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Abstract: In industry, forecast prediction and health management (PHM) is used to improve system
reliability and efficiency. In PHM, remaining useful life (RUL) prediction plays a key role in preventing
machine failures and reducing operating costs, especially for reliability requirements such as critical
components in aviation as well as for costly equipment. With the development of deep learning
techniques, many RUL prediction methods employ convolutional neural network (CNN) and long
short-term memory (LSTM) networks and demonstrate superior performance. In this paper, a novel
two-stream network based on a bidirectional long short-term memory neural network (BiLSTM) is
proposed to establish a two-stage residual life prediction model for mechanical devices using CNN as
the feature extractor and BiLSTM as the timing processor, and finally, a particle swarm optimization
(PSO) algorithm is used to adjust and optimize the network structural parameters for the initial data.
Under the condition of lack of professional knowledge, the adaptive extraction of the features of the
data accumulated by the enterprise and the effective processing of a large amount of timing data
are achieved. Comparing the prediction results with other models through examples, it shows that
the model established in this paper significantly improves the accuracy and efficiency of equipment
remaining life prediction.

Keywords: bidirectional long and short memory networks; convolutional neural network; particle
swarm optimization algorithm; remaining useful life

1. Introduction

With the rapid development of the industrial field, the complexity and reliability
requirements of mechanical equipment are increasing. Especially in the aerospace field, due
to the specificity of the flight environment and the importance of safety, the requirements
for the reliability and stability of key components have reached an unprecedented level. In
this context, the prediction of the remaining useful life (RUL) of equipment has become
a core task in the field of prognostic and health management (PHM). RUL prediction not
only helps in predicting machine failures and preventing potential accidents, but also
significantly reduces operational costs and helps in ensuring the proper functioning and
timely maintenance of machines [1].

In general, RUL prediction relies on time-series data provided by multiple sensors,
which are analyzed to achieve an accurate prediction of the remaining life of a machine.
Currently, RUL prediction methods are mainly classified into two categories: model-based
methods and data-driven methods. Model-based methods [2,3] rely on the a priori knowl-
edge of the mechanical system or components to construct the degradation mechanism
model of the system. However, as the complexity of mechanical devices increases, it be-
comes more difficult to obtain sufficient a priori knowledge, which limits the application of
model-based methods in RUL prediction.
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In contrast, the data-driven approach treats the mechanical system as a black box, and
RUL prediction can be achieved by collecting sensor data for analysis only, without the
need for in-depth knowledge of the system’s dynamic properties. The advantage of this
approach is its universality and flexibility, which is especially suitable for the RUL predic-
tion of complex mechanical systems. With the rapid progress of sensing technology and
information technology, the real-time and effectiveness of obtaining data on the operating
status of equipment has been significantly improved, providing strong support for the
application of data-driven methods.

Traditional RUL prediction methods are often based on machine running time and em-
pirical judgement, and there is a risk of “under-maintenance” and “over-maintenance” [4],
which may not only lead to equipment failures and production interruptions, but also in-
crease unnecessary maintenance costs. According to the research paradigm of “correlation-
prediction-regulation” in big data science [5], the data-driven approach based on deep
learning can intensively explore the intrinsic connection of equipment monitoring data,
establish an effective RUL prediction model, and realize an accurate assessment of the
likelihood of equipment failures in the coming period of time. This approach not only
improves the efficiency of equipment operation and maintenance and reduces the main-
tenance costs, but also helps to solve the problems existing in traditional maintenance
strategies. Therefore, this study aims to establish an efficient RUL prediction model using
deep learning methods in combination with sensor data. By accurately predicting the
remaining useful life (RUL) of the equipment, the timely maintenance and optimal manage-
ment of the equipment can be achieved, which provides strong support for the sustainable
development of the industrial field.

The rest of this paper is arranged as follows. Section 2 provides a comprehensive
review of related work. In Section 3, we first analyze the structure of aircraft engines and
then propose a PSO-CNN-BiLSTM-based approach. Section 4 discusses the experimental
setup, network hyperparameters, evaluation methods and experimental results. Finally,
we provide the conclusions in Section 5.

