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Abstract: The objective of this work is to derive the structure of Minkowski spacetime using a
Hermitian spin basis. This Hermitian spin basis is analogous to the Pauli spin basis. The derived
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length contraction. The main results, a discussion of the potential applications and future research
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1. Introduction

The primary objective of this work is to use a Hermitian spin basis to derive the
structure of Minkowski spacetime. This Hermitian spin basis is analogous to the Pauli
spin basis. Using this metric, the corresponding Lorentz factors, the behaviour of gamma
matrices, the structure of the Lie algebra and the complex representations of time dilations
and length contractions are obtained.

Since the advent of the Theory of Relativity, the geometry and structure of spacetime
have been studied extensively. Spacetime manifolds have been utilized to perform such
explorations in relativity [1]. An exploration into the mathematical structure of Minkowski
spacetimes is seen in the work of Lizzi et al. (2020) [2]. In that work, the authors studied the
development of physical models on the κ-Minkowski noncommutative spacetime in curved
momentum space. A unified approach was proposed in Lizzi et al. (2020) [2] to describe all
momentum spaces and identify the associated quantum group and spacetime symmetries.
In Cocco and Babic (2021) [3], an axiomatic approach was taken towards understanding
Minkowski spacetimes. Targeting applications in the formalization of physical theories in
Minkowski spacetime, the authors of Cocco and Babic (2021) [3] developed an elementary
system of axioms for the geometry of Minkowski spacetime. In Foo et al. (2023) [4],
the authors studied the quantum-gravitational effects generated by superpositions of
periodically identified Minkowski spacetime. The authors of that work demonstrated that
it is possible in principle to measure the field-theoretic effects generated by the coupling of
a relativistic quantum matter to fields on such a spacetime background.

In Vilasini and Colbeck (2022) [5], the causal structure of Minkowski spacetime was
investigated. In that research, the authors proposed a framework for identifying conditions
when a causal model could coexist with relativistic principles. Examples of such relativistic
principles include the following: (i) no superluminal signaling while allowing for cyclic and
nonclassical causal influences and (ii) the possibility of causation without signaling. The
authors of Vilasini and Colbeck (2022) [5] also demonstrated the mathematical possibility
of embedding causal loops in Minkowski spacetime without leading to superluminal
signaling. Another interesting work on the structure of Minkowski spacetime is seen in Liu
and Majid (2022) [6]. In that research, the authors applied a quantum geodesic formulation
to quantum Minkowski spacetime as a method to model quantum gravitational effects.
That research work discovered that within quantum perturbation, because of quantum
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gravitational effects, a point particle cannot be modeled as an infinitely sharp Gaussian.
In Gasperin (2024) [7], the research was focused on the investigation of the asymptotic
behaviour of massless spin-0 fields close to spatial and null infinity in Minkowski spacetime.
In that work, Friedrich’s cylinder at spatial infinity was a key framework utilized in that
investigation. The work of Meljanac et al. (2022) [8] investigated the symmetric ordering
and Weyl realizations for non-commutative Minkowski spaces. In that research, examples
of Weyl realizations were provided, and the authors also showed that for an original Snyder
space, there exists a symmetric ordering with no Weyl realization.

Besides studies involving Minkowski spacetimes in a quantum context, recent research
works have also been carried out on the cosmological aspects of Minkowski spacetimes.
For instance, in Lombriser (2023) [9], the authors explored the formulation of cosmological
Minkowski spacetimes using metric transformations uncovering the underlying mass,
length and time scales across spacetimes—i.e., the evolution of fundamental constants. In
this spirit, the authors reinspected the cosmological constants and potential candidates to
explain the geometric origin of baryogenesis, dark matter/energy and inflation. In Volovik
(2023) [10], the Minkowski metric was modified using two Planck constants in the context
of the composite fermion approach to quantum gravity.

