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Abstract: Menopausal status affects the prognoses and consequences of breast cancer. Therefore,
this retrospective study aimed to reveal the molecular variation profile differences in breast can-
cer patients according to their menopausal status, with the hypothesis that the molecular varia-
tion profiles will be different at premenopausal and postmenopausal ages. Breast cancer patients
(n = 254) who underwent molecular subtyping and QIAseq Human Breast Cancer NGS Panel screen-
ing between 2018 and 2022 were evaluated retrospectively. Their menopausal status was defined by
age, and those aged 50 years and above were considered postmenopausal. Of the subjects, 58.66%
(n = 149) were premenopausal and 41.34% (n = 105) were postmenopausal. The mean age at the
time of diagnosis for all patients was 49.31 ± 11.19 years, with respective values of 42.11 ± 5.51 and
59.54 ± 9.01 years for the premenopausal and postmenopausal groups, respectively (p = 0.000).
Among premenopausal patients, the percentages of patients in BCa subtypes (luminal A, luminal
B-HER2(−), luminal B-HER2(+), HER2 positive, and triple-negative) were determined to be 34.90%,
8.05%, 26.17%, 10.74%, and 20.13%, respectively, while in the postmenopausal group, these values
were 39.05%, 16.19%, 24.76%, 6.67%, and 13.33%, respectively (p > 0.05). Considering menopausal
status, the distribution of hormone receptors in premenopausal patients was ER(+)/PgR(+) 63.76%,
ER(−)/PgR(−) 23.49%, ER(+)/PgR(−) 10.74%, and ER(−)/PgR(+) 2.01%, respectively, while in post-
menopausal women, this distribution was observed to be 74.29%, 23.81%, 1.90% and 0.00% in the
same order (p = 0.008). The most frequently mutated gene was TP53 in 130 patients (51.18%), followed
by PIK3CA in 85 patients (33.46%), BRCA2 and NF1 in 56 patients (22.05%), PTEN in 54 patients
(21.26%), and ATR and CHEK2 in 53 patients (20.87%). TP53, PIK3CA, NF1, BRCA2, PTEN, and
CHEK2 mutations were more frequently observed in premenopausal patients, while TP53, PIK3CA,
BRCA2, BRCA1, and ATR mutations in postmenopausal patients. These findings contribute to a
deeper understanding of the underlying causes of breast cancer with respect to menopausal status.
This study is the first from Turkey that reflects the molecular subtyping and somatic mutation profiles
of breast cancer patients according to menopausal status.

Keywords: breast cancer; molecular subtyping; NGS; gene variations

1. Introduction

Breast cancer (BCa) is the most common neoplasia among women worldwide, ac-
counting for approximately 15% of new cancer cases and 7% of cancer deaths in 2023 [1].
According to GLOBOCAN data, a 46% increase is expected in BCa cases by 2040 [2].
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Risk factors of BCa could be related to genetic and epigenetic, and behavioral and non-
behavioral factors [3]. Menopause is also an important risk factor as BCa has different
molecular characteristics and reasons in premenopausal and postmenopausal women. For
instance, being overweight is a risk factor for BCa in postmenopausal women; however,
it is less associated with premenopausal BCa, though some studies suggest an inverse
relationship [1,2]. Molecular subtypes of BCa exhibit variations in risk factors, such as
genetic predisposition, therapeutic strategies, and prognosis. Additionally, they present
distinct age-incidence profiles, particularly during menopause. From a public health and
patient perspective, the population sizes of women at risk of BCa, both premenopausal
and postmenopausal, vary significantly among countries. This variation is influenced by
the demographic composition (sex, ethnic origin, etc.) of each country’s population, and
particularly by the age distribution of population. Relatively higher breast density results
in the late diagnosis of premenopausal BCa. Eventually, the outcomes of BCa in women
vary between younger and older patients, indicating differences in disease progression,
treatment response, and overall prognosis based on age [3,4]. Therefore, studying the
burden of BCa and its molecular gene profile based on menopausal status holds significant
importance in guiding BCa prevention and detection efforts, as well as healthcare plan-
ning [3]. Therefore, in this retrospective study with a cohort of Turkish BCa patients, the
aim was to reveal the differences of somatic gene variant profiles and disease molecular
subtypes according to menopausal status.