2. Related Work

With the development of deep learning theory (DL), especially convolutional neural
network (CNN) [6], recurrent neural network (RNN) [7] and long-short-term memory net-
work (LSTM) [8], which have significantly higher prediction effects than machine learning
techniques, they have been widely used in lifetime prediction research. These prediction
models have powerful feature learning and mapping capabilities and can automatically
mine deep features for prediction without the need for a priori knowledge or expert help [9].
Convolutional neural networks (CNNs) have strong feature extraction capability and low
computational complexity, which can mine deep features hidden in the samples. Jiao [10]
used the features of a convolutional neural network (CNN), such as local connectivity and
weight sharing, to reduce the amount of data required and speed up the model training
time. Yang et al. [11] proposed an RUL prediction method based on the architecture of
a dual CNN model. The model used CNN to extract features directly, which reduced
the need for expert knowledge and manpower, and considered the effects of different
degradation patterns on the prediction results, and then used a weighting algorithm to
reduce the effects of outliers to achieve effective lifetime prediction. The essential problem
of RUL prediction is a regression problem related to time series. Therefore, whether the
constructed model learns valid time-series information or not will affect the accuracy of
RUL prediction. Recurrent neural networks (RNNs), on the other hand, are highly capable
of processing time-series data and are the most widely used method in residual life predic-
tion [12]. However, RNNs suffer from the problem of long-term time dependence, where
the gradient vanishes or explodes as it propagates over many stages. Long short-term
memory (LSTM) networks, as a type of RNN for sequence learning, are able to eliminate
the problem of vanishing gradients encountered in traditional recurrent neural networks
(RNNs), and are more suitable for learning long-term dependencies in time-series data [13].
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A variety of improved models for LSTM have been introduced and widely used
in the prediction of remaining useful life (RUL). Xiang et al. [14] successfully solved the
problem that most neural networks are unable to process the data in different update modes
according to the importance of the input data with the help of a multi-unit LSTM, thus
improving the prediction ability of the model. Li et al. [15] proposed an LSTM model based
on a convolutional neural network (CNN) and an LSTM with block attention module for
the remaining life prediction of aircraft engines. Peng [16] combined CNN with an LSTM
model for acoustic power generation signals and fatigue life, which extracted the features
of the carbon steel samples and reduced the sample data requirements. Marei [17] devised
a new method for the prediction tool RUL, the method was implemented by a hybrid
convolutional neural network-long short-term memory network (CNN-LSTM) model with
an embedded transfer learning mechanism. Zhou [18] added maximum relevant minimum
redundant (mRMR) feature selection in front of the CNN-LSTM framework in order to
eliminate the redundant and irrelevant feature vectors. Li [19] used an empirical model
decomposition algorithm to the capacity cyclic data of lithium batteries decomposition
into multiple sub-layers and predicted the high-frequency sub-layers and low-frequency
sub-layers using LSTM and an Elman neural network, respectively, which can predict the
remaining battery life with high accuracy. Dulaimi [20] proposed a hybrid deep neural
network model for estimating RUL from multivariate sensor signals, which is a hybrid
architecture that integrates a deep LSTM and CNN, and through fusion layers and fully
connected layer coupling, and achieved good results. Zhao [21] proposed a dual-channel
hybrid model for RUL prediction based on a capsule neural network (CNN) and long
short-term memory network (Cap-LSTM), which directly extracts highly correlated spatial
feature information from multivariate time-series sensor data, and thus avoids the local loss
of spatial location relationships between features, reducing the complexity of the model.

All the above attempts were made to develop a hybrid solution for RUL estimation.
As a type of nonlinear recurrent neural network, LSTM plays an important role, which
can deal with the temporal and nonlinear relationships of data. In the hybrid solution,
in order to deeply explore the latent intrinsic features and effective information among
the discontinuous data, and then to improve the prediction accuracy, it is necessary to
introduce other learning models for the LSTM model to enhance the model’s capability. At
the same time, it is also important to optimize the hyperparameters in the improved LSTM
model in order to further enhance the prediction effect of the model. By fine-tuning the
hyperparameters, the model can be better adapted to the data characteristics, thus further
improving its prediction performance. Currently, researchers have explored a variety of
hyperparameter optimization methods, such as the stochastic optimization method [22],
gradient optimization method [23], genetic algorithm optimization method [24] and par-
ticle swarm optimization method [25]. Among them, the particle swarm optimization
algorithm [26] stands out for its concise parameter settings and powerful global optimiza-
tion capability, and its efficient search mechanism and individual optimization strategy
can significantly accelerate the convergence process of the model. Therefore, in recent
years, particle swarm optimization algorithms have received widespread attention and
application in the field of hyperparametric optimization, and become one of the important
means to improve the prediction effect of LSTM models.

In order to effectively use the massive data of the whole life cycle of machinery and
equipment, predict the remaining life of equipment and make maintenance decisions,
reduce equipment maintenance costs and solve the problems of “over maintenance” and
“under-maintenance” to a certain extent, this paper proposes a deep learning hybrid model
based on PSO-CNN-BILSTM, which combines a convolutional neural network (CNN) with
a bidirectional long-short-term memory network (BiLSTM) for remaining life prediction.
A convolutional neural network is used to extract key data features, compress sequence
length and improve the deep learning performance and model training speed. Eigenvalues
are taken as the input, and the long-term memory function of BiLSTM is used for the
in-depth mining of the temporal characteristics of data. At the same time, the particle
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swarm optimization (PSO) algorithm is used to optimize the network structure parameters,
and finally achieve the effective prediction of the equipment’s remaining life.

3. Predictive Modelling

Predicting the remaining life of machinery and equipment is critical for operations
and maintenance. It is easy to suffer from the problem of redundant information and data
temporality and discontinuity in establishing remaining life predictions. To address this
problem, this study adopts a bidirectional long and short-term memory (BiLSTM) neural
network to capture the backward and forward correlation of time-series data and reveal
the chronological characteristics of equipment degradation. Meanwhile, combined with
the feature extraction capability of convolutional neural network (CNN), key features are
first screened and compressed into sequences by CNN, and then input into BiLSTM for
temporal modelling. With the long-term memory function, BiLSTM is able to efficiently
deal with the massive data of the whole lifecycle, and achieve accurate RUL prediction.
This method integrates the dimension reduction features of CNN [27] and the time-series
memory capability of BiLSTM [28] to analyze and model the full life cycle data of equipment
in order to obtain effective remaining life prediction results.