Researchers have also taken a more mathematical approach to exploring the depths of
the Minkowski metric. For instance, in Chappell et al. (2023) [11], the authors presented a
new derivation to the Minkowski metric. They demonstrated that the Minkowski metric
could be obtained as an emergent property from physical space modeled as a Clifford alge-
bra, Cl

(
R3). They also showed that the formulation predicts a range of new physical effects

such as superluminal light propagation. Another recent research work in this direction is
seen in Li et al. (2023) [12]. In that work, the authors mathematically explored the structure
of Minkowski space with respect to spacelike circular surfaces (one-parameter family of
Lorentzian circles with a fixed radius regarding a non-null curve). In that work, spacelike
circular surfaces were parameterized, and their geometric and singularity properties were
classified. In Stone (2022) [13], the author analyzed the connection between Minkowski
and Euclidean signatures with respect to Majorana fermions and gamma matrices as well
as discreet/continuous symmetries in all spacetime dimensions. Minkowski spacetimes
have also been explored in the context of the Yang–Mills equations. This can be seen in the
work of Kumar et al. (2022) [14], where the authors obtained a two-parameter family of
solutions for the Yang–Mills equations on Minkowski space (for the gauge group, SO(1, 3)).
The authors generated this result from the foliation of different parts of the Minkowski
space with a non-compact coset space with SO(1, 3) isometry.

Metamaterials have been a focus of much research because of the unique way they
interact with electromagnetic and acoustic waves—e.g., the design of materials with a
negative index of refraction [15,16]. The Minkowski spacetime metric is a key component
in the study of metamaterials [17,18]. For instance, in Iemma and Palma (2020) [18], the
Minkowski metric was used as a baseline to perform metric corrections via spacetime
transformations. These transformations were aimed at manipulating the mechanical prop-
erties of acoustic metacontinua. Similar works on the utilization of spacetime metrics for
metamaterial models are seen in Caloz et al. (2019) [19], Bahrami et al. (2023) [20] and
Caloz et al. (2022) [21].

The analogue Hermitian spin basis (given in Ganesan (2023) [22]) was employed in
this work to derive the structure of Minkowski spacetime. The proposed dual Minkowski
metrics and their associated relativistic formulation are presented in this work. This paper is
organized as follows: The second section describes the construction of the dual Minkowski
metric. In the third section, the derivation of the dual Lorentz factors using the dual
Minkowski metric is carried out. In the fourth and fifth sections, the associated gamma
matrices and the structure of the Lie algebra from the dual Minkowski metric are explored.
The sixth section describes the complex forms of the length contraction, time dilation and
Minkowski metric obtained using the dual Lorentz factors. This paper ends with the key
findings, a discussion of the potential application of the proposed formulation on the
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spacetime metric for metamaterial modelling and design. Some ideas on future research
directions are also included at the end of this paper.

2. Analogue Spin Basis

A set of novel Hermitian spin matrices along with its symmetry relation was intro-
duced in Ganesan (2023) [22]. These spin matrices are as follows:

σ′
1 =

[
0 1

n (1 + i)
1
n (1 − i) 0

]
, σ′

2 =

[
0 1

n (1 − i)
1
n (1 + i) 0

]
, σ′

3 =

[ 1√
n 0

0 − 1√
n

]
. (1)

where σ′
1 = σ′2 , and the spin matrices given in Equation (1) contain the following symmetry:

n2

2
(
σ′

1
)2

=
n2

2
(σ′2)2 = n(σ′3)2 = − i

2
√

n 5
σ′

1 σ′
2σ′

3 = I2 =

[
1 0
0 1

]
(2)

The integer parameter n is fixed to 2. It is interesting to note that if n ̸= 2 (excluding 0),
directional symmetry is loss—e.g., since the weighting between the spin matrices for each
direction would be equivalent only if n = 2, then 2(σ′

1)
2 = 2(σ′2)2 = 2(σ′3)2 = I2. This

property is key in a physical sense to ensure that the spin operators maintain directional
symmetry—similar to the Pauli matrices. As stated in Ganesan (2023) [22], the analogue
Hermitian spin matrices could be constructed from the Pauli spin matrices as follows:

σ′
1 =

1
n
(σ1 − σ2), σ′2 =

1
n
(σ1 + σ2), σ′

3 =
σ3√

n
(3)

where the Pauli spin matrices as quantum operators corresponding to observables for the

fermionic spin at each spatial direction are σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Similar to the Pauli group, the analogue spin matrices could also be defined within a
16-element cyclic group structure:

G(n) =
{
±I2, ±iI2, ±σ′

1, ±σ′
2, ±σ′

3, ±iσ′
1, ±iσ′

2, ±iσ′
3
}

. (4)

The following commutation relations hold for the analogue spin matrices:

[
σ′

1, σ′
2
]
=

4i√
n3

σ′3,
[
σ′

1, σ′
3
]
= − 2i√

n
σ′

2,
[
σ′

2, σ′
3
]
=

2i√
n

σ′
1. (5)

where
[
σ′

i , σ′
j
]
= −

[
σ′

j , σ′
i
]

and
[
σ′

j , σ′
j
]
= O. For fermionic systems, n = 2, the

commutation relations reduce to:[
σ′

1 , σ′
2
]
=

√
2iσ′

3 ,
[
σ′

1 , σ′
3
]
= −

√
2 iσ′

2 ,
[
σ′

2 , σ′
3
]
=

√
2 iσ′

1. (6)

The generalized commutation relation for the analogue spin matrices is then:[
σ′

i , σ′
j
]
=

√
2i εijkσ′

k (7)

Unlike Pauli matrices, the analogue spin matrices given in Equation (1) are not invo-
lutary. Therefore, the inverse form of the analogue spin matrices for n = 2 is represented
as follows:

(σ′
i)
−1 = Σ′

i,

Σ′
1 =

[
0 (1 − i)

(1 + i) 0

]
, Σ′

2 =

[
0 (1 + i)

(1 − i) 0

]
, Σ′

3 =

[√
2 0

0 −
√

2

]
.

(8)
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where Σ′
1 = Σ′

2 and the spin matrices given in Equation (8) contain the following symmetry:

1
2
(
Σ′

1
)2

=
1
2
(
Σ′

2
)2

=
1
2
(
Σ′

3
)2

=
i

2
√

2
Σ′

1Σ′
2Σ′

3 = I2. (9)

The inverse matrices are also Hermitian, where
(

Σ′
i

)T
= Σ′

i. Similar to its counterpart
(non-inverted analogue spin matrices), the symmetry property of each spin matrix is
symmetrically weighted in all directions by the factor 1

2 . The matrix form of the dual
Minkowski metrics X and Y are then constructed using the Weyl representation [23]. This
is performed by defining the action of the special linear group, SL(2,C), on the Minkowski
metric. A point of spacetime, X, is then represented as a two-dimensional Hermitian matrix:

X = ctI2 + xσ′
1 + yσ′

2 + zσ′
3 =

 ct + z√
2

(
1+i

2

)
x +

(
1−i

2

)
y(

1−i
2

)
x +

(
1+i

2

)
y ct − z√

2

. (10)

where c is the speed of light and x, y and z are spatial coordinates. In the conventional
Weyl representation, the form of the Minkowski spacetime is constructed using the Pauli
matrices, σi: det(X′) = c2t2 − x2 − y2 − z2; where X′ = ctI2 + xσ1 + yσ2 + zσ3. On the other
hand, using the analogue spin matrices shown in Equation (1), the analogue Minkowski
spacetime is obtained:

det (X) = c2t2 − 1
2

x2 − 1
2

y2 − 1
2

z2 (11)

A similar construction of the Minkowski metric, Y, could be carried out using the
inverse analogue spin matrices, yielding the following results:

Y = ctI2 + xΣ′
1 + yΣ′

2 + zΣ′
3 =

[
ct +

√
2z (1 − i)x + (1 + i)y

(1 + i)x + (1 − i)y ct −
√

2z

]
,

det (Y) = c2t2 − 2x2 − 2y2 − 2z2.
(12)

The investigation of the implications of the dual Minkowski metrics X and Y on the
Lorentz factor in relativistic dynamics is given in the next section.

3. Dual Lorentz Factors

The matrix form of the dual Minkowski metrics X and Y are then defined using
Equations (10) and (12):

ηX =
1
2


−2 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

 and ηY =


−1 0
0 2

0 0
0 0

0 0
0 0

2 0
0 2

. (13)

It can be shown that both ηX and ηY are Hermitian matrices, similar to the conventional
Minkowski metric. Transforming the spacetime coordinates O(x, y, z) (column vector form)
to the reference frame OX

′ or OY
′ results in:

OX
′ = ηXO = 1

2


−2 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1




ct
x
y
z

 = 1
2


−2ct

x
y
z

 =


ct′

x′

y′

z′


OY

′ = ηYO =


−1 0
0 2

0 0
0 0

0 0
0 0

2 0
0 2




ct
x
y
z

 =


−ct
2x
2y
2z

 =


ct′

x′

y′

z′

.

