,
histone H3K9 methylation may serve to indirectly restrain the transgenerational inheritance
of gene silencing perpetuated by HRDE-1.

How does unchecked biogenesis of endo-siRNAs result in a mortal germline phe-
notype? Within the population of inherited sncRNAs from the hermaphrodite are endo-
siRNAs that align anti-sense with a subset of endo-siRNA biogenesis genes. This obser-
vation suggests that RNAi mechanisms regulate the expression of genes required for its
own function, creating a feedback loop to regulate RNAi perdurance [238,298]. Exoge-
nously triggering RNAi with dsRNA homologous to different gene targets during different
generations results in heightened RNAi responses to the ancestral triggers [238]. An impor-
tant aspect of this work demonstrated that mutations that inhibit the endogenous RNAi
pathway could alter the number of generations for which the exogenous RNAi trigger
persisted, providing evidence for a previous hypothesis that endogenous and exogenous
siRNA pathways compete for a limited number of cellular resources, such as RNAi proteins
common to both pathways (Figure 2) [238,299]. Together, these results support a model
where the active regulation of RNAi responses determines their inheritance or erasure.

Variability in the strength of the RNAi feedback loop likely contributes to the dif-
ferences in the number of generations that the gene silencing lasts amongst genetically
identical worms [238,289,290]. By following the lineages of animals expressing an inte-
grated single copy of a gfp transgene expressed in the germ line, the authors were able to
determine three rules that predict the duration of RNAi silencing. First, RNAi silencing
initiated in a single mother was passed on equally to all her descendants, but there was
considerable variability in the extent of RNAi silencing between mothers [239]. Second,
some individuals have more potent and heritable RNAi silencing, regardless of the RNAi
trigger, which may be connected to the extent to which endo-siRNA biogenesis factors are
regulated. The third rule is a natural extension of the second: the more generations for
which an RNAi response lasts, the more likely that response is acquired by the next genera-
tion. To determine the molecular mechanism regulating the heritable variability in RNAi
responses, RNA-Seq was performed on animals with strong versus weak RNAi inheritance.
Notably, heat shock genes, including the master regulator of the heat shock response, HSF-1,
exhibited correlated expression between the different RNAi states [300,301]. HSF-1 has also
been reported to be involved in small RNA metabolism and phenotypic plasticity [302–304].
Taken together, this study demonstrates how a mother’s stochastic gene expression state is a
critically important determinant for various small RNA-dependent functions, including the
transgenerational inheritance of RNAi silencing states due to exogenous RNAi or natural
stresses [239].

5.3. How Does Epigenetic Inheritance Terminate?

One of the characteristics of epigenetic gene regulation is that the altered gene ex-
pression state eventually reverts to its original expression level. Presumably, inherited
RNAi responses function to provide an adaptive response to an environmental stimulus via
changes in gene expression and the corresponding phenotype. Given that RNAi responses
are likely costly to maintain, it seems important for animals to evolve an active, not passive,
mechanism to control how long inheritance lasts. Once established, how does TEI terminate
to “reset” to its original gene expression program?

If a sustained RNAi response is to provide adaptation to the organism in a particular
stressful environment, it follows that changing the environment during an RNAi response
could affect its ability to propagate the original response across generations. To test this
hypothesis, C. elegans strains carrying germline-expressed gfp reporters were fed exogenous
gfp dsRNA in the parental generation, followed by one of three stressors in the F1 generation:
heat shock for 2 h, growth under hyperosmotic conditions for 2 days, or growth in the
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absence of food for 6 days. A strong heritable silencing response was found in the stressed
F1 generation, but it was gradually “reset” in the unstressed generations up to F5. [240].
Interestingly, however, endogenously expressed sncRNAs are “reset” by stress for only one
generation before re-establishing gene silencing states. Using a reverse genetics approach,
the authors were able to identify the p38 mitogen-activated protein kinase (MAPK) pathway
and SKN-1/Nrf2 transcription factor as necessary for stress-induced resetting of RNAi
inheritance [240]. Stress responses to DNA damage, axonal injury, starvation, heat shock,
osmotic stress, and innate immunity converge on the evolutionarily conserved MAPK
signaling cascade [305], which regulates the nuclear localization of SKN-1to target genes
with functions in stress response, homeostasis, and lifespan [306]. Perhaps not surprisingly,
a subset of RNAi genes, including genes encoding the AGO NRDE-3 and RdRP RRF-3,
were downregulated after stress in a SKN-1-dependent manner, connecting the activation
of the stress response to the regulation of RNAi responses in C. elegans [240].