3.1. Data Collection and Pre-Processing of Target Objects

An aircraft turbine engine is a complex engineered system that integrates multiple
sensors, and there is an increasing need for the accurate prediction of its remaining useful
life (RUL). Its key components are shown in Figure 1 and include the inlet, fan, compressor,
bypass, combustion chamber, high-pressure turbine (HPT), low-pressure turbine (LPT) and
nozzle. The airflow enters the fan from the intake and splits into two streams: one flows
through the engine core and the other passes through the annular bypass. The airflow
passes through the compressor and into the combustion chamber. In the combustion
chamber, fuel is injected and burned to produce high-temperature gases to drive the
turbine. The fan is driven by a low-pressure turbine, while the compressor is driven by a
high-pressure turbine. Eventually, the mixture of the low-pressure turbine and the bypass
exhaust is discharged through a nozzle [29].
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Data collection plays a crucial role in the remaining useful life (RUL) prediction of
aircraft turbine engines. To ensure the comprehensive monitoring of the health of engine
components, performance degradation and signs of potential failure, data collection covers
a number of dimensions from physical inspection to real-time performance monitoring. For
example, for intakes, in addition to routine physical inspections, performance monitoring
is carried out using pressure and temperature sensors, and key operating parameters are
captured through the flight data logging system. For fans and compressors, in addition
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to vibration monitoring and performance parameter collection, metal chip detection and
thermal barrier-coating loss assessment are performed. Data collection in the combustion
chamber focuses on the flame tube temperature, emissions’ monitoring and pressure
fluctuation analysis. The turbine section, on the other hand, is fully captured through
vibration monitoring, performance parameter collection, blade inspection and turbine gap
monitoring. Finally, nozzle data collection includes exhaust temperature and pressure
monitoring, structural inspections and evaluation of dynamic characteristics. These data
are integrated and analyzed by the engine health-management system to provide strong
support for residual life prediction, and with the development of IoT, big data and AI
technologies, the accuracy and real-time nature of data collection is constantly improving,
further enhancing the accuracy and reliability of RUL prediction.

Data preprocessing is an indispensable step when dealing with any dataset. Cor-
responding processing according to the characteristics of the data can avoid the small
numerical features being overwhelmed by the large numerical features, which in turn
improves the adaptability of the model. Currently, min–max normalization and zero–mean
normalization are two commonly used normalization methods. In this paper, min–max
normalization is used to pre-process the dataset. Min–max normalization helps to eliminate
the influence of different physical quantities, simplifies the model training process, speeds
up the convergence speed and may improve the model accuracy, so it is widely used in the
processing of the dataset.

3.2. Feature Extractor CNN

Compared with the traditional artificial neural network (ANN), CNN adopts local
connection and weight sharing between layers, which can largely reduce the scale of model
parameters and make the model calculation and training process faster and easier. The
biggest difference between CNN and a general neural network is that its implicit layer has
a convolutional layer and a pooling layer. Therefore, in this paper, we mainly used the
convolutional layer and pooling layer as the pre-network to extract and process the features
of the turbine engine operation data. In this paper, in order to validate the feasibility of
the model, we used the public dataset PHM08 [30], which is provided by NASA, and was
obtained based on the aero-propulsion system simulation system for the turbine engine
operation, and the features were mainly the length of the current operation cycle, the flight
altitude, the Mach number, etc. The specific features are described in detail in Section 4.

3.2.1. Convolution Layer

The convolution operation is performed through the convolution kernel to obtain
multiple convolution feature maps in this layer. The features of the original input data
are extracted to obtain more abstract features. The key information can be screened and
retained through local connection and weight sharing between layers, to reduce the data
volume and the amount of computation. The convolution operation can be expressed as:

yl(i,j) = Kl
i ∗ xl(rj) =

c−1

∑
j′=0

Kl(j′)
i xl(j+j′) (1)

In which, Ki
l(j′) is the j′th weight in the ith convolution kernel of the lth layer; xl(j+j′) is

the j′th weight-aware position in the jth convolved local region of the lth layer; and c is the
size of the convolution kernel.

3.2.2. Pooling Layer

Local features obtained by convolution are downsampled in the pooling layer, and
the features are not updated by back propagation. The dimension reduction in the feature
matrix through the pooling layer can greatly reduce the parameters of model training, so as
to capture the main features and improve the efficiency of model training to a certain extent.
Common pooling operations include mean pooling, max pooling, overlapping pooling
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and so on. The max pooling is more commonly used to take the maximum value of the
perceptual area in the pooling layer as the output, which can be expressed as follows:

pl(i,t) = max(t−1)w+1≤j≤(t−1)w+c

{
al(i,j)

}
(2)

In which, al(i,t) is the tth active value of the ith feature map in layer l; c is the pooling
width; and w is the stride of the convolution kernel sliding.

3.3. Time Series Processer BiLSTM

LSTM can remember information for a long time, which makes it suitable for RUL
prediction tasks. Compared with the traditional RNN, the LSTM structure contains forget
gates, input gates and output gates, which screen the unit state data of the previous layer,
the current input data and the unit state data of this layer, respectively, and its internal
structure is shown in Figure 2. The three gates are used for retaining important information
and realizing the long-term memory of features.
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The forget gate ft, input gate it and output gate ot in the internal structure of an LSTM
are as follows:

ft = σ
(

W f · [st−1, xt] + b f

)
(3)

it = σ(Wi · [st−1, xt] + bi) (4)

ot = σ(Wo · [st−1, xt] + bo) (5)

In which, st−1 is the cell state at time t − 1; xt is the input at time t; W is the weight
matrix; b is offset vector; and σ is the activation function. The resulting ft, it, ot are the
values in [0, 1].

Before updating the memory cell ct, a temporary memory cell ĉt is created first.

ĉt = tanh(Wc · [st−1,xt] + bc) (6)

The value of current memory state ct is:

ct = ft ⊗ ct−1 + it ⊗ ĉt (7)

The output ht of LSTM is:
ht = ot · tanh(ct) (8)

BiLSTM is an improved LSTM, which can be regarded as two single-layer LSTMs
stacked together, and its structure is shown in Figure 3. The two LSTM inputs are the
same, but the directions of information transmission are opposite. Therefore, BiLSTM
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is a modeling analysis of the entire time series. Compared with traditional LSTM, it
comprehensively considers historical information and future information, and can enhance
the forecasting ability [31].
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←
h t of the backward LSTM. Then, the two hidden states are connected and calculated
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→
h t = LSTM

(
xt,
→
h t−1

)
(9)

←
h t = LSTM

(
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←
h t+1

)
(10)

yt = W→
h y

→
h t + W←

h y

←
h t + by (11)

In which, W→
h y

, W←
h y

represents weights of forward LSTM and backward LSTM,

respectively. by is the biased vector of the output layer.

