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Abstract: Advancements in the field of next generation sequencing (NGS) have generated vast
amounts of data for the same set of subjects. The challenge that arises is how to combine and
reconcile results from different omics studies, such as epigenome and transcriptome, to improve the
classification of disease subtypes. In this study, we introduce sCClust (sparse canonical correlation
analysis with clustering), a technique to combine high-dimensional omics data using sparse canonical
correlation analysis (sCCA), such that the correlation between datasets is maximized. This stage
is followed by clustering the integrated data in a lower-dimensional space. We apply sCClust to
gene expression and DNA methylation data for three cancer genomics datasets from the Cancer
Genome Atlas (TCGA) to distinguish between underlying subtypes. We evaluate the identified
subtypes using Kaplan–Meier plots and hazard ratio analysis on the three types of cancer—GBM
(glioblastoma multiform), lung cancer and colon cancer. Comparison with subtypes identified by
both single- and multi-omics studies implies improved clinical association. We also perform pathway
over-representation analysis in order to identify up-regulated and down-regulated genes as tentative
drug targets. The main goal of the paper is twofold: the integration of epigenomic and transcriptomic
datasets followed by elucidating subtypes in the latent space. The significance of this study lies in the
enhanced categorization of cancer data, which is crucial to precision medicine.

Keywords: data integration; cancer subtypes; multi-omics

1. Introduction

The cells in an organism have the same genome, but their function may be very
different. The identity of a cell is determined by transcription regulators that are accountable
for controlling the expression of genes. There are various regulators in this complex
setup, including cis-regulatory elements and transcription factors (TFs). One of the major
epigenetic mechanisms that control expression of genes is DNA methylation [1]. DNA
methylation appears to control gene expression by a complex mechanism that involves
various proteins and TFs [2,3]. Abundance of methylation has been associated with many
disease phenotypes, including cancer [4]. DNA methylation is a constant process that
controls tumorigenesis and regulates expression of genes in cancer cells; however, this
mechanism needs more research [5]. Therefore, understanding the association between
DNA methylation and gene expression datasets can be meaningful.

In precision oncology, subtyping of patients into groups is desired to identify ef-
fective treatment strategies according to well-separated molecular subgroups [6,7]. The
approaches to subtyping can be classified into two broad categories: clustering using single-
omics data and clustering using multi-omics data [8]. Within the multi-omics subtyping
methods, depending on the stage at which the data are clustered, there are three types of
approach [9]: The simplest approach, early clustering, combines all omics profiles followed
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by clustering [10]. An example of such an approach is the integrative probabilistic model by
Wu et al. [10], which finds a shared principal subspace of different omics data types in order
to cluster these data into cancer subtypes. Early clustering results in increased dimensional-
ity and also disregards varying distribution of values in different types of omics data. The
second approach, late clustering, groups each omics profile individually and then integrates
the results. An example of such an approach is the perturbation clustering approach by
Nguyen et al. [11], which uses connectivity matrices to co-cluster the subjects within a
certain type of omics data, followed by integration of the matrices. This late-integration
approach to subtyping ignores weak but consistent interactions among different types of
omics data. The third category of multi-omics clustering consists of methods that either
perform joint dimensionality reduction of omics profiles or similarity-based methods. These
methods construct a single model to account for all types of omics data. The benchmark
multi-omics methods used in our study for comparison lie in this category, and so does our
proposed approach, sCClust.

Implicit genetic mechanisms can be uncovered by exploring the relationship between
DNA methylation and gene expression datasets, but this task is not as simple as pairwise
association. One of the reasons is the high dimensionality of these genomic data [12], i.e., the
number of variables being much larger than the number of subjects. Due to the challenges
in the analysis of high-dimensional data, many techniques have been proposed that attempt
to counter the problem. Principal component analysis (PCA) [13] is one such method that
attempts to lower the dimension of the data before further analysis attempts are made.
However, due to the functional relationship between genes being non-linear, PCA cannot
guarantee extraction of clinically and statistically relevant patterns form genetic data due
to its linearity assumption [14]. A recent method by Zheng et al. [15] attempted to detect
aberrant DNA methylation patterns in subjects and to further couple these patterns with
gene expression alterations. This was a promising effort; however, statistically aggregating
these datasets in a lower-dimensional space can result in revelation of inherent information
and potentially aid improved subtyping [16]. In recent years, machine learning methods,
such as convolutional neural networks, have utilized multi-omics for low-dimensional
embedding and tumor staging [17,18].

