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Abstract: This study introduces a novel methodology for the dynamic extraction of information on
cotton growth in terms of height utilizing the DJI Zenmuse L1 LiDAR sensor mounted onto a DJI
Matrice 300 RTK Unmanned Aerial Vehicle (UAV), aimed at enhancing the precision and efficiency of
growth monitoring within the realm of precision agriculture. Employing the Progressive TIN Densi-
fication (PTD) and Cloth Simulation Filter (CSF) algorithms, combined with Kriging interpolation,
we generated Canopy Height Models (CHMs) to extract the cotton heights at two key agricultural
sites: Zengcheng and Tumxuk. Our analysis reveals that the PTD algorithm significantly outperforms
the CSF method in terms of accuracy, with its R2 values indicating a superior model fit for height
extraction across different growth stages (Zengcheng: 0.71, Tumxuk: 0.82). Through meticulous data
processing and cluster analysis, this study not only identifies the most effective algorithm for accurate
height extraction but also provides detailed insights into the dynamic growth patterns of cotton
varieties across different geographical regions. The findings highlight the critical role of UAV remote
sensing in enabling large-scale, high-precision monitoring of crop growth, which is essential for the
optimization of agricultural practices such as precision fertilization and irrigation. Furthermore, the
study demonstrates the potential of UAV technology to select superior cotton varieties by analyzing
their growth dynamics, offering valuable guidance for cotton breeding and cultivation.

Keywords: LiDAR; dynamic height growth; densely planted cotton

1. Introduction

Among various crops, cotton holds a pivotal role due to its extensive use in the textile
industry and its significant economic value, particularly in developing countries [1]. Cotton
farming has undergone substantial technological transformations, including the adoption
of genetically modified seeds, advanced pest management techniques, and high-efficiency
irrigation systems [2–5]. These innovations not only enhance yield and quality but also
address environmental concerns by reducing the use of water, fertilizers, and pesticides.

The core of precision agriculture lies in the ability to monitor and manage crop growth with
unprecedented accuracy. In this regard, the emergence of Unmanned Aerial Vehicles (UAVs)
equipped with LiDAR (Light Detection and Ranging) technology has opened up new
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horizons [6–9]. Unlike the traditional methods, UAV-borne LiDAR provides high-resolution,
three-dimensional information about the crop canopy, enabling precise measurements of
plants’ height, density, and biomass [10–12]. Furthermore, LiDAR technology captures the
detailed 3D structures of the terrain and canopy, offering unparalleled accuracy and effi-
ciency in crop growth analysis. Large-scale research has been undertaken in the agricultural
field [13–15]. For densely planted cotton, where manual measurements are impractical,
UAV-borne LiDAR offers a promising solution for monitoring canopy height and detecting
growth variations [9,16], which are crucial for optimizing irrigation, fertilization, and pest
management strategies.

The measurement of canopy height plays a pivotal role in the management of cotton
crops [17–19]. It serves as a critical indicator of plant health, vigor, and development
stage, directly influencing decisions related to irrigation, nutrient management, and pest
control. In densely planted cotton fields, uniform canopy development is crucial for opti-
mizing light interception and photosynthesis, thereby enhancing the yield potential [20–22].
Furthermore, accurate and timely data on canopy height can aid in identifying growth dis-
crepancies within fields, enabling targeted interventions to address issues such as nutrient
deficiencies or water stress before they impact overall production [23,24].

Implementing UAV-borne LiDAR technology in densely planted cotton fields presents
both challenges and opportunities [16]. One of the main challenges is navigating the
complex canopy structure of dense cotton crops, where overlapping leaves and branches
can obscure the view of the plant bases, complicating accurate height measurements [25,26].
Additionally, the variability in cotton plant morphology across different varieties and
growth stages requires sophisticated algorithms capable of accurately interpreting LiDAR
data [27,28].