Several lines of evidence have recently suggested that the termination of epigenetic
inheritance is a genetically regulated process. First, piRNAs are capable of triggering TEI
for more than 20 generations [73], but new results suggest that PRG-1 may also erase TEI
memory. As described above, piRNAs are only required for the initiation and not the
continued silencing of gene expression, so how might PRG-1 contribute to the elimination
of TEI perpetuated by 22G siRNAs? The first evidence that PRG-1 is required to “reset”
the RNAi-based memory of gene expression was shown by our laboratory. Adult C.
elegans animals that transiently passed through the dauer stage due to early-life starvation
exhibited low levels of intestinally stored lipids compared to continuously developed
adults. The F1 progeny of the postdauer adults, however, exhibited an increased amount of
intestinal lipids compared to the F1 progeny of controls. In the F2 generation, the grand-
progeny of the postdauer and control adults no longer showed any significant difference,
indicating that the ancestral starvation memory was inherited for a single generation before
resetting back to the original state [307]. By performing the same assay in RNAi mutants,
we found that mutations in HRDE-1 eliminated the inheritance of the starvation memory,
as measured by the intestinal lipid storage levels. The same assay revealed that mutations
in PRG-1 did not affect the inheritance of the starvation memory, as expected, but instead
perpetuated the memory to the F2 generation [307]. The number of generations the memory
lasts beyond the F2 generation is unknown, but this study provided evidence that the
duration of endogenous RNAi-dependent phenotypes could be modulated by PRG-1.

In parallel, another group performed a forward genetic screen to identify factors that
limit TEI in C. elegans. The screen utilized a strain carrying a germline-expressed gfp::h2b
reporter and a temperature-sensitive, gain-of-function allele of the oma-1 gene that results
in embryonic arrest. The strain was fed dsRNA homologous to both gfp and oma-1, which
resulted in viable worms that did not express GFP in the germline for 4 to 10 generations
once the RNAi trigger was removed. While most mutant strains identified in this screen
extended the gfp silencing for an additional seven generations, mutant alleles in prg-1
resulted in indefinite TEI, or “perpetual silencing”, after hundreds of generations [279].
The authors found that mutant prg-1 populations established one of two epigenetic states
after RNAi: 100% of animals either restored their native gene expression or remained in a
state of perpetual silencing. Crosses to introduce or remove wild-type prg-1 from a strain
supported the model that PRG-1 acts to inhibit TEI maintenance and does not act early
to establish perpetual silencing. In addition, these crosses demonstrated the ability of
silenced genes (both gfp and oma-1) to paramutate, or silence in trans, expressed alleles of
the same genes, suggesting that inheritance of small RNAs across generations promoted
the perpetual silencing. Indeed, siRNAs targeting oma-1 and gfp were detected in the per-
petually silenced strains, and factors known to promote RNAi inheritance, such as HRDE-1,
ZNFX-1, and RDE-3/MUT-2 (see above), were also required for persistent TEI [279]. In
addition, a previous screen for heri (heritable enhancer of RNAi) mutants identified HERI-1,
a protein with a chromodomain and a putative serine/threonine pseudokinase domain, as
a negative regulator of persistent RNAi potentially acting downstream of HRDE-1, connect-
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ing the RNAi and histone modification pathways together in the regulation of epigenetic
inheritance [298].

How do the piRNA, pUGylation, nuclear RNAi, and histone modification pathways
interact to coordinate the termination of epigenetic inheritance? The overwhelming evi-
dence suggests that the inheritance of gene regulation states is coordinated in the germline
P granules [280]. The absence of germline P granules results in the ectopic expression
of somatic genes in the germ line [308,309], and a recent study showed that P granules
are important for the ability of RNAi components, particularly PRG-1 and HRDE-1, to
distinguish “self” from “non-self” transcripts exiting the nucleus [310]. Thus, it seems likely
that P granules function in the germ line to facilitate which transcripts should be expressed,
which should be silenced, and which should be transgenerationally silenced. Proteins
required for P granule assembly, such as DEPS-1, are also required for transgenerational
inheritance to be triggered by exogenous RNAi [170,238,311]. DEPS-1 and RDE-3/MUT-2,
required for pUGylation, have many overlapping gene targets [311]. Furthermore, DEPS-1
physically interacts with PRG-1 in the P granule and is required for piRNA-dependent
silencing [312]. The piRNA pathway is thought to facilitate the recognition of “self” versus
“non-self” transcripts [65,232], and failure of P granule formation results in a disruption
of this process [310]. Tethering of an mRNA transcript to the P granule component PGL-1
results in its silencing [179]; thus, an open question in the field is whether the P granule
proteins recognize and target specific transcripts that are “non-self” for downstream pro-
cesses or whether they function to concentrate the RNAi machinery necessary to make
that decision via a sequence-based mechanism. RNA modifications and post-translational
modifications to AGOs are known to play a role in AGO affinity to particular siRNAs,
but how particular RNAs are targeted for modification is still unknown [313]. While the
model for RNAi inheritance appears to parallel the classic “chicken and the egg” paradox,
future work to characterize mechanisms for how PRG-1 shifts its preference for silencing
will likely yield insights into how establishment versus termination of gene silencing is
achieved (Figure 2).