Another issue to be highlighted is that due to the heterogeneity in gene regulation
and the majority of analysis efforts targeting transcriptomic data, there is a need for
methods that integrate DNA methylation and gene expression profiles from the same set
of patients, in order to perform cancer classification. But, as mentioned above, this task
is not trivial. Studying the relation between two variables in high-dimensional datasets
one-at-a-time is biologically and statistically uninformative. Rather, if two variables are
projected into a lower-dimensional space and then the relationship between the composite
variables is investigated, it may reveal some interesting and novel insights into the data.
Aggregating omics datasets in the form of low-dimensional composite variables can aid in
overcoming the dimensionality curse in an effective manner as well as aid in making use of
the relationship between various types of omics profiles.

In this study, we propose the use of sparse canonical correlation analysis [19], in order
to combine DNA methylation and gene expression datasets while mapping them to a
lower-dimensional space. This is followed by clustering the results of the integrated data,
followed by clustering evaluation using Kaplan–Meier plots (Figure 1). The key goal is
to get more separation and less overlap between the Kaplan–Meier plots compared to
pre-existing single- and multi-omics studies, thus paving the way for effective personalized
medicine for the treatment of many cancer types. We support our claims with hazard ratio
analysis and the SEP criterion, which measures the average difference between hazard
rates. We also perform pathway over-representation analysis to highlight potential drug
targets for each identified subtype, followed by a short analysis of the canonical variables
for gene expression datasets.
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Figure 1. An overview of the methodology: (a) Sparse canonical correlation analysis is performed, in
order to project the data to obtain canonical scores. (b) K-means clustering is performed. (c) validation
is carried out, using Kaplan–Meier plots, followed by pathway analysis in the end.

The rest of the paper is organized as follows: Section 2 comprises an overview of the
studies that have attempted to perform high-dimensional data integration in genomics or
related fields. This is followed by detailed description of the methods employed in Section 3.
In Section 4, we describe and discuss the results of applying our method to three cancer
genomics datasets from the TCGA. We summarize and conclude our findings at the end.

2. Materials and Methods
2.1. Data Preparation

We used mRNA and methylation datasets for glioblastoma multiforme (GBM), lung
squamous cell carcinoma (LSCC) and colon adenocarcinoma (COAD), available on the
TCGA website. Data containing DNA methylation and gene expression levels with a miss-
ing rate higher than 5% in any cancer type were discarded. The datasets were consolidated
and subjects with both expression and methylation data available were retained. R was the
language of choice for the data preprocessing [20].

For each type of cancer in this study, DNA methylation data comprised methylated
sites for each subject in the dataset, whereas gene expression data consisted of gene ex-
pression levels for each subject in the dataset. A brief summary of the datasets is provided
in the Supplementary Materials (Supplementary Table S1). The number of variables was
much larger than the number of samples. For example, for the lung cancer dataset, the gene
expression dimensionality is 12,042 and the DNA methylation dimensionality is 23,074 for
106 subjects; thus, dimensionality reduction was necessary for analysis and aggregation.
Using the original datasets of gene expression and DNA methylation, a standard clustering
algorithm is not an ideal choice for clustering, as the results will not be accurate, owing to
the high dimensionality [21].