Despite these challenges, the integration of UAV-borne LiDAR technology into cotton
farming offers significant opportunities. By providing high-resolution, three-dimensional
insights into the canopy structure, LiDAR technology enables more precise management
of crop health and productivity [29–31]. It facilitates the identification of areas within a
field experiencing growth issues, allowing for more targeted and efficient use of resources.
Moreover, the ability to rapidly collect and analyze data over large areas makes UAV-borne
LiDAR an invaluable tool for large-scale cotton farming operations, promoting sustainable
agricultural practices and improving yield quality and quantity.

The culmination of this study is aimed at harnessing the synergistic potential of
UAV-borne LiDAR technology, sophisticated algorithms, and geospatial analysis to revolu-
tionize the precision farming landscape, particularly in the context of cotton agriculture.
The research objectives outlined provide a clear pathway towards achieving unprecedented
accuracy in canopy height estimation, enabling the selection of superior cotton varieties
across diverse geographical regions and within the same locality.

Through comprehensive data collection in the cotton fields of Zengcheng and Tumxuk
using UAV-borne LiDAR, this study endeavors to integrate the CSF algorithm [32,33] and
the PTD algorithm [8,34] with Kriging interpolation to construct Canopy Height Models
(CHMs). This novel approach not only facilitates the extraction of cotton canopy height
information with remarkable precision but also allows for comparative analysis against
manually measured canopy heights, thereby validating the efficacy of the methodologies
employed. By harnessing the power of these emerging technologies, farmers and agricul-
tural scientists can gain a deeper understanding of crop dynamics, leading to more informed
decision-making and ultimately more sustainable and productive farming practices.

2. Materials and Methods

Aligned with the objectives of leveraging UAV-borne LiDAR technology for accurate
canopy height information extraction in densely planted cotton fields, this section delin-
eates the comprehensive field experiment design. The study encapsulates the fusion of
high-resolution aerial data acquisition with advanced processing algorithms to navigate
the challenges of precision agriculture in cotton farming. The experiments, conducted
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across distinct climatic zones in Tumxuk, Xinjiang, and Zengcheng, Guangdong (Figure 1),
provide a broad spectrum of data pertinent to the canopy height dynamics under varied
environmental conditions.
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Figure 1. Overview of the experimental area. (a) Zengcheng (the area of the test area is 2000 m2,
marked with a red box); (b) Tumxuk (the area of the test area is 1600 m2, marked with a red box).

2.1. Experimental Site Description

Tumxuk, located on the eastern edge of the Taklamakan Desert, features flat terrains
predominantly characterized by desert and saline–alkali soils. This region experiences a
temperate continental arid climate, with hot, dry summers and cold winters. Precipitation
is scant, averaging around 100 mm annually, primarily concentrated in the summer months.
Tumxuk boasts an average annual sunshine duration of approximately 2500 h. The field
experiment in Tumxuk was carried out at the 44th Regiment of the Third Division’s Na-
tional Precision Agriculture Aviation Pesticide Application Technology International Joint
Research Center (E 78◦39′51′′, N 39◦50′17′′).

Zengcheng, situated within the Pearl River Delta economic zone, offers relatively
flat and fertile lands. It is under the influence of a subtropical monsoon climate, marked
by hot, humid summers and mild, dry winters. The area receives ample rainfall, with
an annual average of about 1700 mm, predominantly during the summer. The region
enjoys 1800–2000 h of sunlight annually. The Zengcheng experiment was conducted at the
National Precision Agriculture Aviation Pesticide Application Technology International
Joint Research Center (E 113◦35′40′′, N 23◦20′39′′).

2.2. Experiment Design

The trial in Tumxuk encompassed 306 cotton varieties, with each variety represented
by a plot, totaling 306 plots. The sowing pattern was one film with three rows, with a row
spacing of 76 cm and a plant spacing of 25 cm. The inter-plot spacing was maintained at
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75 cm, with a sowing depth of 2–3 cm, placing one seed per hole, and each plot consisting
of 21 holes. Sowing occurred on 15 April 2023, with germination observed by 18 April 2023.

Similarly, the trial in Zengcheng featured 306 cotton varieties across 306 plots. The
cultivation method involved ridge planting, with a ridge distance of 40 cm and a ridge
width of 110 cm. Each ridge hosted two rows of cotton, with row spacing of 70 cm and
plant spacing of 25 cm. The plots were separated by a 75 cm gap, the sowing depth was set
at 2–3 cm, with two seeds per hole, and each plot comprised 10 holes. Sowing took place
on 7 March 2023, with seedlings emerging by 10 March 2023.