2. Materials and Methods
2.1. Ethical Approval and Patients

The study was approved by the Institutional Non-Interventional Clinical Research Ethics
Committee (#2023/172). The Helsinki Declaration criteria were taken into consideration.

In this study, which included a retrospective analysis of a database prepared with
prospective data entry, the medical records of all the patients diagnosed with BCa and
followed up at the Oncology Department of Adnan Menderes University Medical Faculty
Hospital and referred to the Molecular Pathology Laboratory between 2018 and 2022 were
retrospectively reviewed. Patients without data on estrogen receptor (ER), progesterone
receptor (PgR), human epidermal growth factor receptor 2 (HER2) statuses, proliferative
cell nuclear antigen (Ki-67) index, or next generation sequencing (NGS) breast cancer panel
results were excluded. The analyses were conducted on data from a total of 254 patients.
Demographic, pathological, and molecular characteristics, including age, menopausal sta-
tus, tumor histopathology, ER, PgR, HER2 status, Ki-67 index data, and somatic mutation
results, were analyzed for each patient. Menopausal status was defined using age, and pa-
tients were grouped into a premenopausal adult group (aged 18–49) and a postmenopausal
group (aged 50 and above).

2.2. Immunohistochemical Staining

Hormone receptors were determined according to ASCO/CAP guidelines [5]. To
prepare the BCa tissues for analysis, they were initially fixed in 10% formaldehyde for 24 h,
followed by routine dehydration, clearing, and embedding in paraffin. The tissues were
then sliced into continuous sections of 5 µm thickness. Subsequently, the sections were
heated at 65 ◦C, dewaxed using xylene, hydrated using gradient ethanol, and treated with
3% H2O2 for 10 min at 37 ◦C to inactivate endogenous peroxidase. Next, antigen retrieval
was performed by microwave heating, followed by blocking by normal goat serum. The
tissue sections were then incubated at 4 ◦C overnight using primary antibodies targeting ER,
PgR, HER2, and Ki-67. The following day, biotin-labeled secondary antibodies were applied
for 30 min at room temperature. The development of the sections was achieved using
diaminobenzidine, followed by counterstaining with hematoxylin. The sections were then
differentiated using hydrochloric acid ethanol, dehydrated by gradient ethanol, and cleared
by xylene before being mounted using neutral gum. Finally, the stained sections were
examined microscopically. The negative control for the primary antibody was phosphate-
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buffered saline. The indication of nuclear staining over 1% of tumor cells was considered
as positive staining for ER and PgR. HER2 status was classified according to Dako criteria
(Glostrup) as 0, 1+, 2+, or 3+, with scores of 0 and 1+ being considered as negative.
The presence of 14% or more tumor cells for Ki-67 marker index was considered highly
expressed after nuclear staining. Patients with an HER2 immunohistochemistry score of
3+ were included, while cases with an HER2 status of 1+ or 2+ underwent fluorescence in
situ hybridization (FISH) analysis for HER2 gene amplification.

2.3. FISH Analysis

The FISH analysis was performed with an HER2 dual-color probe kit (Dako A/S,
Glostrup, Denmark). The kit contains two fluorescent-labeled probes specific to the HER2
gene locus (17q11) and CEP17. The 4 µm thick sections were obtained from paraffin blocks
and transferred onto positively-charged slides, followed by deparaffinization. Subsequently,
they were dehydrated in alcohol, and treated with sodium thiocyanate and protease
solution. The sections were dehydrated in 70%, 80%, and 100% alcohol and air-dried. The
probe kit was denatured at 80 ◦C for 5 min and then applied, followed by incubation
in a humid environment for 12 h. After incubation, post-hybridization washes were
performed at room temperature with sodium saline citrate solution. The preparations were
washed with buffer solution after hybridization, air-dried in the dark, and covered with a
coverslip using DAPI. Subsequently, the HER2/neu signals were counted in at least 20 cells
for both signals using fluorescence microscopy (Olympus BX51, Tokyo, Japan) at 1000×
magnification with immersion oil, employing DAPI, FITC, and TRITC dual and triple
filters. The results were calculated according to the ASCO guidelines using the HER2/neu
signal (red) to CEP17 signal (green) ratio and the number of HER2/neu copies. Cases with
a ratio of 2 or more and a copy number of 4 or more were accepted as positive result for
HER2/neu gene amplification (Figure S1).