6. Conclusions

The ease with which RNAi is performed using the C. elegans model organism has
propelled our understanding of gene regulation mechanisms by sncRNAs. Numerous
experiments have exploited RNAi-by-feeding experiments targeting gfp or other trans-
genic reporters in forward genetic screens to identify the proteins playing a role in RNAi
pathways. While this approach has been fruitful, these screens may not fully represent
how endogenous RNAi occurs in response to environmental stress. Exogenously provided
dsRNA utilizes limiting cellular resources required for RNAi, disrupting the function of
other endogenous RNAi pathways [299]. In addition, these experiments likely bypass
the endogenous mechanism of mRNA targeting. For example, exogenously provided
dsRNA will lead to the RNAi targeting of transcripts with homologous sequences via a
sequence-specific-based mechanism (Figure 2), but how are endogenous mRNAs targeted
during stress conditions when they are typically not targeted? While significant progress
has been made in animals regarding sncRNA regulation of gene expression, future work
using advanced molecular tools and high-resolution imaging will be needed to track the
RNAi components and their endogenous mRNA targets at the subcellular level.
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3′UTR 3′ untranslated region
AGO Argonaute
CM conditioned media
dsRNA double stranded RNA
endo-siRNA endogenous siRNA
EV extracellular vesicle
exo-siRNA exogenous siRNA
FISH fluorescent in situ hybridization
HFD high fat diet
HMT H3K9 methyltransferase
HPA hypothalamic–pituitary–adrenal
LTR long terminal repeat
LPD low protein diet
MAPK mitogen-activated protein kinase
miRNA microRNA
Mrt mortal germline phenotype
MSUS maternal separation combined with unpredictable maternal stress
MZT maternal-to-zygotic transition
NHG nuclear RNAi-repressed heat-inducible gene
piRNA Piwi interacting RNA
Piwi p-element induced wimpy testis
RdRP RNA dependent RNA polymerase
RNAe RNA-induced epigenetic silencing
RNAi RNA interference
SF1 superfamily one
siRNA small interfering RNA
sncRNA small non-coding RNA
snoRNA small nucleolar RNA
TE transposable element
TEI transgenerational epigenetic inheritance
TGF-β transforming growth factor beta
tiRNA stress-induced transfer RNA-derived small RNA
tRF transfer RNA-derived fragment
tRNA transfer RNA
tsRNA tRNA-derived small RNA
VLP viral-like particles
WAGO worm specific Argonaute
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287. Skvortsova, K.; Iovino, N.; Bogdanović, O. Functions and Mechanisms of Epigenetic Inheritance in Animals. Nat. Rev. Mol. Cell
Biol. 2018, 19, 774–790. [CrossRef] [PubMed]

288. Senaldi, L.; Smith-Raska, M. Evidence for Germline Non-Genetic Inheritance of Human Phenotypes and Diseases. Clin. Epigenetics
2020, 12, 136. [CrossRef] [PubMed]

289. Alcazar, R.M.; Lin, R.; Fire, A.Z. Transmission Dynamics of Heritable Silencing Induced by Double-Stranded RNA in Caenorhabditis
elegans. Genetics 2008, 180, 1275–1288. [CrossRef]

290. Vastenhouw, N.L.; Brunschwig, K.; Okihara, K.L.; Müller, F.; Tijsterman, M.; Plasterk, R.H.A. Long-Term Gene Silencing by RNAi.
Nature 2006, 442, 882. [CrossRef]

291. Kalinava, N.; Ni, J.Z.; Peterman, K.; Chen, E.; Gu, S.G. Decoupling the Downstream Effects of Germline Nuclear RNAi Reveals
That H3K9me3 Is Dispensable for Heritable RNAi and the Maintenance of Endogenous SiRNA-Mediated Transcriptional Silencing
in Caenorhabditis elegans. Epigenet. Chromatin 2017, 10, 6. [CrossRef]