2.2. sCClust: Sparse Canonical Correlation Analysis with Clustering

In this study, we applied sparse canonical correlation analysis (sCCA) to the three
TCGA datasets. We used the sparse version as canonical correlation analysis (CCA) [22]
alone cannot be used on expression and methylation data without modification, due to
the large data dimensionality. Since there are more variables than subjects in each dataset,
infinitely linear combinations of variables in each dataset are perfectly correlated across the
datasets. The solution here was regularization of the problem by imposing a penalty on
the l1 norm (sum of absolute values) of the linear combinations or canonical vectors. The
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sCCA variant of CCA (Figure 2) solves the problem of multicollinearity by using sparse
loadings in the CCA algorithm [23,24]. The sCCA optimization problem is as follows:

max
w1,w2

Cov(Xw1, Yw2)− τ1∥w1∥1 − τ2∥w2∥1

subject to the constraints Var(Xw1) = 1 and Var(Yw2) = 1, where X and Y are the data
matrices (cases in rows, variables in columns), w1 and w2 are the weights of the linear combi-
nations that define the canonical variables Xw1 and Yw2, ∥ · ∥1 is the l1 norm, and τ1, τ2 are
positive regularization parameters that specify the trade-off between the fit to the data and
the sparsity of the vectors w1 and w2. The maximization of the covariance Cov(Xw1, Yw2)
under the variance constraints Var(Xw1) = Var(Yw2) = 1 is equivalent to maximizing
the correlation Cor(Xw1, Yw2) while also enabling the inclusion of l1 penalty terms. The
solution of the sCCA optimization problem is found through iterative methods [25].

Figure 2. A simplistic depiction of the sparse canonical correlation analysis. The original vari-
ables X and Y are projected to Vx and Vy in the lower-dimensional space; w1 and w2 are canon-
ical vectors; sCCA uses canonical variates with sparse coefficients to mirror the transcriptional
regulatory mechanism.

From a biology standpoint, sCCA is more in line with transcriptional machinery. Since
a small percentage of genes is involved under a specific set of conditions, this is portrayed
by the use of canonical variates with sparse coefficients in sCCA.

Various sCCA implementations have been proposed. Among the more popular ones
are those of Waaijenborg et al. [24] and Witten et al. [23], which maximize the covariance.
However, a limitation of covariance-maximizing methods is that two canonical variables
that are only mildly correlated but have high variance can be selected over two canonical
variables that are highly correlated but have low variance. Charlotte et al. [14] argued
that in high-dimensional scenarios the methods that maximize correlation rather than
covariance yield optimal results as they show more correlation and they focus less on
variance in individual datasets. We analyzed the data using the aforementioned sCCA
methods alongside the sCCA implementation by Csala et al. [19], which maximizes the
correlation and uses the elastic net (ENet) regression model to resolve the multicollinearity
problem. The latter approach improves the interpretability of the results by setting some
weights to zero [26]. With the modification outlined below, this implementation of sCCA
yielded better results than the others. Hence, we retained it for our analysis.

The R package sRDA was used to carry out sCCA in our analysis. We modified the
main sCCA function so that it would accept two sparsity arguments instead of one. The
rationale behind this alteration is that using a common sparsity parameter for both datasets
results in retaining the same number of variables for each dataset to form the canonical
components. This is not desirable because the sparsity levels of canonical variables are in
general different across datasets. Thus, we tweaked the function to allow separate penalty
parameters for each dataset.

After jointly reducing the dimension of the DNA methylation and gene expression
data, we identified cancer subtypes by clustering the reduced data with the k-means
algorithm [27]. We use the abbreviation sCClust to designate our proposed approach based
on sCCA and clustering.
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2.3. Kaplan–Meier Plots and Minimum Hazard Ratio

After applying sCClust to the data, we performed survival analysis to evaluate the
results. Survival is the percentage of entities or units that survive from the original data
over time. The Kaplan–Meier (KM) plot [28,29] is a graphical display of survival data that
represents the proportion of patients surviving against time as a step function. Steps signify
occurrence of an event: each time there is a death, we see a dip in the KM plot.