3.4. CNN-BILSTM Network Structure

Usually, the performance of deep learning is closely related to the extracted features.
CNN can filter key features and compress sequence length. BiLSTM can mine the time-
series characteristics of data. So, combining CNN with BiLSTM is conducive to obtain
deeper global features and their temporal relations.

The CNN-BiLSTM model mainly includes four phases, shown as Figure 4. (1) In
the input layer, the original data are preprocessed to obtain the input format required by
the network, and the model is sequentially input along the time axis through the sliding
window method. (2) Crucial deep global features are extracted through a single-layer
convolutional layer, and then the sequence length is compressed by a single-layer max-
pooling layer in order to extract and compress the data into more abstract features. (3) These
features are used as the input of BiLSTM for deep mining and extraction of data time-series
features. (4) The features are passed through a fully connected layer to obtain the final RUL
prediction result.
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According to the basic network structure, the steps of remaining life prediction using
the CNN-BiLSTM model are shown in Figure 5. It mainly includes data preprocessing,
model training and RUL prediction.
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(1) Data preprocessing
The original data usually come from different sensors, and the collected state data of

the equipment are not the same. In order to eliminate the influence of the data dimensional
difference, each eigenvalue is normalized to keep all the data in [0, 1]. After normalization,
the RUL value at each time point needs to be calculated according to the full life cycle of the
mechanical equipment. For example, when the mechanical equipment fails completely, the
RUL value is 0, and the values at the other time points are derived by reversed chronological
order in turn. After that, the data are divided into a training set, validation set and test set.
The training set and validation set are used for model training, and the test set is used to
predict and verify the accuracy of the model.
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(2) Model training
The parameters of CNN and BiLSTM should be set before training, such as the number

of convolutional layers and pooling layers of CNN, the size of the convolution kernel,
the number of layers of BiLSTM, the number of neurons in the hidden layer, time step,
maximum number of iterations, etc. After initializing the parameters, next follows deter-
mination of the loss function of the model, inputting the training set data and validation
set data into the CNN to extract the local features of the data, and inputting the extracted
features into the BiLSTM layer to mine its time-series characteristics. When reaching the
termination condition, stopping the model training.

(3) RUL prediction
Inputting the test set data into the trained model, obtaining the RUL prediction result,

and evaluating the prediction result.

3.5. Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm (PSO) is used to complete the evolution of
bird flocks through mutual assistance and information sharing among individuals. The
PSO algorithm is similar to the process of bird feeding and is a heuristic evolutionary
algorithm with good global optimization capability [32]. It is also widely used in the global
optimization process of hyperparameters due to its simple principle and easy operation [33].
Assuming that there is only one optimal solution in a region D, the positions and velocities
of m particles are initialized in the region. The positions of the particles represent the
candidate solutions, while the velocities determine the motion of the particles. After
initialization, the fitness of each particle can be calculated, as well as the personal best
position Pbest and the global best position Gbest, and then the positions and velocities of the
m particles are updated according to the following equation:

Vk+1
id = wVk

id + c1r1

(
Pk

best − xk
id

)
+ c2r2

(
Gk

best − xk
id

)
(12)

Xk+1
id = Xk

id + Vk+1
id (13)

where w denotes the inertia factor; c1, c2 denote the acceleration factor of the example; r1,
r2 are random numbers between (0, 1); Vk+1

id is the velocity vector of the ith particle motion
in the (k+1)th iteration; and Xk

id is the current position vector of the particle.
In this paper, the process of optimizing hyperparameters by PSO is as follows: firstly,

set the number of particles m and the search range D, and initialize the position and velocity
of particles within the range, round all parameters (number of neurons in the hidden layer,
maximum number of iterations, number of samples in each training session) to the nearest
integer, with each set of parameters corresponding to a particle, and the loss function of
each training process in the neural network can be set to the particle’s fitness function.
Then, the personal best position and global best position are updated according to the
fitness of all particles, and the velocity and position of each particle can be updated by the
new personal best position and global best position. Finally, the optimal hyperparameters
are obtained from which the best hyperparameters are selected.

3.6. Tuning the Network Structure Parameters

In the network structure, the main hyperparameters that affect the performance of
CNN-BiLSTM can be divided into two categories. One kind of parameters has a certain
influence on the prediction performance of the model, such as the number of LSTM layers,
learning rate and time window size. The other kind has no obvious effect on the prediction
performance, such as the number of neurons in the hidden layer, the maximum number of
iterations and the number of samples per training.

(1) The number of LSTM layers
BiLSTM is essentially a two-layer LSTM. In the case of sufficient sample data, stacking

LSTM and deepening the structure of the network may bring better fitting results, but
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the increase in the number of layers will also bring the burden of computing time and
memory consumption. When the number of LSTM layers is too large, it may appear that
the iteration becomes slower, which makes the model convergence effect worse, resulting in
falling into a local optimal solution. Therefore, it is necessary to find a reasonable number
of LSTM layers.