2.4. Molecular Classification

The tumor immunohistopathological subtypes were categorized following the guide-
lines [6]. The histopathological subgroups were defined as Luminal A, if ER(+) and/or
PgR(+), HER2(−), Ki67 < 20%; Luminal B-HER2(−) if ER(+) and/or PgR(+), HER2(−), and
Ki-67 ≥ 20%; Luminal B-HER2(+) if ER(+) and/or PgR(+), and HER2(+); HER2 positive if
ER(−), PgR(−), and HER2(+); and Triple negative if ER(−), PgR(−), and HER2(−).

2.5. Targeting NGS Panel Analysis

The DNA samples from formalin-fixed paraffin embedded tissues of the patients
were extracted using a commercial DNA isolation kit (GeneRead TM FFPE kit, Qiagen,
Hilden, Germany). The quality and concentration of the DNA samples were evaluated
spectrophotometrically and those with the OD260/OD280 values between 1.8~2.0 were
included in the NGS study. Sequencing was performed on an Illumina MiSeq platform
(Illumina Inc., San Diego, CA, USA). In this study, the QIAseq Human Breast Cancer Panel
(DHS-001Z, Qiagen, Hilden, Germany) containing 93 genes and 4831 primers was utilized.
The QIAseq Targeted DNA panels for BCa include full exonic regions of genes plus 10 bases
to cover the intron and exon junctions coding for 93 genes (Table 1). For the analysis of the
obtained data, the Qiagen Clinical Insight Interpret 8.1.202021 (QCI™) (Qiagen, Hilden,
Germany) was used. In addition to the exonic regions of the investigated genes, 20 base
pairs in the intron regions at the exon-intron boundaries were also evaluated. The variants
detected in the study were classified according to the criteria outlined in the American
College of Medical Genetics and Genomics (ACMG) guidelines [7].
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Table 1. The gene list in the QIAseq Human Breast Cancer NGS Panel.

ACVR1B BMPR1A CDKN2A ERCC4 GATA3 MDM2 NBN PMS1 SEPT9 XRRC2

AKT1 BRCA1 CHEK2 ESR1 GEN1 MED12 NCOR1 PMS2 SMAD4 XRRC3

APC BRCA2 CSMD1 EXT2 HERC1 MEN1 NEK2 PPM1L SMARCA4 ZBED4

AR BRIP1 CTNNB1 EXOC2 HOXB13 MLH1 NF1 PTEN STK11 -

ATM CASP8 DIRAS3 FAM175A IRAK4 MRE11A PALB2 PTGFR SYNE1 -

ATR CBFB EGFR FBXO32 ITCH MSH2 PALLD RAD50 TGFB1 -

AXIN2 CCND1 EP300 FANCC KMT2C MSH6 PBRM1 RAD51C TP53 -

BAP1 CDH1 EPCAM FBXO32 KRAS MUC16 PCGF2 RAD51D TRAF5 -

BARD1 CDK4 ERBB2 FGFR1 MAP2K4 MUTYH PIK3CA RB1 VHL -

BLM CDK6 ERBB3 FGFR2 MAP3K1 MYC PIK3R1 RET WEE1 -

2.6. Statistical Analysis

The IBM SPSS 25 software (IBM Corp., Armonk, NY, USA) was employed to conduct
statistical analysis. A significance level of p ≤ 0.05 was considered statistically significant
for all analyses. A descriptive analysis was performed, with categorical variables defined
as frequencies. The Spearman correlation test was employed for correlation analyses.
The percentages and distributions of quantitative variables were presented as median,
minimum, and maximum values. Categorical variables were evaluated using chi-square or
Fisher’s exact test.

3. Results
3.1. Patient Characteristics

Of the 254 patients comprising the study population, 149 (58.66%) were premenopausal,
and 105 (41.34%) were postmenopausal. The mean age and standard deviation at the time
of diagnosis for all patients were 49.31 ± 11.19 years, with respective values of 42.11 ± 5.51
and 59.54 ± 9.01 years for the premenopausal and postmenopausal groups, respectively
(p = 0.000).