(14)
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Using the dual Minkowski metrics, the Galilean transformation between the inertial
reference frame O and OX

′ or OY
′ is defined as follows:

O → O X
′ :x′ = a1

x
2 + a2t ; y′ = y; z′ = z; t′ = b1

x
2 + b2t.

O → O Y
′ : x′ = 2a1x + a2t ; y′ = y; z′ = z; t′ = 2b1x + b2t.

(15)

where a1, a2, b1 and b2 are the transformation parameters. For O → O X
′, it can be readily

seen that x = −2a2t
a1

= vt if x′ = 0. The relation x′ is then factorized to obtain x′ =
a1
2

(
x + 2a2

a1
t
)
= a1

2 (x − vt) since v = −2a2
a1

. The equivalence between the two reference
frames is: (

x′
)2

+
(
y′
)2

+
(
z′
)2 − c2(t′)2

=x2 + y2 + z2 − c2t
2
. (16)

Since y′ = y, z′ = z and x′ = a1
2 (x − vt), equivalence simplifies to:

(
x′
)2 − c2(t′)2

=x2 − c2t
2

or
(

a1(x − vt)
2

)2
− c2

(
b1

x
2
+ b2t

)2
= x2 − c2t

2
. (17)

From Equation (17), the derivation to obtain the dual Lorentz factor, γX , is included in
Appendix A:

γX =
2√

1 − v2

c2

(18)

For O → O Y
′, x = −a2t

2a1
= vt if x′ = 0. The relation x′ is then factorized to obtain

x′ = 2a1

(
x + a2

2a1
t
)
= 2a1(x − vt) since v = − a2

2a1
. The equivalence between the two refer-

ence frames is: (
x′
)2

+
(
y′
)2

+
(
z′
)2 − c2(t′)2

=x2 + y2 + z2 − c2t
2
. (19)

Since y′ = y, z′ = z and x′ = 2a1(x − vt), Equation (19) becomes:

(x′)2 − c2(t′)2 =x2 − c2t2 or
(2a1(x − vt))2 − c2(2b1x + b2t)2 = x2 − c2t2.

(20)

The derivation to obtain the other dual Lorentz factor, γY, using the metric ηY is given
in Appendix B:

γY =
1

2
√

1 − v2

c2

(21)

The standard Lorentz factor, γ, could then be represented in terms of the dual Lorentz
factors:

γi = kiγ for i = X, Y where the factors: kX = 2 and kY =
1
2

.γ =
√

γXγY. (22)

The next section provides some details on the gamma matrices as a result of the
obtained dual Minkowski metrics.

4. Representation of Gamma Matrices

Gamma matrices play a central role in relativistic quantum mechanics and mathemati-
cal physics. Gamma matrices within the Dirac basis are defined as follows:

γX
j =

[
0 σ′

j
−σ′

j 0

]
and γX

0 =

[
I2 0
0 −I2

]
for j ∈ [1, 3]. (23)
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where σ′
j is the analogue Pauli spin matrices given in Equation (1). The anticommutation

property
{

γX
i , γX

j

}
=
{

γX
j , γX

i

}
holds. The fifth gamma matrix is given as:

γX
5 = iγX

0 γX
1 γX

2 γX
3 = − 1

2
√

2

[
0 I2
I2 0

]
. (24)

Similarly, for the inverse analogue spin matrices, Σ′
j:

γY
j =

[
0 Σ′

j
−Σ′

j 0

]
and γY

0 =

[
I2 0
0 −I2

]
for j ∈ [1, 3]. (25)

The anticommutation property
{

γY
i , γY

j

}
=
{

γY
j , γY

i

}
holds. The fifth gamma matrix

is given as:

γY
5 = −iγY

0 γY
1 γY

2 γY
3 = −2

√
2
[

0 I2
I2 0

]
. (26)

It follows that γX
5 γY

5 =

[
I2 0
0 I2

]
. Based on the algebra of the gamma matrices defined

using the analogue spin matrices, the dual Minkowski metrics are obtained using the
anticommutator in the following theorems:

Theorem 1.
{

γX
i , γX

j

}
= γX

i γX
j + γX

j γ
X

i
= −2(ηX)ij I4 for i, j ∈ [0, 3].