(2) Learning rate
In deep learning, the learning rate is an important parameter that can control the

learning progress. When the learning rate is large, the convergence rate of the prediction
model will be faster, and exploding gradient may occur. When the learning rate is small,
the convergence rate will be slower, which is prone to overfitting problems. Therefore,
it is necessary to set a larger learning rate at the beginning of training, and reduce it in
the later stage of training. A learning rate adaptive optimization algorithm is generally
used to automatically optimize the learning rate, such as Adadelta, Adagrad, Adam,
Momentum, etc.

(3) Time window size
In the training process of the deep learning model, the sliding time window method is

widely used to input sample data to the model. The time window size can significantly
affect the predictive performance of the model. In general, the larger the time window,
the more useful information it contains, and the better the prediction effect of the model
will be.

(4) The number of neurons in the hidden layer, the maximum number of iterations
and the number of samples for each training.

The influence of one of these hyperparameters on the model performance is not
obvious, but the coupling effect between these different hyperparameters affects the per-
formance of the network. In order to find a set of better parameter values, this paper uses
a particle swarm optimization algorithm [34] to tune this set of hyperparameters. The
prediction process is shown in Figure 6.
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The PSO-CNN-BiLSTM residual lifetime prediction model proposed in this paper
requires more time for parameter optimization and network training than the ordinary
model in the training phase due to its complex architectural design and optimization
strategy, but once the model training is completed, its prediction speed is not slower
than that of the ordinary model, and the time required for both of them to perform the
prediction task is basically equivalent. Therefore, considering the advantages of the PSO-
CNN-BiLSTM model in prediction performance, the extra training time invested in the
early stages is undoubtedly worthwhile.

4. Example Analysis

In order to verify the effectiveness of CNN-BiLSTM method in predicting the RUF, the
PHM08 dataset was used to test the performance of multiple prediction models such as
LSTM, BiLSTM, multi-layer LSTM and CNN-BiLSTM. Meanwhile, the number of LSTM
layers, learning rate, time window size, the number of hidden layer neurons, the maximum
number of iterations and the number of training samples were optimized to improve
the prediction performance of CNN BiLSTM model. To ensure the consistency of the
experiments, the experimental equipment used in this paper was a general PC with Intel(R)
Core(TM) i7-8750 CPU and 16 GB of operating memory.

4.1. Preprocessing of Raw Data

The PHM08 dataset used in this paper was provided by NASA, which is one of the
most widely used remaining life prediction datasets. It includes 218 pieces of complete life
cycle data of the same type of aircraft turbine engines from operation to failure, but the
health level of each engine at the beginning of operation is different. There are 26 columns
in the original data. The first two columns represent the equipment ID and the current
operation cycle time. The third to fifth columns are the operating status of the equipment.
The rest are the status monitoring data collected by the smart sensors installed in the device,
as shown in Table 1.

Table 1. Data item description of PHM08 dataset.

Parameters ID Description Unit

ID Aero turbine engine ID -
Cycle Current running cycle duration -

Setting1 Flight LeVeL or Altitude -
Setting2 Mach numbers -
Setting3 Throttle Lever Angle -

S1 Total temperature at fan inlet ◦R
S2 Total temperature at LPC outlet ◦R
S3 Total temperature at HPC outlet ◦R
S4 Total temperature at LPT outlet ◦R
S5 Pressure at fan inlet psia
S6 Total pressure in bypass-duct psia
S7 Total pressure at HPC outlet psia
S8 Physical fan speed rpm
S9 Physical core speed rpm

S10 Engine pressure ratio (P50/P2) -
S11 Static pressure at HPC outlet psia
S12 Ratio of fuel flow to Ps30 pps/psi
S13 Corrected fan speed rpm
S14 Corrected core speed rpm
S15 Bypass Ratio -
S16 Burner fuel-air ratio -
S17 Bleed Enthalpy -
S18 Demanded fan speed rpm
S19 Demanded corrected fan speed rpm
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Table 1. Cont.

Parameters ID Description Unit

S20 HPT coolant blee lbm/s
S21 LPT coolant bleed lbm/s

Each piece of equipment has a different fitness level before starting, so the time
required for its operation to failure is also different. The dataset covers the complete cycle
of equipment operation. The specific values of the original data are shown in Table 2.

Table 2. Original data of training set.

ID Cycle Setting1 Setting2 Setting3 S1 S2 . . . S21

1 1 10.0047 0.2501 20.0 489.05 604.13 . . . 17.1735
1 2 0.0015 0.0003 100.0 518.67 642.13 . . . 23.3619
1 3 34.9986 0.8401 60.0 449.44 555.42 . . . 8.8555

. . . . . . . . . . . . . . . . . . . . . . . . . . .
218 131 41.9999 0.8400 40.0 445.00 549.92 . . . 6.1978
218 132 35.0007 0.8419 60.0 449.44 556.55 . . . 8.6761
218 133 25.0071 0.6216 80.0 462.54 537.46 . . . 8.5120

In order to eliminate the influence of dimension difference between features, the
original data are processed by maximum and minimum normalization, and all selected
features are normalized.

x∗ =
x− xmin

xmax − xmin
(14)

After normalization, the data are labeled and the RUL at each time point is calculated.
Considering that the engine performance is in a healthy state at the beginning of operation,
an accurate prediction result cannot always be obtained, if the RUL label is set directly
according to the current and total operating cycles. Therefore, the training label is usually
corrected with a piecewise linear function. Setting the maximum RUL value to 130. If the
operation cycle is greater than 130, the RUL label will remain unchanged. On the contrary,
if the operation cycle is less than 130, the RUL will decrease linearly with the increase in
the operation cycle, as shown in Figure 7.
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The data after normalization and RUL label setting are shown in Table 3, where RUL
represents the remaining life at this time point.

Table 3. Normalized dataset.