3.2. Evaluation of Tumors by Histological Subtypes

When the tumors were evaluated by histological subtype, 85.04% were determined to
be invasive ductal carcinoma, 10.24% were invasive lobular carcinoma, and 4.72% were
other special types of carcinomas. When evaluated according to menopausal status, 86.58%
of premenopausal BCa patients were classified as invasive ductal carcinoma, 10.74% as inva-
sive lobular carcinoma, and 2.68% as other special types of carcinomas. In postmenopausal
patients, 82.86% were classified as invasive ductal carcinoma, 9.52% as invasive lobular
carcinoma, and 7.62% as other special types of carcinomas. The distribution of ER and PgR
in all cases was as follows: ER(+)/PgR(+) 68.11%, ER(−)/PgR(−) 23.62%, ER(+)/PgR(−)
7.09%, and ER(−)/PgR(+) 1.81%. When the relationships between hormone receptors
were evaluated, a positive correlation was found between ER and PgR (p < 0.001). Con-
sidering menopausal status, the distribution of hormone receptors in premenopausal
patients was ER(+)/PgR(+) 63.76%, ER(−)/PgR(−) 23.49%, ER(+)/PgR(−) 10.74%, and
ER(−)/PgR(+) 2.01%, respectively, while in postmenopausal women, this distribution was
observed to be 74.29%, 23.81%, 1.90% and 0.00% in the same order. The correlation between
ER and PgR levels was weak during the premenopausal period and strong during the
postmenopausal period.

3.3. Molecular Classification Analysis Results

When the patients were classified according to BCa subtypes, the percentages of
patients in luminal A, luminal B-HER2(−), luminal B-HER2(+), HER2 positive, and triple-
negative subgroups among all patients were 36.61%, %11.42, 25.59%, 9.06%, and 17.32%,
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respectively. Among premenopausal patients, the percentages of patients in BCa subtypes
were determined to be 34.90%, 8.05%, 26.17%, 10.74%, and 20.13%, respectively, while in
the postmenopausal group, these values were 39.05%, 16.19%, 24.76%, 6.67%, and 13.33%,
respectively. The clinicopathological characteristics of the patients are presented in Table 2.
The distribution of the patients according to their hormone receptors is given in Figure 1.
Correlations between the hormone receptors in the patients are presented in Figure 2.

Table 2. Clinical and pathological features of BCa patients according to menopausal status.

Features Postmenopausal Premenopausal p Value

n = 105 n = 149

Age at diagnosis, median (range), years 59.54 ± 9.01 42.11 ± 5.51 0.000 *

Special Histopathology Subtypes n (%)

Invasive ductal carcinoma 87 (82.86) 129 (86.58)

0.186Invasive lobular carcinoma 10 (9.52) 16 (10.74)

Other special types of carcinomas 8 (7.62) 4 (2.68)

Hormone receptor status

ER(+)/PgR(+) 78 (74.29) 95 (63.76)

0.008 *
ER(−)/PgR(−) 25 (23.81) 35 (23.49)

ER(+)/PgR(−) 2 (1.90) 16 (10.74)

ER(−)/PgR(+) 0 (0.00) 3 (2.01)

Tumor Subtype n (%)

Luminal A 41 (39.05) 52 (34.90)

0.154

Luminal B-HER2 (+) 26 (24.76) 39 (26.17)

Luminal B-HER2 (−) 17 (16.19) 12 (8.05)

HER2 positive 7 (6.67) 16 (10.74)

Triple Negative 14 (13.33) 30 (20.13)
*: Significant p < 0.05.
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Figure 2. Correlations between estrogen and progesterone receptors in (a) all, (b) postmenopausal
BCa, and (c) premenopausal BCa patients.
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3.4. Somatic Mutation Profiles