292. Kalinava, N.; Ni, J.Z.; Gajic, Z.; Kim, M.; Ushakov, H.; Gu, S.G. C. elegans Heterochromatin Factor SET-32 Plays an Essential Role
in Transgenerational Establishment of Nuclear RNAi-Mediated Epigenetic Silencing. Cell Rep. 2018, 25, 2273–2284.e3. [CrossRef]

293. Woodhouse, R.M.; Buchmann, G.; Hoe, M.; Harney, D.J.; Low, J.K.K.; Larance, M.; Boag, P.R.; Ashe, A. Chromatin Modifiers
SET-25 and SET-32 Are Required for Establishment but Not Long-Term Maintenance of Transgenerational Epigenetic Inheritance.
Cell Rep. 2018, 25, 2259–2272.e5. [CrossRef]

294. Andersen, E.C.; Horvitz, H.R. Two C. elegans Histone Methyltransferases Repress Lin-3EGF Transcription to Inhibit Vulval
Development. Development 2007, 134, 2991–2999. [CrossRef] [PubMed]

295. Greer, E.L.; Beese-Sims, S.E.; Brookes, E.; Spadafora, R.; Zhu, Y.; Rothbart, S.B.; Aristizábal-Corrales, D.; Chen, S.; Badeaux, A.I.;
Jin, Q.; et al. A Histone Methylation Network Regulates Transgenerational Epigenetic Memory in C. elegans. Cell Rep. 2014, 7,
113–126. [CrossRef] [PubMed]

296. Lev, I.; Seroussi, U.; Gingold, H.; Bril, R.; Anava, S.; Rechavi, O. MET-2-Dependent H3K9 Methylation Suppresses Transgenera-
tional Small RNA Inheritance. Curr. Biol. 2017, 27, 1138–1147. [CrossRef] [PubMed]

297. Kerr, S.C.; Ruppersburg, C.C.; Francis, J.W.; Katz, D.J. SPR-5 and MET-2 Function Cooperatively to Reestablish an Epigenetic
Ground State during Passage through the Germ Line. Proc. Natl. Acad. Sci. USA 2014, 111, 9509–9514. [CrossRef] [PubMed]

298. Perales, R.; Pagano, D.; Wan, G.; Fields, B.D.; Saltzman, A.L.; Kennedy, S.G. Transgenerational Epigenetic Inheritance Is Negatively
Regulated by the HERI-1 Chromodomain Protein. Genetics 2018, 210, 1287–1299. [CrossRef] [PubMed]

299. Zhuang, J.J.; Hunter, C.P. The Influence of Competition Among C. elegans Small RNA Pathways on Development. Genes 2012, 3,
671–685. [CrossRef] [PubMed]

300. Brunquell, J.; Morris, S.; Lu, Y.; Cheng, F.; Westerheide, S.D. The Genome-Wide Role of HSF-1 in the Regulation of Gene Expression
in Caenorhabditis elegans. BMC Genom. 2016, 17, 559. [CrossRef] [PubMed]

301. Joutsen, J.; Sistonen, L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb. Perspect. Biol. 2019,
11, a034066. [CrossRef]

302. Brunquell, J.; Snyder, A.; Cheng, F.; Westerheide, S.D. HSF-1 Is a Regulator of MiRNA Expression in Caenorhabditis elegans. PLoS
ONE 2017, 12, e0183445. [CrossRef]

303. Schreiner, W.P.; Pagliuso, D.C.; Garrigues, J.M.; Chen, J.S.; Aalto, A.P.; Pasquinelli, A.E. Remodeling of the Caenorhabditis elegans
Non-Coding RNA Transcriptome by Heat Shock. Nucleic Acids Res. 2019, 47, 9829–9841. [CrossRef]

304. Zheng, X.; Beyzavi, A.; Krakowiak, J.; Patel, N.; Khalil, A.S.; Pincus, D. Hsf1 Phosphorylation Generates Cell-to-Cell Variation in
Hsp90 Levels and Promotes Phenotypic Plasticity. Cell Rep. 2018, 22, 3099–3106. [CrossRef] [PubMed]

305. Andrusiak, M.G.; Jin, Y. Context Specificity of Stress-Activated Mitogen-Activated Protein (MAP) Kinase Signaling: The Story as
Told by Caenorhabditis elegans. J. Biol. Chem. 2016, 291, 7796–7804. [CrossRef] [PubMed]