ID Cycle Setting1 Setting2 Setting3 S1 S2 . . . S21 RUL

1 1 0.238162 0.297031 0.2 0.597937 0.629527 . . . 0.632556 130
1 2 0.000036 0.000356 1.0 1.000000 0.978856 . . . 0.986910 130
1 3 0.833141 0.831948 0.6 0.060269 0.181743 . . . 0.156259 130

. . . . . . . . . . . . . . . . . . . . . . . . . . .
218 131 0.999807 0.997625 0.4 0.000000 0.131182 . . . 0.004077 2
218 132 0.833191 0.999881 0.6 0.060269 0.192131 . . . 0.145987 1
218 133 0.595294 0.738242 0.8 0.238089 0.016639 . . . 0.136590 0

4.2. Result Analysis

First, comparing LSTM and BiLSTM prediction models. Initialize the parameters of
the LSTM and BiLSTM models. Set the number of hidden layer neurons to 50, the size of the
time window to 50, the maximum number of iterations to 200 and the number of training
samples to 200. The learning rate optimization algorithm is Adam, and the activation
function is ReLU. The mean absolute error (MAE) is selected as the loss function, and the
early stopping method is added to the model to reduce the training time of the model and
prevent over fitting. The final prediction results use MAE, root mean square error (RMSE)
and R-Square (R2) as the evaluation criteria, respectively. The MAE, RMSE and R2 can be
expressed as:

MAE =
1
m

m

∑
i=1
|ŷi − yi| (15)

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)
2 (16)

R2 = 1−
∑
i
(yi − ŷi)

2

∑
i
(yi − y)2 (17)

In which, yi, ŷi and y are the theoretical value, predicted value and actual average
value of RUL, respectively.

The loss function comparison results of the LSTM model and BiLSTM model are shown
in Figure 8. When using the LSTM model, the model stops training after 113 iterations,
while the BiLSTM model stops training after 157 iterations due to the more complex network
structure. Compared with LSTM, BiLSTM takes longer to train, but the loss decreases more,
and the convergence effect is better.

Using MAE, RMSE and R2 to evaluate the prediction results. In order to eliminate
the influence of error, the average value of three prediction results is taken for statistical
analysis, and the final evaluation results are shown in Table 4. Using BiLSTM can achieve a
better prediction effect.

In general, stacking multiple LSTMs may also improve the performance of the LSTM
model. To explore the performance of a multi-layer LSTM and BiLSTM, a total of five sets of
models for one to four layers of LSTM and BiLSTM are compared using the above datasets.
Each model experiment is run three times and the average is taken to obtain the final MAE,
as shown in Figure 9.



Machines 2024, 12, 342 14 of 22

Machines 2024, 12, 342 14 of 21 
 

 

network structure. Compared with LSTM, BiLSTM takes longer to train, but the loss de-
creases more, and the convergence effect is better. 

Iteration Times

0 20 40 60 80 100

10

20

40

50

60

70

Lo
ss

Training Set

Validation Set

 Iteration Times

0 20 40 60 80 100

10

20

30

40

50

60

Lo
ss

120 140 160

Training Set

Validation Set

 
(a) (b) 

Figure 8. Comparison of model loss functions. (a) Loss function of LSTM and (b) loss function of 
BiLSTM. 

Using MAE, RMSE and R2 to evaluate the prediction results. In order to eliminate the 
influence of error, the average value of three prediction results is taken for statistical anal-
ysis, and the final evaluation results are shown in Table 4. Using BiLSTM can achieve a 
better prediction effect. 

Table 4. Evaluation of LSTM and BiLSTM prediction results. 

Data Set Evaluating Indicator LSTM BiLSTM 

Training Set 
MAE 18.51 10.84 
RMSE 24.67 16.57 

R2 0.671 0.852 

Validation Set 
MAE 18.48 11.42 
RMSE 24.55 17.12 

R2 0.668 0.839 

Test Set 
MAE 18.38 11.29 
RMSE 24.66 17.08 

R2 0.669 0.841 

In general, stacking multiple LSTMs may also improve the performance of the LSTM 
model. To explore the performance of a multi-layer LSTM and BiLSTM, a total of five sets 
of models for one to four layers of LSTM and BiLSTM are compared using the above da-
tasets. Each model experiment is run three times and the average is taken to obtain the 
final MAE, as shown in Figure 9. 

Training Set
Validation Set
Test Set

Single Layer LSTM Two-Layer LSTM Three-Layer LSTM Four-Layer LSTM BiLSTM
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
A

E

 
Figure 9. The comparison results of MAE of different models. 

Figure 8. Comparison of model loss functions. (a) Loss function of LSTM and (b) loss function
of BiLSTM.

Table 4. Evaluation of LSTM and BiLSTM prediction results.

Data Set Evaluating Indicator LSTM BiLSTM

Training Set
MAE 18.51 10.84
RMSE 24.67 16.57

R2 0.671 0.852

Validation Set
MAE 18.48 11.42
RMSE 24.55 17.12

R2 0.668 0.839

Test Set
MAE 18.38 11.29
RMSE 24.66 17.08

R2 0.669 0.841
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It can be found that the MAE value of a two-layer LSTM is lower than that of single-
layer LSTM. However, when the LSTM layers continue to stack to the third or fourth layers,
the MAE value does not change much compared with that of the two-layer LSTM. A small
number of stacked LSTM network structures will improve the predictive accuracy of the
RUL regression model, but the predictive accuracy of the model tends to stabilize as the
LSTM layers continue to increase. The MAE of BiLSTM is lower than that of multi-layer
LSTM. Therefore, in the RUL forecasting problem, the BiLSTM structure can better mine
valuable time information from raw data than the multi-layer LSTM network structure,
and the regression forecasting effect is better.