2.3. Data Collection and Preprocessing
2.3.1. Data Collection

In alignment with the study’s objective to harness UAV-borne LiDAR for accurate
canopy height estimation in densely planted cotton fields, a comprehensive data collection
methodology was devised. This methodology emphasizes the synergy between advanced
remote sensing technology and meticulous ground truth measurements, aiming to opti-
mize the precision and reliability of canopy height data across the critical growth phases
for cotton.

The data acquisition was conducted under optimal weather conditions, specifically on
clear days between 9:00 a.m. and 8:00 p.m., to ensure maximum visibility and data accuracy.
The DJI Matrice 300 RTK (DJI, Shenzhen, China) UAV, equipped with the extensively
tested Zenmuse L1 LiDAR sensor (DJI, Shenzhen, China) [35–37], was selected for its
advanced capabilities, including its superior anti-magnetic interference, precise positioning,
and intelligent flight modes, such as obstacle avoidance and auto-return. These features
significantly enhance the safety and efficiency of flight operations. The Zenmuse L1 sensor,
integrating a Livox LiDAR module, high-precision IMU, a mapping camera, and a three-
axis gimbal, guarantees an effective point cloud density of 99.99%, even in motion, ensuring
comprehensive coverage and detail of the cotton canopy (Figure 2a).
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Scheduled bi-weekly from the flowering to the boll-opening stages, the UAV mis-
sions were carefully planned to capture the dynamic growth patterns of the cotton. The
flights were conducted at a 20 m altitude, with a 1 m/s speed, ensuring an 80.0% over-
lap rate in both the flight and lateral directions and a 10% LiDAR lateral overlap rate.
The double echo mode was activated to enhance the point cloud quality, achieving a
density of 7071 points/m2. Each mission, lasting about 10 min, was executed between
9:00 a.m. and 8:00 p.m., when the conditions were ideal for data capture. Subsequently, the
collected point cloud data were stitched together and saved in LAS format for analysis.

The ground truth measurements were conducted in parallel with the UAV data col-
lection. In each of the 306 plots in both Tumxuk and Zengcheng, three cotton plants were
randomly selected, marked with color-coded tags for consistent identification across all the
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data collection sessions. The plants’ height was measured from the ground to the 3rd or
4th leaf from the top of the canopy using a tape measure, with the precision recorded to the
nearest centimeter (Figure 2b).

The Ice Glacier GPS receiver, with the Qianxun Spatial Intelligence Inc. (Shanghai,
China) network differential positioning service for real-time kinematics (RTK) surveying,
was used to determine the actual coordinates of the ground sampling points (Figure 2c).
This system uses satellite navigation and ground station data to achieve a centimeter-level
positioning accuracy, significantly surpassing traditional GPS technology. With an error
margin within 2 cm, the Ice Glacier RTK system was instrumental in precisely demarcating
the experimental areas and ensuring the accuracy and repeatability of the data collection.
By positioning the GPS directly above the target plant, the exact geographical coordinates
of each cotton plant were obtained, further validating the remote sensing data collected via
the UAV.

2.3.2. Data Preprocessing

The data preprocessing was conducted on a system running Windows 10, powered by
an AMD Ryzen 7 5700X 8-Core processor and 128 GB of RAM, with an NVIDIA GeForce
RTX 3060 graphics card featuring 12 GB of video memory. This robust computing setup
facilitated the handling of large point cloud datasets, enabling efficient data manipulation
and analysis.

The M300 UAV, equipped with the Zenmuse L1 LiDAR sensor, generated point cloud
data files during the flight missions. These files, including formats such as CLC, CLI,
and CMI, encapsulated 3D information on the surveyed cotton fields. Using DJI Terra
software (DJI, V3.9.2), these files were stitched together and converted into the LAS format
for further processing.