Somatic mutations were detected in a total of 94.09% (n = 239/254) of the tested
patients. Among the 62 genes covered, including frequently mutated genes, a total of
1366 pathogenic, likely pathogenic, and variants of uncertain significance were identified.
Among these variants, 296 variants were of uncertain significance. The most frequently
mutated gene among pathogenic variants was TP53, with 35 different variants observed in
130 patients (51.18%). This was followed by PIK3CA with 14 different variants observed
in 85 patients (33.46%), BRCA2 with 10 different variants and NF1 with 2 different vari-
ants both observed in 56 patients (22.05%), PTEN with 8 different variants observed in
54 patients (21.26%), and ATR with 4 different variants and CHEK2 with 7 different variants
observed in 53 patients (20.87%). Among the less frequently mutated genes, BLM, BRCA1,
PMS2, and ATM variants were observed in 39 (15.35%), 32 (12.60%), 28 (11.02%), and 20
(7.87%) patients, respectively (Figure 3). The pathogenic variants observed in the ten most
commonly mutated genes are shown in Table 3.
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Figure 3. Pathogenic gene variants in BCa patients.

The distinct mutational characteristics for each molecular subtype of BCa were listed in
Table 1. TP53 mutations were detected in 54.55% of the HER2 positive subtype
(n = 12/22), 31.03% of luminal B-HER2(−) (n = 9/29), 17.07% of triple-negative (n = 7/41),
16.13% of luminal A (n = 15/93), and 10.77% of luminal B-HER2(+) subtypes (n = 7/65).
The mutations in the PIK3CA gene were detected in 22.72% of HER2 positive subtype
(n = 5/22) followed by luminal A (n = 18/93, 19.35%), luminal B-HER2(−) (n = 1/29,
3.45%), luminal B-HER2(+) (n = 9/65, 13.85%), and triple-negative (n = 3/41, 7.32%). The
luminal A subtype presented the BRCA2 mutations the most by 9.67% (n = 9/93) among
other subtypes, while the luminal B-HER2(+) subtype for the NF1 mutations by 12.31%
(n = 8/65).

In premenopausal BCa patients, TP53, PIK3CA, NF1, BRCA2, PTEN, CHEK2, ATR,
BLM, RAD50, and KMT2C somatic mutations were observed more frequently, while in
postmenopausal BCa patients, TP53, PIK3CA, BRCA2, BRCA1, ATR, PMS2, PTEN, AR,
ATM, BLM, and NF1 mutations were more commonly detected. The top 10 genes most
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frequently mutated according to menopausal status are shown in Figure 4. Mutations were
more commonly observed in the luminal B-HER2(+) subtype in both premenopausal
and postmenopausal patients. The mutation burden was higher in postmenopausal
BCa patients.

Table 3. Pathogenic variants observed in the 10 most commonly mutated genes in BCa patients.

Genes Mutations

TP53
Frameshift variants Exon 4 c.267delC

Exon 5 c.389delT
Exon 5 c.390_426delCAACAAGATGTTTT
Exon 5 p.481delG
Exon 7 c.737_740delTGAA
Exon 7 c.754delC
Exon 7 c.774dupA
Exon 7 c.780delC
Exon 8 c.803-805delACA
Exon 10 c.1024delC
Exon 13 c.323_329dupGTTTCCG
Exon 13 c.576dupG
Exon 4 c.158G>A
Exon 4 c.372C>A
Exon 5 c.497C>G
Exon 5 c.499C>T
Exon 8 c.916C>T
Exon 8 c.1024C>T
Exon 20 c.1024C>T
Exon 5 c.469G>T
Exon 5 c.524G>A
Exon 5 c.730G>T
Exon 6 c.584T>C
Exon 6 c.659A>G
Exon 7 c.524G>A
Exon 7 c.742C>T
Exon 7 c.743G>A
Exon 8 c.818G>A
Exon 8 c.853G>A
Exon 10 c.329G>C
Exon 11 c.818G>A
Exon 13 c.856G>A
Exon 6 c.920-1G>T
Exon 9 c.920-2A>T
Exon 11 c.994-2A>G

Nonsense variants

Missense variants

Splice acceptor variants

PIK3CA
Nonsense variants Exon 2 c.277C>T

Exon 3 c.353G>A
Exon 5 c.1035T>A
Exon 7 c.3127A>G
Exon 9 c.1624G>A
Exon 9 c.1633G>A
Exon 9 c.1634A>C
Exon 10 c.3127A>G
Exon 14 c.2176G>A
Exon 18 c.1637A>G
Exon 19 c.2702G>T
Exon 21 c.23145G>C

Missense variants Exon 20 c.3140A>G
Exon 20 c.3140 A>T
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Table 3. Cont.