306. Blackwell, T.K.; Steinbaugh, M.J.; Hourihan, J.M.; Ewald, C.Y.; Isik, M. SKN-1/Nrf, Stress Responses, and Aging in Caenorhabditis
elegans. Free Radic. Biol. Med. 2015, 88, 290–301. [CrossRef] [PubMed]

307. Ow, M.C.; Nichitean, A.M.; Hall, S.E. Somatic Aging Pathways Regulate Reproductive Plasticity in Caenorhabditis elegans. eLife
2021, 10, e61459. [CrossRef] [PubMed]

308. Updike, D.L.; Knutson, A.K.; Egelhofer, T.A.; Campbell, A.C.; Strome, S. Germ-Granule Components Prevent Somatic Develop-
ment in the C. elegans Germline. Curr. Biol. 2014, 24, 970–975. [CrossRef]

309. Rochester, J.D.; Min, H.; Gajjar, G.A.; Sharp, C.S.; Maki, N.J.; Rollins, J.A.; Keiper, B.D.; Graber, J.H.; Updike, D.L. GLH-1/Vasa
Represses Neuropeptide Expression and Drives Spermiogenesis in the C. elegans Germline. Dev. Biol. 2022, 492, 200–211.
[CrossRef]

310. Chen, W.; Brown, J.S.; He, T.; Wu, W.-S.; Tu, S.; Weng, Z.; Zhang, D.; Lee, H.-C. GLH/VASA Helicases Promote Germ Granule
Formation to Ensure the Fidelity of PiRNA-Mediated Transcriptome Surveillance. Nat. Commun. 2022, 13, 5306. [CrossRef]

311. Spike, C.A.; Bader, J.; Reinke, V.; Strome, S. DEPS-1 Promotes P-Granule Assembly and RNA Interference in C. elegans Germ Cells.
Development 2008, 135, 983–993. [CrossRef]

https://doi.org/10.1038/s41467-018-05445-5
https://www.ncbi.nlm.nih.gov/pubmed/30061690
https://doi.org/10.1038/s41437-018-0101-2
https://www.ncbi.nlm.nih.gov/pubmed/29915335
https://doi.org/10.1038/s41580-018-0074-2
https://www.ncbi.nlm.nih.gov/pubmed/30425324
https://doi.org/10.1186/s13148-020-00929-y
https://www.ncbi.nlm.nih.gov/pubmed/32917273
https://doi.org/10.1534/genetics.108.089433
https://doi.org/10.1038/442882a
https://doi.org/10.1186/s13072-017-0114-8
https://doi.org/10.1016/j.celrep.2018.10.086
https://doi.org/10.1016/j.celrep.2018.10.085
https://doi.org/10.1242/dev.009373
https://www.ncbi.nlm.nih.gov/pubmed/17634190
https://doi.org/10.1016/j.celrep.2014.02.044
https://www.ncbi.nlm.nih.gov/pubmed/24685137
https://doi.org/10.1016/j.cub.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28343968
https://doi.org/10.1073/pnas.1321843111
https://www.ncbi.nlm.nih.gov/pubmed/24979765
https://doi.org/10.1534/genetics.118.301456
https://www.ncbi.nlm.nih.gov/pubmed/30389807
https://doi.org/10.3390/genes3040671
https://www.ncbi.nlm.nih.gov/pubmed/23483754
https://doi.org/10.1186/s12864-016-2837-5
https://www.ncbi.nlm.nih.gov/pubmed/27496166
https://doi.org/10.1101/cshperspect.a034066
https://doi.org/10.1371/journal.pone.0183445
https://doi.org/10.1093/nar/gkz693
https://doi.org/10.1016/j.celrep.2018.02.083
https://www.ncbi.nlm.nih.gov/pubmed/29562166
https://doi.org/10.1074/jbc.R115.711101
https://www.ncbi.nlm.nih.gov/pubmed/26907690
https://doi.org/10.1016/j.freeradbiomed.2015.06.008
https://www.ncbi.nlm.nih.gov/pubmed/26232625
https://doi.org/10.7554/eLife.61459
https://www.ncbi.nlm.nih.gov/pubmed/34236316
https://doi.org/10.1016/j.cub.2014.03.015
https://doi.org/10.1016/j.ydbio.2022.10.003
https://doi.org/10.1038/s41467-022-32880-2
https://doi.org/10.1242/dev.015552


Epigenomes 2024, 8, 1 31 of 31

312. Suen, K.M.; Braukmann, F.; Butler, R.; Bensaddek, D.; Akay, A.; Lin, C.-C.; Milonaitytė, D.; Doshi, N.; Sapetschnig, A.; Lamond,
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