Given the substantial size of each dataset, typically around 2 GB, it was imperative
to enhance the processing efficiency. The LiDAR360 software (GreenValley International,
Berkeley, CA, USA, V5.2.2) was utilized to crop the datasets, retaining only the relevant
point cloud data on the experimental fields. This step reduced the file sizes to approximately
1 GB, significantly speeding up the preprocessing workflow. Figure 3a illustrates the
outcome of the cropping process, showcasing the delineated experimental fields.

The removal of noise from the point cloud data was paramount to preserving the
integrity of the information pertinent to the cotton crops. Manual denoising was employed
using the LiDAR360 software, which, despite being time-consuming, ensured the preserva-
tion of crucial data characteristics. This method was preferred over automated algorithms
to prevent the unnecessary loss of ground points, which are critical for accurate plant height
extraction. Figure 3b depicts the denoising results, with panel (a) displaying the original
data with apparent noise and panel (b) showing the cleaned data post-manual denoising.

2.4. Cotton Plant Height Extraction Algorithms
2.4.1. The Cloth Simulation Filter (CSF) Algorithm

The CSF algorithm is a novel approach used to simulate a cloth or fabric model in
computer programs, representing ground surfaces in this context. In this model, particles
connected by virtual springs subject to Hooke’s Law mimic the flexibility and dynamics of
fabric, as shown in Figure 4. These particles, while dimensionless, possess mass and are
interconnected, forming a network that simulates cloth’s behavior over a 3D landscape.
The primary function of these connections is to establish the positioning of the particles
within the cloth, thereby simulating the ground’s shape based on the constraints imposed
by neighboring particles.

The overall workflow of the CSF algorithm, illustrated in Figure 5, involves invert-
ing the original point cloud, overlaying the cloth model, and analyzing the positional
constraints of the cloth nodes to mimic and determine the ground’s shape. This process
effectively distinguishes ground points from non-ground points (such as buildings or
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vegetation) by simulating the cloth’s descent under gravity, halting at ground points and
sagging at non-ground points.
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The application of the CSF algorithm in cotton plant height information extraction
hinges on its capability to accurately identify ground points. By constructing a precise
ground model, the height difference between the cotton plant point clouds and the ground
model derived from LiDAR data enables the calculation of the plant heights. The efficiency
and automation level of the CSF algorithm make it adept at processing large datasets and
adaptable to complex terrains.

In this research, the CSF algorithm parameters were configured as follows: cloth grid
resolution was set to 0.7 pixels per inch; cloth stiffness parameter was fixed at 2; maximum
iterations were capped at 500; and the distance threshold between the point cloud data and
the cloth simulation points was established at 0.5 m.
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2.4.2. The Progressive TIN Densification (PTD) Algorithm

The PTD algorithm, another widely utilized method for ground point extraction in
remote sensing, employs a progressive strategy to build and refine a Triangular Irregular
Network (TIN) for identifying ground points. This approach incrementally integrates
the points from the point cloud into the TIN, updating it until all the ground points
are recognized.

The initialization of the PTD algorithm involves selecting seed points from the point
cloud to construct the initial TIN (Figure 6). Subsequently, the remaining points are
evaluated for inclusion based on their vertical distance to the nearest TIN surface and their
projection within the TIN. Points are added to the TIN if their vertical distance is below a
predefined threshold and their projection lies within a TIN surface, thereby refining the
TIN structure.
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The PTD algorithm’s adaptability to varying terrain undulations makes it especially
useful for accurate ground modeling and plant height measurement in areas with significant
topographical changes. However, setting the appropriate thresholds is crucial and requires
adjustment based on the specific scenarios and data characteristics.

In this research, the PTD algorithm parameters were configured as follows: scene type
was set to gentle slopes; maximum building size was established at 20 m; maximum terrain
slope was configured to 60 degrees; iteration angle was set at 8 degrees; iteration distance
was determined to be 1.4 m; and triangulation construction was halted when the addition
of vertices dropped below 10.
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2.4.3. The Kriging Interpolation Method

Kriging is a statistical interpolation method that estimates the numerical values at un-
sampled locations based on the spatial autocorrelation among the sample points. It assumes
that points closer to each other are more similar, thereby calculating the weights for the
sample points based on their distance and spatial correlation with the interpolation point.