A common measure of the separation between KM plots is the minimum hazard ratio
HRmin [30,31]. This is a measure of the differences between groups (here, cancer subtypes)
in Cox’s proportional hazards model. Hazard ratios are typically used to measure the
magnitude of separation between survival curves. The hazard rate [32,33] is the rate of
death of an item of a given age, and it is denoted by λ. The hazard ratio is the ratio of
hazard rates, i.e., if λ1 is the hazard of the first subtype l1 and if λ2 is the hazard of the
second subtype l2 then the hazard ratio is

λ(l1, l2) = λ1(t)/λ2(t)

When the number n of subtypes is greater than two, the minimum hazard rate is defined as

HRmin = min{max(λ(li, lj), λ(lj, li)) : 1 ≤ i < j ≤ n}

In order to incorporate hazard ratios in a survival analysis, these ratios must stay constant
over time, i.e., the assumption of proportional hazards must hold [34]. To verify this, we
applied the global Schoenfeld test (GST) [35], a hypothesis test based on the correlation
between Schoenfeld residuals and ranked event times. Small correlation statistics, with
a probability larger than the significance level, lead to retaining the proportional hazard
assumption [36].

In addition to the minimum hazard ratio, we employed the SEP statistic of
Royston et al. [37] to measure the average difference between hazard rates. Denoting
by β̂i the coefficient estimate for the i-th subtype in Cox’s proportional hazards model and
by ni the associated number of patient samples, such that ∑C

i=1 ni β̂i = 0 and ∑C
i=1 ni = n,

the SEP statistic is defined as exp(−∑C
i=1(ni/n)|β̂i|).

3. Results
3.1. Survival Analysis

Using sCClust, sCCA was applied to the gene expression and DNA methylation
measurements of each cancer dataset to obtain a lower-dimensional representation of
these data. For instance, in the case of GBM, the original dataset containing 12,042 gene
expression levels and 13,050 methylated sites for 211 subjects was reduced to a vector
containing 211 canonical scores in the lower-dimensional space, thus facilitating clustering.
Different combinations of sparsity parameters and numbers of canonical components were
systematically assessed by grid search to maximize HRmin. We then combined the resulting
low-dimensional canonical scores and clustered them with the k-means algorithm [27].

We estimated the optimal number of clusters by visual inspection of elbow plots [38]
for aggregated and scaled scores (Supplementary Figure S1). Our choice of number of
clusters was also guided by silhouette scores [39] and the ratio of the sum of the squares
between clusters by the sum of the squares within clusters, which is a common statistical
criterion for cluster evaluation [40]. We obtained three clusters for GBM and COAD each,
and four for LSCC. These numbers of clusters aligned with the well-established subtypes
of their respective cancer dataset [41–43]. The cluster sizes for each cancer dataset are
provided in the Supplementary Materials (Supplementary Table S2).

Following the cluster analysis, KM plots were made for every cluster obtained from
the corresponding cancer datasets. The efficacy for each subtype was measured by the
separation within the corresponding KM curves. Furthermore, clustering and survival
analysis was performed after the data were integrated in the lower-dimensional space.
A comparison of the integrated clustering and the single-omics clustering approaches is
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presented below (Section 3.2). Figure 3 shows the KM curves for GBM, lung and colon
cancers, respectively. The various colors illustrate different subtypes of cancer. The greater
the distance between KM curves, the better the subtyping [44]. All identified subtypes
were statistically significant with log-rank p-values ≤ 0.05.

(a) GBM cancer

(b) lung cancer

(c) colon cancer
Figure 3. Survival probability as a function of time for different clusters/subtypes in GBM, LSCC and
COAD cancer. The corresponding log-rank survival p-values are stated and the confidence interval is
indicated by the shaded region.

The HRmin and SEP criteria for cluster separation are shown in Table 1. For the GBM,
LSCC and COAD datasets, we obtained HRmin values of 1.4907, 1.6106 and 8.7327 and
SEP values of 1.2889, 1.7026 and 1041.07, respectively, thus indicating greater separation
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between the KM plots compared to the other methods (see below). In all the model fits
we obtained GST p-values > 0.05, thus making the analysis valid for all the statistically
significant subtypes (p-value ≤ 0.05).