Genes Mutations

BRCA2
Exon 7 c.3847_3848delGT
Exon 10 c.1813delA
Exon 11 c.3539delA
Exon 11 c.5073delA
Exon 18 c.8331+1delG
Exon 23 c.9097delA
Exon 11 c.4440T>G
Exon 18 c.1103C>G
Exon 20 c.8504C>G
Exon 25 c.9382C>T

Frameshift variants

Nonsense variants

NF1
Nonsense variant Exon 13 c.1400C>T
Intron variant Exon 19 c.2325+3A>G

PTEN
Frameshift variants Exon 8 c.802-2delA

Exon 15 c.692_708delCCACACGACGGGAAGAC
Nonsense variants Exon 8 c.697C>T

Exon 8 c.1003C>T
Missense variants Exon 5 c.407G>A

Exon 10 c.397G>A
Exon 18 c.389G>A

Splice donor variant Exon 4 c.253+1G>C

ATR
Frameshift variants Exon 10 c.2320delA

Exon 10 c.2319_2320delAA
Exon 10 c.2320duplA

Nonsense variant Exon 6 c.3547C>T

CHEK2
Exon 8 c.1450_1451delCCinsT
Exon 12 c.1361G>A
Exon 6 c.737A>G
Exon 10 c.1427C>T
Exon 10 c.1556C>T
Exon 12 c.1312G>T
Exon 14 c.1556C>T

Frameshift variant
Nonsense variant
Missense variants

BLM
Frameshift variants Exon 7 c.1544delA

Exon 7 c.2320delA
Nonsense variant Exon 8 c.1642C>T

BRCA1
Frameshift variants Exon 3 c.3794delA

Exon 10 c.1961delA
Exon 10 c.3333delA
Exon 10 c.3770_3771delAG
Exon 16 c.5030_5033delCTAA
Exon 2 c.66dupA
Exon 19 c.5266dupC

Splice donor variant Exon 3 c.134+2T>C
Splice acceptor variant Exon 4 c.135-2A >G

PMS2
Frameshift variants Exon 11 c.1239delA

Exon 11 c.2165delA
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Table 3. Cont.

Genes Mutations

ATM
Frameshift variant Exon 6 c.640delT
Nonsense variant Exon 7 c.742C>T
Missense variants Exon 8 c.1009C>T

Exon 17 c.2572T>C
Exon 22 c.3161C>G
Exon 50 c.7463G>A
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4. Discussion

Tenea-Cojan et al. (2016) reported that the rate of non-special type invasive breast
carcinoma was 63.37%, followed by invasive lobular carcinoma at 10.56% [8]. Consistent
with these findings, the majority of tumors in our study consisted of invasive ductal
carcinoma at 85.04%, while 10.24% were invasive lobular carcinoma.

When evaluating the mutual relationships of hormone receptors obtained in this study,
it is observed that the ER(+)/PgR(+) profile is the most prevalent at 68.11%, followed by
ER(−)/PgR(−) at 23.62%, ER(+)/PgR(−) at 7.09%, and ER(−)/PgR(+) at 1.81%, which is
consistent with the findings of Chu et al. (2001). These researchers also reported in their
study that the majority of cases had the ER(+)/PgR(+) profile (63.9%) [9,10]. Additionally,
a robust positive correlation was present between ER and PgR in our study (p < 0.001).