During the training, it is found that with LSTM stacking and network structure
complicating, the regression model becomes more and more difficult to converge, and the
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prediction time increases. The training time of BiLSTM model is shorter than that of stacked
LSTM, which is shown in Figure 10.
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In order to further improve the BiLSTM feature extraction ability, a convolution layer
and a maximum pooling layer are added to the BiLSTM to extract deep spatial features
and retain the best features in the original data. The new model called CNN-BiLSTM stops
iterating at 126 times. The loss function of CNN-BiLSTM decreases faster and fluctuates
less than that of BiLSTM for the training set and verification set, as shown in Figure 11.

Machines 2024, 12, 342 15 of 21 
 

 

It can be found that the MAE value of a two-layer LSTM is lower than that of single-
layer LSTM. However, when the LSTM layers continue to stack to the third or fourth lay-
ers, the MAE value does not change much compared with that of the two-layer LSTM. A 
small number of stacked LSTM network structures will improve the predictive accuracy 
of the RUL regression model, but the predictive accuracy of the model tends to stabilize 
as the LSTM layers continue to increase. The MAE of BiLSTM is lower than that of multi-
layer LSTM. Therefore, in the RUL forecasting problem, the BiLSTM structure can better 
mine valuable time information from raw data than the multi-layer LSTM network struc-
ture, and the regression forecasting effect is better. 

During the training, it is found that with LSTM stacking and network structure com-
plicating, the regression model becomes more and more difficult to converge, and the pre-
diction time increases. The training time of BiLSTM model is shorter than that of stacked 
LSTM, which is shown in Figure 10. 

0 25 50 75 100 125 150 175
Iteration Times

3500

3000

2500

1000

500

0

2000

1500Ti
m

e 
/s

Single Layer Lstms

Three-Layer LSTM
Two-Layer Lstms

Four-Layer LSTM
BiLSTM

 
Figure 10. The comparison results of training time of different models. 

In order to further improve the BiLSTM feature extraction ability, a convolution layer 
and a maximum pooling layer are added to the BiLSTM to extract deep spatial features 
and retain the best features in the original data. The new model called CNN-BiLSTM stops 
iterating at 126 times. The loss function of CNN-BiLSTM decreases faster and fluctuates 
less than that of BiLSTM for the training set and verification set, as shown in Figure 11. 

Iteration Times

0 20 40 60 80 100

10

20

30

40

50

60

Lo
ss

120

Training Set

Validation Set

 
Figure 11. Loss function of CNN-BiLSTM model. 

The average evaluation results of the CNN-BiLSTM model are shown in Table 5. The 
prediction effect has been significantly improved after improving BiLSTM with CNN. 

Table 5. Evaluation of prediction results of CNN-BiLSTM regression model. 

Evaluating Indicator MAE RMSE R2 
Training Set 7.34 10.69 0.938 

Validation Set 8.01 11.60 0.926 
Test Set 7.95 11.64 0.926 

Figure 11. Loss function of CNN-BiLSTM model.

The average evaluation results of the CNN-BiLSTM model are shown in Table 5. The
prediction effect has been significantly improved after improving BiLSTM with CNN.

Table 5. Evaluation of prediction results of CNN-BiLSTM regression model.

Evaluating Indicator MAE RMSE R2

Training Set 7.34 10.69 0.938
Validation Set 8.01 11.60 0.926

Test Set 7.95 11.64 0.926

For optimizing the CNN-BiLSTM hyperparameters, the influence of different time
window sizes is verified on the prediction performance of the model. The time window
sizes 10, 20, 30, 40, 50, 60, 70, and 80 are used in comparative experiments, respectively. Each
size experiment is run three times, and MAE takes the average of three sets of experimental
results, as shown in Figure 12.
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It is observed that when the time window size increases from 10 to 50, the MAE of
the prediction error decreases rapidly. When the time window size exceeds 50, the MAE
decline is not obvious. So, in the subsequent model prediction performance test, the time
window size of the prediction model is set to 50.

The comparison experiments of different algorithms are carried out for the learning
rate optimization. The result is shown in Figure 13, which indicates that the Adam is a
more suitable learning rate optimization algorithm.
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Use PSO to optimize the number of neurons in the hidden layer of the model, the
maximum number of iterations, and the number of training samples. The value range
of three variables are set as the following: number of hidden layer neurons is in [1, 200],
maximum number of iterations is in [100, 500] and number of training samples is in [50, 500].
The vector formed by these three parameters is regarded as the particle position in PSO,
and the number of particles is 50, the inertia factor is 0.5 and acceleration factor is 2. The
MAE of CNN-BiLSTM is used as the fitness value of PSO. The MAE value of the training
set on the CNN-BiLSTM model is 7.34 before PSO optimization. In order to reduce the
training time of the model, stop training when the optimized MAE is less than 5 or the
number of iterations reaches the maximum 200.

After PSO optimization, the hyperparameters of the model are: the number of hidden
layer neurons is 64, the maximum number of iterations is 287 and the number of training
samples is 254. By comparing the various evaluation metrics, the prediction results of the
improved PSO-CNN-BiLSTM model are shown in Table 6. Finally, when comparing the
performance of LSTM, BiLSTM, CNN-BiLSTM and PSO-CNN-BiLSTM models on the test
set, the PSO-CNN-BiLSTM model exhibits more excellent prediction results, as shown in
Table 7.
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Table 6. Evaluation of prediction results of PSO-CNN-BiLSTM regression model.

Evaluating Indicator MAE RMSE R2

Training Set 4.03 5.99 0.981
Validation Set 4.80 7.40 0.971

Test Set 4.83 7.45 0.970

Table 7. Evaluation of the prediction results of different regression models.