Table 1. Comparison with SNF and OTRIMLE in terms of log-rank p-value and minimum hazard
ratio; sCCA demonstrates lower p-values and larger HRmin.

Data Method p-Value Minimum
Hazard
Ratio

SEP

GBM sCClust
SNF
OTRIMLE
NEMO
PINTMF

0.00004
0.00769
0.00462
0.00256
0.00646

1.4907
1.3509
1.1796
1.3513
1.1594

1.2889
1.2299
1.1496
1.2665
1.1880

LSCC sCClust
SNF
OTRIMLE
NEMO
PINTMF

0.00031
0.01612
0.02126
0.00107
0.00444

1.6106
1.2356
1.1345
1.3859
1.4136

1.7026
1.4667
1.1756
1.5254
1.4793

COAD sCClust
SNF
OTRIMLE
NEMO
PINTMF

0.00041
0.03923
0.03914
0.01260
0.00341

8.7327
4.8915
2.8059
5.7714
4.1594

1041.07
356.462
724.132
872.090
358.442

3.2. Comparison with Single- and Multi-Omics Methods

The results of the analysis were compared with two classes of representative multi-
omics and single-omics subtyping approaches. Similarity network fusion (SNF) [45] is
a state-of-the-art method that builds similarity networks for all data sources and inte-
grates them non-linearly. The rationale behind selecting SNF for comparison with our
technique was its popularity and widely demonstrated usefulness, as well as the public
availability of the code [46]. Another reason was the ability of SNF to combine data beyond
visual integration, which is more in line with our methodology as compared to genomic
browsers [47,48]. We implemented SNF using the R package CancerSubtypes [49]. Table 1
provides a side-by-side comparison of the proposed methodology with SNF for combining
gene expression and DNA methylation data. We report hazard ratios as well as log-rank
p-values. The number of clusters was kept the same as well-established subtypes of each
cancer, three for GBM and colon cancer, and four for lung cancer [41–43]. Systematic
testing was performed with different values of the tuning parameter α, which denotes
the exponential similarity kernel, and the results with the largest values of HRmin were
retained. Aggregation using sCCA demonstrated better performance in terms of separation
in KM plots with lower p-values. The method also resulted in larger HRmin values for
all three datasets analyzed in this study, as well as better performance in terms of SEP
measure. In order to consider more recent multi-omics methods we compared sCClust
with NEMO [9] and PIntMF [50]. NEMO (neighborhood-based multi-omics clustering)
uses prior similarity-based multi-omics methods to build an inter-patient similarity matrix
for clustering. The PIntMF (penalized integrative matrix factorization) approach uses a
matrix factorization model with sparsity to perform clustering. As indicated in the Table 1,
sCClust performed better in terms of different hazard measures when compared with these
two multi-omics methods.

In single-omics cancer molecular subtyping, the majority of the efforts are focused on
gene expression data [51]. We compared the performance of the proposed method with
a robust sparse implementation of the OTRIMLE clustering algorithm [52] that employs
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multivariate Gaussian distribution to cluster the data, using the R package otrimle. Genes
with low variance were filtered out using the R package GWENA. This method requires
the number of clusters to be passed as input. We kept the same number of clusters as
for the proposed and SNF approaches. Again, we performed systematic testing using a
grid of tuning parameters, γ and m, which denote eigenratio constraint and the number of
projections, respectively. The results yielding the largest value of HRmin were selected. As
shown in Table 1, our methodology produced lower log-rank p-values and greater HRmin
and SEP values, indicating more statistically significant differences and larger separation
between subtypes. This illustrates the ability of the proposed method to yield better clinical
association in comparison with single-omics and multi-omics classification of the subtypes.