Proof of Theorem 1. For (i, j) = (1, 3), (2, 3) and (1, 2) =⇒
{

γX
i , γX

j

}
= 0 ,

and if i = j =⇒
{

γX
i , γX

j

}
= −I4. In the case where i = 0 or j = 0 =⇒

{
γX

i , γX
j

}
= 0.

The first element: (i, j) = (0, 0) =⇒
{

γX
i , γX

j

}
= 2I4 .{

γX
i , γX

j

}
= −2(ηX)ij I4

□

Theorem 2.
{

γY
i , γY

j

}
= γY

i γY
j + γY

j γ
Y

i
= −2(ηY)ij I4 for i, j ∈ [0, 3].

Proof of Theorem 2. For (i, j) = (1, 3), (2, 3) and (1, 2) =⇒
{

γX
i , γX

j

}
= 0 ,

and if i = j =⇒
{

γY
i , γY

j

}
= −4I4. In the case where i = 0 or j = 0 =⇒

{
γY

i , γY
j

}
= 0.

The first element: (i, j) = (0, 0) =⇒
{

γY
i , γY

j

}
= 2I4 .{

γY
i , γY

j

}
= −2(ηY)ij I4 .

□

Theorem 3.
{

γX
i , γY

j

}
=
{

γY
i , γX

j

}
= γX

i γY
j + γY

j γ
X

i
= 2I4 for i, j ∈ [0, 3].

Proof of Theorem 3. For (i, j) = (1, 3), (2, 3) and (1, 2) =⇒
{

γX
i , γY

j

}
= 0 ,

and if i = j =⇒
{

γX
i , γY

j

}
=
{

γY
i , γX

j

}
= 2I4. In the case where i = 0 or j = 0 =⇒

{
γX

i , γY
j

}
=
{

γY
i , γX

j

}
= 0.
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The first element: (i, j) = (0, 0) =⇒
{

γX
i , γY

j

}
=
{

γY
i , γX

j

}
= 2I4 .{

γX
i , γY

j

}
=
{

γY
i , γX

j

}
= 2I4 .

□

The following identities for the anticommutators are then obtained:

ηXηY = I4,{
γX

i , γX
j

}{
γY

i , γY
j

}
= 4(ηX)ij(ηY)ij I4 = 4I4 for i, j ∈ [0, 3].

(27)

5. Lie Algebra Structure

The dual Minkowski metrics in this work are not subjected to the conventional boost
and rotation generators of the Lorentz group. However, it is possible to develop generators
using the basis for the Lie algebra for the dual Minkowski metrics, ηX and ηY. In this
section, two example generators for the associated Lie algebra are provided. One example
in the four-vector representation is as follows:

J1 = i


0 0
0 0

0 0
0 0

0 0
0 0

0 1
2

−1 0

 , J2 = i


0 0
0 0

0 0
− 1

2 0
0 1

2
0 0

0 0
0 0

 , J3 = i


0 0
0 0

0 0
0 − 1

2
0 0
0 1

0 0
0 0

 (28)

The metric ηi is Hermitian where ηj =
(
ηj
)T for j = X, Y. There exists a transformation

between the metrics ηX and ηY using Lie generators since ηXηY = I4:

ηX Ji =
1
2

Ji or Ji =
1
2

JiηY ,ηX JiηX =
Ji
4

or Ji = ηY
Ji
4

ηY for i = 1, 2, 3. (29)

Another example for the four-vector representation the generators for the Lie algebra
is as follows:

K1 = i


0 0
0 0

− 1
2 0

0 0
1 0
0 0

0 0
0 0

 , K2 = i


0 0
0 0

0 1
2

0 0
0 0
−1 0

0 0
0 0

 , K3 = i


0 0
0 0

0 0
0 0

0 0
0 0

0 − 1
2

1
2 0

. (30)

The remarks to prove the vanishing Jacobi identity using the commutator properties
of J and K to establish it as a Lie algebra is given in Appendix C.