In the last decade, studies on the molecular biology of BCa and the data obtained have
enabled the molecular classification of the disease. The integration of molecular markers
into conventional BCa classification systems has allowed for more effective treatment
guidance and the exploration of potential treatment targets [11]. It has been noted that
besides traditional prognostic tools, the immunohistochemical molecular classification
of BCa may help detect patients with varying recurrence risks and provide insights into
cancer treatment [12]. Especially, the accurate classification of Luminal A and Luminal
B subtypes is emphasized to be of extreme importance in determining treatment [13]. In
a prevalence study of molecular subtypes and hormone receptors conducted by Pandit
et al. (2020), it was found that out of 2062 patients examined, the Luminal A subtype
was observed in 37%, Luminal B subtype in 7.6%, basal-like subtype in 26%, and HER2-
enriched subtype in 11.1% of the patients. It was observed that the incidence of the Luminal
A subtype increased with age, while the incidence of the basal-like subtype was highest
in patients under 30 years old [14]. In a study by Özmen et al. (2014), which analyzed the
subtypes of tumors in Turkey, it was shown that 62% were luminal A subtype, followed
by luminal B (15%), triple-negative (15%), and HER2 positive (8.5%) subtypes [15]. In
our study, it was found that 36.61% of the patients were Luminal A, 11.42% were luminal
B-HER2(−), 25.59% were luminal B-HER2(+), 9.06% were HER2 positive, and 17.32% were
triple-negative subtypes. We believe that the lower percentages of molecular subtypes
observed in our study compared to this national data [15] may be partially associated with
the relatively small sample size in our study. In our study, the Luminal A molecular subtype
was the most common (36.61%) among all BCa cases. Luminal A BCa subtype is more
commonly encountered in postmenopausal women [16], and our study also found that
Luminal A is the more prevalent molecular subtype in postmenopausal women. However,
despite the increasing knowledge about prognostic factors, there is no comparative data
on molecular subtypes and overall survival prognostic factors among all premenopausal
and postmenopausal women with BCa in the entire population. Previous studies, such as
the Carolina BCa Study, have reported a higher prevalence of basal-like breast tumors in
premenopausal BCa patients in comparison to postmenopausal patients [17], consistent
with the current study.

Fluctuating hormone levels before and after menopause likely influence the gene
expression patterns as detected between premenopausal and postmenopausal BCa pa-
tients [18]. These findings revealed that certain genes may function in a menopausal
status-dependent fashion. It was reported that somatic mutations in TP53 were observed
in 47.6% of premenopausal BCa samples, while 38.1% exhibited mutations in PIK3CA [19].
Similar results were also obtained in a study conducted on premenopausal BCa patients of
Latin American descent, in which TP53 and PIK3CA emerged as the two most commonly
mutated genes [20]. It is also indicated in the same report that a clinical correlation was
found between somatic TP53 mutations and the HER2 positive molecular subtype. The
same association was also reported in a premenopausal cohort [21] and by another study
that did not focus on menopausal status [22]. The potential of TP53 to upregulate the HER2
expression was the reason for this association [23]. Nagy et al. (2021) showed in their study
that the PIK3CA somatic mutation frequencies were 37% and 17% in postmenopausal and
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young patients, respectively, E454A being the most prevalent PIK3CA mutation [24]. In the
current study, TP53 and PIK3CA were found to be among the genes with the highest muta-
tion frequencies in BCa cases, suggesting their pivotal roles in carcinogenesis. Also, the
TP53 and PIK3CA mutations were mostly observed in the HER2 positive molecular subtype,
in line with the literature. Studies list PIK3CA mutations among the less frequent mutations
in younger women than in older ones. In fact, for advanced BCa, PIK3CA mutations are
regarded as poor prognostic factors when compared against early BCa [25,26]. On the
contrary, the current study detected PIK3CA mutations more frequently in younger patients
in the premenopausal period. In this sense, the correlation of PI3K pathway activity level
with age and/or menopausal status may require further research.

The most observed mutations in PIK3CA tend to concentrate in the codons E542K
(c.1624G>A) and E545K (c.1633G>A) in exon 9, which is part of the helical domain, and
also in the codon H1047R (c.3140A>G) in exon 20. Exon 9 resides in helical domain while
exon 20 in the kinase domain [27,28]. One report indicated E545A as the most common
mutation observed in PIK3CA that has intermediate oncogenic potential [27]. A similar
finding was also reported by two other studies conducted in Singapore and Peru on subjects
with BCa [29,30]. Today, E454A is a recognized mutation with its own specific method for
detection [31]. On the other hand, other point mutations in PIK3CA were also reported
as being hotspots such as E542K, E545K, and H1047R in a study recruiting Brazilian BCa
patients followed by H1047L and S553FS mutations [32]. H1047L is known to have high
oncogenic potential [27]. Additionally, the S553FS frameshift mutation may abolish the
proto-oncogenic potential of PIK3CA. Furthermore, nonsense mutations in PIK3CA were
identified in tumor tissues of both older and younger patients, potentially counteracting
the proto-oncogenic effects of PIK3CA. However, contrasting findings have been reported
in another study, indicating that nonsense mutations are not as commonly observed in
PIK3CA [32]. In our study, the most frequently detected PIK3CA variants were E545K,
H10477R, E542K, and H1047L, consistent with the literature, and among these variants,
E545K and E542K located in the helix domain were observed in postmenopausal BCa cases,
and H10477R and H1047L located in the kinase domain were observed in premenopausal
BCa cases. Additionally, in our study, other than these hotspot mutations, missense and
nonsense type single nucleotide variants were detected in exons 2, 3, 5, 7, 10, 14, 18, 19, and
21. These variants of PIK3CA may be related to a higher BCa risk.