3.3. Pathway Over-Representation Analysis

Pathway over-representation analysis is a technique used to identify biological pro-
cesses that are enriched in an experimentally obtained list of genes [53]. In cancer analysis,
these identified hallmarks of tumor traits can aid in better understanding of the drug
susceptibility of the disease. Core genes in pathways can lead to disease phenotype dis-
crimination [54].

Pathway over-representation analysis was performed after the identification of sub-
types for the purpose of elucidating biological attributes associated with them. The analysis
resulted in the identification of up-regulated and down-regulated genes with the help of
the R packages limma and clusterProfiler.

The gene names were obtained for each subtype by mapping the canonical vectors
back to the original expression data. Using enrichment analysis, we obtained the up and
down-regulated genes. After that, pathway over-representation analysis was performed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [55] in order to
obtain pathways related to up and down-regulated genes. Figures 4–6 demonstrate the
results of this analysis on the GBM, lung and colon datasets, respectively.

For GBM, we identified 326 over-represented pathways. For subtype 1, 58 pathways
were from up-regulated genes while 28 pathways were from down-regulated genes. Simi-
larly, for subtype 2 and 3, 41 and 56 pathways were from up-regulated genes and 60 and
83 pathways were from down-regulated genes, respectively. As we can see in Figure 4, the
cytokine–cytokine receptor interaction pathway was over-represented in all three subtypes.
This pathway was reported to be an over-represented pathway in GBM [56], and genes
in this pathway were demonstrated to be enriched in GBM [57]. The Parkinson’s disease
pathway, which was also over-represented in all three subtypes, has been shown to have
significant association with brain and thyroid cancer [58]. Similarly, the neurodegeneration
pathway, which was over-represented due to up-regulated genes in the first subtype and
due to down-regulated genes in the second subtype, was shown to be associated with
GBM [59]. These figures highlight the disparity between the subtypes in terms of pathways
that are over-represented.

For lung cancer, 372 over-represented pathways were identified. For each of the four
subtypes identified, 70, 39, 29 and 26 pathways were from up-regulated genes and 51,
83, 35 and 39 pathways were from down-regulated genes, respectively. As illustrated
(Figure 5), the neuroactive ligand–receptor interaction pathway was over-represented in
all four subtypes. Genes significantly contributing to neuroactive ligand–receptor interac-
tions pathway are highly relevant to lung cancer [60]. Another over-represented pathway,
ubiquitin-mediated proteolysis, was due to up-regulated genes in the first subtype while it
was due to down-regulated genes in the third subtype. This pathway is used to identify novel
biomarkers and therapeutic targets in lung cancer [61]. Similarly, a calcium signaling pathway,
which was over-represented in all the subtypes, contributes to lung cancer progression [62].
We can see that the subtypes are contrasting in terms of the altered pathways.
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Figure 4. Illustration of pathway over-representation analysis for each subtype in the GBM dataset.
The size of each point represents the proportion of genes in that pathway, whereas the gray shade
indicates the p-value. The down column contains down-regulated genes and the up panel is for
up-regulated genes.

For colon cancer, we identified 312 over-represented pathways. For each of the three
subtypes, 21, 16 and 94 pathways were from up-regulated genes and 87, 83 and 18 pathways
were from down-regulated genes. As illustrated in Figure 6, the herpes simplex virus type 1
(HSV1) pathway was from down-regulated genes in the first subtype and from up-regulated
genes in the third subtype. HSV1 is common in patients with colon cancer [63,64]. Similarly,
the cytokine–cytokine receptor interaction pathway was over-represented in all three
subtypes. The genes in this pathway were shown to be enriched for colon cancer [65]. The
Epstein–Barr virus infection pathway, which was over-represented for subtype 2 and 3,
is associated with the progression of colon cancer [66]. Again, we can see that not many
over-represented pathways identified were shared between subtypes.
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Figure 5. Illustration of pathway over-representation analysis for each subtype in the lung dataset.
The size of each point represents the proportion of genes in that pathway whereas the gray shade
indicates the p-value. The down column contains down-regulated genes and the up panel is for
up-regulated genes

The main takeaway is that with such an analysis for each subtype, we can identify
over-represented pathways alongside up and down-regulated genes. This could aid in drug
treatment for the respective subtype. Pathway over-representation analysis also indicates
that the subtypes identified vary when it comes to underlying over-represented pathways
with corresponding up- and down-regulated genes.
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Figure 6. Illustration of pathway over-representation analysis for each subtype in the colon dataset.
The size of each point represents the proportion of genes in that pathway whereas the gray shade
indicates the p-value. The down column contains down-regulated genes and the up panel is for
up-regulated genes.