The essence of Kriging lies in its ability to model spatial trends (trend term) and ran-
dom fluctuations (residual term) in data, allowing for the estimation of the values at unsam-
pled locations using a formula that incorporates the weighted sum of the observed values.

Kriging’s effectiveness in spatial data interpolation, coupled with its application to
accurately estimating cotton plant heights, showcases its utility in precision agriculture. By
modeling the spatial variability within cotton fields, Kriging aids in refining the elevation
data obtained using the CSF and PTD algorithms, further enhancing the accuracy of the
plant height measurements.

Kriging interpolation employs a 0.3 grid size for delineating spatial extents. The
Gaussian variogram model refines the spatial correlations. Reshaping and filtering the
grid, only pertinent elevation points are included before executing the interpolation to
approximate a continuous spatial surface.

2.5. Accuracy Assessment

The following section details the approach employed to assess the precision of the
cotton plant height information extraction techniques utilized in this study, leveraging
established statistical metrics.

RMSE is a widely used metric to quantify the deviation between predicted values
and observed measurements. It offers a standard means of assessing the accuracy of a
predictive model. The formula for RMSE is given as follows:

RMSE =

√
1
n∑(ŷi − yi)

2

A lower RMSE value indicates a higher-precision predictive model, suggesting that
the extracted cotton plant heights closely align with the ground truth measurements.

MAE measures the average magnitude of the errors between the predicted values and
the actual observations, without considering their direction. It is defined as:

MAE =
1
n∑|yi − ŷi|

A lower MAE value reflects a model’s higher level of accuracy, indicating that the
discrepancies between the predicted and observed plant heights are minimal.

The R2 metric gauges the degree of correlation between the model’s predicted values
and the actual observations. It illustrates how well the predicted values from the model fit
the observed data. An R2 value closer to 1 signifies that the model predictions closely match
the observed values, showcasing a high degree of accuracy in the model’s predictions.

R2 = 1 − ∑(yi − ŷ)2

∑(yi − y)2

In the above formula, where yi represents the observed plant heights, ŷi denotes the
predicted plant heights from the model, and n is the number of samples.

2.6. Data Analysis

To elucidate the dynamic growth patterns and categorize the variability within densely
planted cotton fields, an integrated approach employing the Elbow Method and K-means
clustering was adopted. This dual-faceted analysis framework is pivotal to understand-
ing the intricate growth dynamics and optimizing the precision in cotton cultivation
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management, aligning with the overarching goal of enhancing yield through advanced
agricultural practices.

2.6.1. The Elbow Method for Optimal Cluster Determination

For a range of K-values, typically from 1 to 10, the K-means clustering algorithm is
applied, and the sum of squared errors (SSE) for each K is computed. The SSE represents
the sum of the squared distances between each data point and its nearest cluster center,
capturing the compactness of the clusters.

The SSE values are plotted against their corresponding K-values, creating a curve that
illustrates how the SSE varies with different numbers of clusters. This curve serves as the
basis for identifying the optimal number of clusters.

The “elbow point” on the SSE curve is identified as the point where the rate of the
decrease in the SSE sharply transitions from rapid to gradual. This inflection signifies
that additional clusters beyond this point only marginally improve the model’s fit, thus
providing a heuristic measure for selecting the optimal K-value [39].

2.6.2. K-Means Clustering

Step 1: Selection of Cluster Number (K). The number of clusters, K, is a crucial
parameter that is determined based on domain knowledge, the Elbow Method, and other
statistical measures, such as the silhouette score.

Step 2: Cluster Center Initialization. Initial cluster centers are randomly selected
from the data points, or using methods like K-means++ to enhance the selection process,
ensuring a diverse starting point for the clustering.

Step 3: Assignment of Data Points. Each data point in the dataset is assigned to
the nearest cluster center based on Euclidean distance, grouping similar height data
points together.

Step 4: Updating Cluster Centers. For each cluster, the mean position of all the
assigned points is calculated, and this mean becomes the new cluster center, refining the
cluster composition.