Calculating the potential of germline BRCA mutations requires the family history of
patients for breast and ovarian cancers and also the age of onset [33]. Germline mutations in
BRCA1 and BRCA2 account for approximately 30% of hereditary Bcas globally [34]. A large
study conducted in Brazil with 1554 Bca patients found that 9.84% of patients were carriers
of BRCA1 or BRCA2 mutations regardless of their ages [35]. Other studies have reported
higher frequencies of BRCA mutations in young Brazilian Bca patients up to the age of 35
(ranging from 15% to 22%) [35–37]. In high-risk Saudi patients, the rates of BRCA1 and
BRCA2 mutations in Bca tumors were reported to be 12.9% [38], while another Saudi study
reported higher somatic mutation rates (30.18% for BRCA1 and 37.7% for BRCA2) [34].
However, there is limited data in the literature specifically on somatic mutations in Bca
patients related to BRCA1 and BRCA2 genes. In our study, we did not examine germline
mutations in these genes, and similar to the literature, the rates of somatic mutations in
BRCA1 and BRCA2 were observed to be 12.06% and 22.05%, respectively.

The remaining cases exhibited vari”ble ’utations in different combinations (NF1, PTEN,
ATR, CHEK2, PMS2, and ATM), as previously reported, showing lower frequencies com-
pared to a set of TP53 and PIK3CA mutations [39]. However, conversely, high-frequency
variants were detected in the BLM gene, which was reported to rarely occur in Bca [34,40].
This observation emphasizes the complexity of oncogenic interactions among genes car-
rying mutations, highlighting that these interactions are not straightforward or linear
processes. Instead, they are shaped by intricate sequences comprising tightly intercon-
nected molecular networks and pathways.



J. Pers. Med. 2024, 14, 434 13 of 15

The NF1 gene has been shown to be a causative agent of breast cancer, with somatic
mutations reported in 27.7% of all breast carcinomas [41,42]. Previous studies have sug-
gested that a mutation in the NF1 gene may result in or predispose cells to mutations in
other genes on the same chromosome [43]. The NF1 gene and the BRCA1 gene are both
located approximately 20 centi-Morgan (cM) apart on chromosome 17, and an interaction
between these two genes has been suggested [44,45]. However, the risk of breast cancer in
patients found to have a variant in the NF1 gene without any clinical evidence is unclear. In
our study, NF1 mutations were detected in 22.05% of all Bca cases, similar to the literature.
Especially in our study results, the presence of NF1 mutations together with BRCA1 muta-
tions in women with postmenopausal Bca may bring up the possibility of an interaction
between the two genes.

This report adds to the limited body of studies providing insights into the frequency of
somatic mutations in both premenopausal and postmenopausal Bca cases, utilizing robust
NGS technology.

5. Conclusions

In conclusion, our study revealed that 94.09% of both premenopausal and post-
menopausal Bca cases harbored somatic mutations in established cancer susceptibility
genes. These findings contribute to a deeper understanding of the underlying causes of
Bca with respect to menopausal status. Given the high prevalence of genetic mutations
identified, genetic testing holds promise not only for informing treatment decisions for both
premenopausal and postmenopausal Bca patients but also for shaping future prevention
and management strategies to mitigate the risk of secondary malignancies in patients.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jpm14040434/s1, Figure S1: (a) HER2+ FISH image;
(b) HER2- FISH image.
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