3.4. Interpretation of the Canonical Weights of Genes

The examination of canonical weights for gene expression data indicates that sCCA
selects biologically meaningful variables for their respective cancer datasets. The full
list of genes selected by sCCA for each dataset is given in the Supplementary Materials
(Supplementary Table S3). Below are some of the genes that were selected and their
respective function:

HOXA6 and HOXA5 (homeobox A6 and A5) genes were selected by sCCA with top
absolute average weights for GBM. Homeobox (HOX) genes play an important role in tissue
homeostasis. Mutations in HOX genes lead to increased glioma predisposition [67,68]. SOX10
(SRY-box transcription factor 10) is overly expressed in glioma [69]. It was selected with the
third-highest absolute average weight. HOXA7 (homeobox A7) was also selected by sCCA
and HOXA7 knockdown inhibits glioma cell migration [70].

For the lung cancer dataset, PCGF1 (polycomb group ring finger 1) was selected with
the highest absolute average weight. PCGF1 is known to be a prognostic biomarker for
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many cancers, including lung cancer [71]. Next on the list was BANF1 (barrier to auto-
integration factor 1), which is a candidate marker of lung cancer patient prognosis [72]. This
was followed by FGF22 (fibroblast growth factor 22), which is also a prognostic biomarker
for lung cancer [73]. PRKCSH (protein kinase C substrate 80K-H) was also selected by
sCCA for the lung dataset, and this gene was shown to be significantly up-regulated in
lung cancer tissues [74].

For the colon cancer dataset, FOXG1 (forkhead box G1) was selected with the highest
absolute average weight. This gene is associated with colon cancer and can be one of the
therapeutic targets [75]. XKR6 (XK-related 6), which came second on the list, is associated
with metastasis in colon cancer [76]. Another selected gene was FSCN1 (fascin actin-
bundling protein 1). The overexpression of this gene is associated with colon cancer. High
tumor expression of EGFL7 (epidermal growth factor-like domain 7) has been associated
with poor prognosis in colon cancer [77], and this gene was also selected. These findings
imply that sCCA is capable of selecting genes that are biologically relevant to the respective
cancer type.

4. Discussion

The availability of numerous heterogeneous datasets on the same set of patients
necessitates methods that go beyond visual consolidation of these data. Owing to the high
dimensionality of omics data, the crux of the problem is to jointly reduce the dimension of
datasets whilst preserving their complex correlation structure.

In this study, we employed sparse canonical correlation analysis to integrate TCGA
gene expression and DNA methylation datasets. We performed clustering on the combined
latent scores. Using a case study with three cancer datasets, we illustrated the performance
in terms of survival analysis. All the identified subtypes were statistically significant
(p-value ≤ 0.05). Hazard analysis indicated improved clinical association in comparison
with both single- and multi-omics cancer molecular subtyping algorithms. Pathway anal-
ysis was performed to understand the pathway variation in each subtype, alongside the
underlying biological mechanisms to elucidate potential drug targets. We also performed a
brief analysis of the canonical vectors for gene expression datasets, which exhibited the
ability of sCCA to select genes that are biologically pertinent to their respective cancer type.

In the future, this methodology could be extended to incorporate other types of ge-
nomics data into the analysis, such as microRNA (miRNA). A web-based server connected
with TCGA could also be developed for use by the medical community. This server will
allow users to input omics profiles for a patient and obtain their subtype classification, and
this will require an additional layer of supervised learning.
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