As with the previous example for J, the transformation between the metrics ηX and ηY us-
ing the Lie generators for K are:

ηXKiηX = −Ki
2 or Ki = −ηY

Ki
2 ηY for i = 1, 2 and

ηXK3ηX = K3
4 or ηYK3ηY = K3

4 .
(31)

The transformations are two examples of a set of potential transformations of the dual
Minkowski metrics ηX and ηY.

6. Complex Representations of Time Dilation and Length Contraction

In contrast to the conventional Lorentz factor, the dual Lorentz factors, γX and γY,
introduce a factor in the length contraction and time dilation in relativistic dynamics. This
then directly influences the physical and mathematical utilization of the dual metric frame-
work introduced in this work. The central idea is to implement the dual Lorentz factors
such that the laws of special relativity are respected. In special relativity, time dilation is rep-
resented as ∆t = ∆t0 γ, where ∆t0 is the time interval at a rest reference frame and γ is the
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Lorentz factor. This relation could then be represented in terms of the dual Lorentz factors
as ∆t = ∆t0

√
γXγY. Then, (∆t)2 = (∆t0)

2γXγY = (γX∆t0)(γY∆t0). The following defini-
tion aims to construct a complex representation for the time dilation using the dual Lorentz
factors, γX and γY. The expressions for complex times T = τ + i∆t and T = τ − i∆t are
considered, where TT = τ2 + (∆t)2.

Definition 1. The complex representation of the time dilation at the initial time τ = 0 is:

i∆t =
1√
2

γ
X

∆t0(i + 1) and − i∆t =
1√
2

γY∆t0(i − 1).

Based on Definition 1, there exists two relations for ∆t in terms of each dual Lorentz factor:

∆t =
1√
2

γX∆t0(1 − i) and ∆t = − 1√
2

γ
Y

∆t0(1 + i). (32)

Recovering the square form of the time dilation relation, the complex form of the
relativistic time dilation relation is obtained:

(∆t)2 =
[

1√
2

γX∆t0(1 − i)
][
− 1√

2
γY∆t0(1 + i)

]
= −γXγY(∆t0)

2 ,
∴ ∆t = −√

γXγY∆t0 = iγ∆t0.
(33)

The expressions for complex length L = l + i∆L and L = l − i∆L are considered,
where LL = l2 + (∆L)2. The complex representation for length contraction using the dual
Lorentz factors, γX and γY, is given in Definition 2:

Definition 2. The complex representation of the length contraction dilation at the initial length, l = 0, is:

i∆L =
1√
2

γ
−1

X
∆L0(i + 1) and − i∆L =

1√
2

γ
−1

Y
∆L0(i − 1).

In this form, the complex relativistic length contractions in terms of the dual Lorentz
factors are as follows:

∆L = 1√
2

γ
−1

X
∆L0(1 − i) and ∆L = − 1√

2
γ
−1

Y
∆L0(1 + i),

(∆L)2 =
[

1√
2

γ
−1

X
∆L0(1 − i)

][
− 1√

2
γ
−1

Y
∆L0(1 + i)

]
= − (∆L0)

2

γXγY
,

∴ ∆L = i ∆L0√
γXγY

= iγ−1∆L0 .

(34)

In view of Definitions 1 and 2, the dual matrix representation of the length contraction
and the time dilation complex transformation is represented as follows:


∆Lx

∆Ly

∆Lz

∆t

 =

η1︷ ︸︸ ︷
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 i




γ−1∆Lx
0

γ−1∆Ly
0

γ−1∆Lz
0

γ∆t0

 and


∆Lx

∆Ly

∆Lz

∆t

 =

η2︷ ︸︸ ︷
i 0
0 i

0 0
0 0

0 0
0 0

i 0
0 1




γ−1∆Lx
0

γ−1∆Ly
0

γ−1∆Lz
0

γ∆t0

. (35)

where timelike and spacelike skew-Hermitian Minkowski metrics are η1 and η2. The
standard timelike and spacelike Minkowski metrics are then recovered by taking the square
of the skew-Hermitian Minkowski metrics η = η2

1 and η = η2
2, respectively.
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7. Discussion