Models MAE RMSE R2

LSTM 18.38 24.66 0.669
BiLSTM 11.29 17.08 0.841

CNN-BiLSTM 7.95 11.64 0.926
PSO-CNN-BiLSTM 4.83 7.45 0.970

The prediction error distribution of the four models LSTM, BiLSTM, CNN-BiLSTM
and PSO-CNN-BiLSTM on the test set is shown in Figure 14. The PSO-CNN-BiLSTM model
has the smallest error and the best prediction effect.
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Figure 14. Error distribution diagram. (a) The regression model error of LSTM; (b) the regression 
model error of BiLSTM; (c) the regression model error of CNN-BiLSTM and (d) the regression model 
error of PSO-CNN-BiLSTM. 

Input the data of 218 pieces of equipment into four models LSTM, BiLSTM, CNN-
BiLSTM and PSO-CNN-BiLSTM, respectively, to obtain the comparison between the pre-
dicted value and the true value of the model. The results are shown in Figure 15. Each 
sawtooth wave in the figure represents the complete life cycle of a turbine engine from 

Figure 14. Error distribution diagram. (a) The regression model error of LSTM; (b) the regression
model error of BiLSTM; (c) the regression model error of CNN-BiLSTM and (d) the regression model
error of PSO-CNN-BiLSTM.

Input the data of 218 pieces of equipment into four models LSTM, BiLSTM, CNN-
BiLSTM and PSO-CNN-BiLSTM, respectively, to obtain the comparison between the pre-
dicted value and the true value of the model. The results are shown in Figure 15. Each
sawtooth wave in the figure represents the complete life cycle of a turbine engine from
start to failure. The orange line represents the true value, and the blue line represents the
predicted value.
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Figure 15. Comparison results of four prediction models. (a) Comparison of predicted and actual
values of LSTM; (b) comparison of predicted and actual values of BiLSTM; (c) comparison of pre-
dicted and actual values of CNN-BiLSTM and (d) comparison of predicted and actual values of
PSO-CNN-BiLSTM.

Comparing the results of the four models, the prediction results of PSO-CNN-BiLSTM
are the closest to the true values, followed by CNN-BiLSTM, and then BiLSTM. LSTM has
the worst prediction effect. In order to compare the prediction performance of the four
models in detail, the RUL of one of the 218 devices is predicted by using the models. The
results are shown in Figure 16. The prediction result of the PSO-CNN-BiLSTM model with
adjusted network hyperparameters is closer to the true value.

In order to evaluate the performance of the model proposed in this paper on test
data, the quality of the model is measured using the Score function proposed in the
International PHM Conference in the PHM08 Data Challenge [35]. The scoring function
is shown in Equation (18), which (Score) is an asymmetric function that penalizes more
heavily when the prediction is late than when the prediction is early. Specifically, when the
model-estimated remaining useful life (RUL) is lower than the actual value, the penalty
is relatively light and is unlikely to trigger a serious system failure because there is still
enough time for equipment maintenance. However, if the model-estimated RUL exceeds
the actual value, maintenance schedules will be delayed, which may increase the risk of
system failure, and therefore the penalty in this case will be more severe. This asymmetric
scoring mechanism is intended to guide the model to be more cautious in its predictions in
order to avoid potential risks due to inaccuracies in maintenance schedules.

Score =
R

∑
i=1

si, si =

 e−
(RULpred)i

−(RULactual )i
13 − 1, for(RULpred)i − (RULactual)i < 0

e
(RULpred)i

−(RULactual )i
10 − 1, for(RULpred)i − (RULactual)i ≥ 0

(18)

where (RULpred)i and (RULactual)i represent the predicted and actual RUL of the ith sample
in the test dataset.
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Figure 16. Comparison of prediction results of different models for the same device. (a) LSTM;
(b) BiLSTM; (c) CNN-BiLSTM and (d) PSO-CNN-BiLSTM.

We have computed the prediction results of our lifetime prediction model using a
specific scoring function (Equation (18)) and made a comparison with CNN, LSTM and
other lifetime prediction methods in the literature. Table 8 shows the score results.

Table 8. Performance comparisons of different methods on the PHM08 dataset characterized by Score.

Method Score

CNN [36] 2056
LSTM [37] 1862
Proposed Bi-level LSTM scheme [38] 1608
LSTM with attention [39] 1584
Growing RNN [40] 1356.13
PSO-CNN-BiLSTM 1312

After comparing the scores with other residual lifetime prediction methods, our
proposed PSO-CNN-BiLSTM model is better at predicting the PHM08 dataset.

5. Conclusions

Aiming at the strong temporal correlation of operating data in the degradation process
of mechanical equipment, a PSO-CNN-BiLSTM model of RUL prediction was constructed.
In the model, CNN was used as a feature extractor for deep extraction and compression
of features, and BiLSTM was used as a time-series processing tool to fully exploit the
sequential characteristics in the life cycle data of mechanical equipment. For the hyperpa-
rameter optimization problem in the model training, considering the influence of LSTM
layer number, learning rate and time window size on the performance of the prediction
model, the optimal LSTM layer number, learning rate optimization algorithm and time
window size were selected for specific experimental objects. The PSO was used to opti-
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mize the three important parameters of the neural network model (the number of hidden
neurons, the number of iterations and the number of input samples for each training).
Finally, the PSO-CNN-BiLSTM RUL prediction model was constructed and verified based
on the aero-engine PHM08 dataset. The results show that the PSO-CNN-BiLSTM model
has a better prediction effect and overall performance than the LSTM, BiLSTM and CNN-
BiLSTM models.
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