The mathematical framework presented in this work may provide useful tools to
approach certain classes of problems in metamaterial modelling. The related Lie algebra,
the structure of the gamma matrices and the complex representation of time dilation
and length contraction provide techniques to effectively explore the relativistic quantum
dynamics in such metamaterials (or other forms of exotic material structures). The dual
Lorentz factors (γX and γY) obtained using the dual Minkowski metrics introduces an
additional factor of 2 or 1

2 to the conventional Lorentz factor. Since the Lorentz factors
are obtained from the Minkowski metric, these factors directly result from the structure
of the spacetime metric. Therefore, the resulting dual Lorentz factors and their respective
Minkowski spacetimes metrics may provide deeper insights into the potential structure of
the spacetime metric and its corresponding dynamics in metamaterial models. In negative-
index metamaterial models, the permittivity and permeability coefficients are usually
complex-valued. A complex representation described in the previous section may be useful
for incorporating the permittivity and permeability coefficients into the metric structure.
This could provide an alternative approach for describing relativistic electrodynamics
phenomena in such metamaterials.

The key concepts of the mathematical formulation proposed in this work are as follows:

i. A dual structure of the conventional Minkowski metric, η, is obtained from the analogue
Hermitian spin matrices σ′

i and Σ6′i, where the Minkowski metric η = ηXηηY = ηYηηX.
ii. A gamma matrix formulation and examples of Lie algebra generators are obtained

using the proposed framework.
iii. Using the dual Lorentz factors (derived from the dual Minkowski metrics), a complex

representation of the length contraction and time dilations is revealed:

• Lorentz factor: γ =
√

γXγY.
• Complex length contraction: ∆L = iγ−1∆L0 .
• Complex time dilation: ∆t = iγ∆t0 .

In the future, deeper investigations into other potential Lie algebra structures of the
dual Minkowski metric could be performed. Quaternions are isomorphic to the algebra
of Pauli spin matrices [24]. Since the analogue spin matrices are also constructed from
Pauli spin matrices, the analogue spin matrices are similarly isomorphic to quaternions.
Therefore, future research works could be directed towards understanding the mathe-
matical and physical implications of a real and complex quaternionic formulation of the
Lorentz transform using the dual analogue spin matrices. This could also be extended to
applications involving hyperbolic spinors [25–27].

A potential research question is if it is possible to develop an electromagnetism repre-
sentation (and the corresponding spinor formulation) using the dual analogue spin matrices
as well as the dual Minkowski metrics presented in this work. If such a representation is
possible, then it would be interesting to investigate and ascertain its physical ramifications—
e.g., in the field of metamaterial design. Another potential area of research is to study
the mathematical and physical properties of the proposed formulation for anisotropic
spacetimes. This can be performed by setting the integer parameter in Equation (2) to n ̸= 2.
In addition to metamaterials, future research may also be focused on broader connections
to analogue gravity models as well as phenomena related to nonlinear optics [28–30].
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Appendix A. Derivation for the Dual Lorentz Factor (γX)

Expanding Equation (17) results in:

1
4

a2
1

(
x2 − 2vtx + v2t2

)
− 1

4
c2b

2
1x2 − c2b1b2xt − c2b

2
2t2 = x2 − c2t

2
. (A1)

Grouping the terms will then give:(
a2

1
4
− c2b2

1
4

)
x2 +

(
−1

2
a2

1vtx − c2b1b2xt
)
+

(
1
4

a2
1v2 − c2b

2
2

)
t2 = x2 − c2t

2
,

where
a2

1 − c2b
2
1 = 4 → b2

1c2 = a2
1 − 4. (A2)

1
4

a2
1v2 − c2b

2
2 = −c2 → b2

2c2 =
1
4

a2
1v2 + c2 . (A3)

−1
2

a2
1vxt − c2b1b2xt = 0 → a2

1 =
−2c2b1b2

v
or a4

1 =
4c4b2

1b2
2

v2 (A4)

Substituting relations (A2) and (A3) into (A4) gives the following expression for a1:

a4
1 = 4

v2

(
1
4 a2

1v2 + c2
)(

a2
1 − 4

)
=
(

a2
1 +

4c2

v2

)(
a2

1 − 4
)

= a4
1 − 4a2

1 +
4c2

v2 a2
1 −

16c2

v2 .(
1 − c2

v2

)
a2

1 +
4c2

v2 = 0 → a2
1 = − 4c2

v2

(
v2

v2−c2

)
= 4

1− v2
c2

.

∴ a1 = γX = 2√
1− v2

c2

.

(A5)

Considering a1 as the analogue Lorentz factor, γX , the parameters a2, b1 and b2 could
be represented as follows:

a2 = −v
2

γ0 , b1 =
1
c

√
γ2

0 − 4 , b2 =
1
c

√
1
4

γ2
0v2 + c2. (A6)

Appendix B. Derivation for the Dual Lorentz Factor (γY)

The expansion of Equation (20) results in:

4a2
1(x 2 − 2vxt + v2t2

)
− 4c2b

2
1x2 − 4c2b1b2xt − c2b

2
2t2 = x2 − c2t

2
(A7)

Regrouping the terms will then give:(
4a2

1 − 4c2b
2
1

)
x2 +

(
−8a2

1v − 4c2b1b2

)
xt +

(
4a2

1v2 − c2b
2
2

)
t2 = x2 − c2t

2

where
a2

1 − c2b
2
1 =

1
4

→ b2
1c2 = a2

1 −
1
4

. (A8)

4a2
1v2 − c2b

2
2 = −c2 → b2

2c2 = 4a2
1v2 + c2 . (A9)

−8a2
1vxt − 4c2b1b2xt = 0 → a2

1 =
−c2b1b2

2v
or a4

1 =
c4b2

1b2
2

4v2 . (A10)
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Substituting relations (A8) and (A9) into (A10) gives the following expression for a1:

a4
1 = 1

4v2

(
4a2

1v2 + c2)(a2
1 −

1
4

)
=
(

a2
1 +

c2

4v2

)(
a2

1 −
1
4

)
.

= a4
1 −

a2
1

4 +
a2

1c2

4v2 − c2

16v2 .(
1 − c2

v2

)
a2

1 +
c2

4v2 = 0 → a2
1 = − c2

4v2

(
v2

v2−c2

)
= 1

4
(

1− v2
c2

) ,

∴ a1 = γY = 1

2
√

1− v2
c2

.

(A11)

Considering a1 as the analogue Lorentz factor, γY, the parameters a2, b1 and b2 could
be represented as follows:

a2 = −2vγY , b1 =
1
c

√
γ2

Y − 1
4

, b2 =
1
c

√
4γ2

0v2 + c2. (A12)

Appendix C. Proofs for the Jacobi Identities

Remark A1. Jacobi Identity: [J1, [J2, J3]] + [J2, [J1, J3]] + [J3, [J1, J2]] = 0.

Proof. The commutators for the basis in Equation (28) are:

[J1, J2] = − 1
2 i J3 , [J2, J3] = − 1

2 i J1 and [J1, J3] = i J2

[J1, [J2, J3]] + [J2, [J1, J3]] + [J3, [J1, J2]] =
[

J1,− 1
2 i J1

]
+ [J2, i J2] +

[
J3,− 1

2 i J3

]
.

Since each commutator:
[

J1,− 1
2 i J1

]
= 0, [J2, i J2] = 0 and

[
J3,− 1

2 i J3

]
= 0.

∴ [J1, [J2, J3]] + [J2, [J1, J3]] + [J3, [J1, J2]] = 0 . □

Remark A2. Jacobi Identity: [K1, [K2, K3]] + [K2, [K1, K3]] + [K3, [K1, K2]] = 0.

Proof. The commutators for the basis in Equation (30) are:

[K1, K2] = −iK3 , [K2, K3] = − 1
2 iK1 and [K1, K3] =

1
2 iK2.

[K1, [K2, K3]] + [K2, [K1, K3]] + [K3, [K1, K2]] =
[
K1,− 1

2 iK1

]
+
[
K2, 1

2 iK2

]
+ [K3, −iK3].

Since each commutator:
[
K1,− 1

2 iK1

]
= 0,

[
K2, 1

2 iK2

]
= 0 and [K3,−iK3] = 0,

∴ [K1, [K2, K3]] + [K2, [K1, K3]] + [K3, [K1, K2]] = 0 . □
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