Step 5: Iteration Until Convergence. Steps 3 and 4 are repeated until the cluster centers
stabilize and no further changes are observed, indicating that the algorithm has converged.

The simplicity and intuitive nature of K-means clustering, coupled with the heuristic
insight provided by the Elbow Method, make this analytical framework particularly suited
for parsing the complex data derived from UAV-borne LiDAR scans of cotton fields. By
efficiently segregating the plant height data into distinct clusters, this methodology aids in
discerning patterns and anomalies in the growth trends across different cotton varieties
and developmental stages. The integration of these techniques fosters a deeper under-
standing of plant height variability, which is instrumental in crafting targeted agricultural
interventions to boost cotton yield and quality, thereby advancing the goals set forth in the
study’s introduction.

3. Results
3.1. Cotton Plant Height Extraction

In pursuit of the study’s objective to accurately estimate cotton canopy heights using
UAV-borne LiDAR, this section delves into the results garnered from the implementation
of the Cloth Simulation Filter (CSF) and Progressive TIN Densification (PTD) algorithms.
The approach to cotton plant height information extraction was methodically structured,
starting from data acquisition to the derivation of the Canopy Height Model (CHM) and
eventual estimation of the plant heights.

Utilizing the DJI Matrice 300 RTK (M300) UAV equipped with the L1 LiDAR sensor,
the point cloud data for the experimental fields were collected. These data underwent
preprocessing steps such as stitching and denoising, followed by ground and non-ground
separation using the CSF algorithm implemented via Python (V3.9, dependent library
laspy, etc.). The CSF algorithm’s parameters were meticulously calibrated to optimize the
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segmentation process. Subsequently, Kriging interpolation was employed to generate a
Digital Surface Model (DSM) and Digital Elevation Model (DEM), which were combined
to produce the CHM using band math operations. Figure 7 illustrates a flowchart of the
CSF algorithm-based height extraction process. Taking the flowering phase data from the
Tumxuk experimental field as the case study, the CSF algorithm segmented the point cloud
data into ground and non-ground points with specific parameters set for the cloth grid
resolution, stiffness, iteration count, and distance threshold. The generated DSM and DEM
were processed in LiDAR360 software to obtain the CHM, depicted in Figure 7.
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Figure 7. Comprehensive workflow for CHM generation from UAV LiDAR data. This diagram
illustrates the sequential steps in processing LiDAR data to construct Canopy Height Models (CHMs),
starting with the application of Cloth Simulation Filter (CSF) and Progressive TIN Densification
(PTD) algorithms for ground and canopy point discrimination. The workflow includes the creation
of a Digital Elevation Model (DEM) and a Digital Surface Model (DSM), leading to the final CHM by
contrasting the DSM and DEM layers.

Similar to the CSF approach, the PTD algorithm was applied to point cloud data pre-
processed for noise and irrelevant data removal. The PTD algorithm, known for its efficacy
in complex terrains, was configured with specific settings suitable for the experimental
field’s characteristics. The generated DSM and DEM from Kriging interpolation were ana-
lyzed to derive the CHM. The workflow of the PTD algorithm-based method is visualized
in Figure 7. The PTD algorithm’s parameterization was tailored to the landscape features of
the Tumxuk field, focusing on the slope settings, maximum building size, terrain gradient,
and iteration specifics. The DSM and DEM obtained using this algorithm facilitated the
creation of the CHM, as shown in Figure 7.

The final step involved integrating the derived CHMs with the actual geographic
coordinate data within ArcMap software (Esri, Redlands, CA, USA, V10.8). The precision
of the handheld Ice Glacier RTK, with a 2 cm accuracy, necessitated the establishment
of a buffer zone for accurate height matching. Through statistical analysis within these
buffer zones, the maximum height value was selected as the estimated plant height for
each coordinate. To enhance visibility and accuracy, the buffer zones were set to a diameter
of 30 cm for illustrative purposes, as demonstrated in Figure 8.
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Figure 8. Plant height (CHM) extraction sampling points and buffer zone. Panel (a) shows the
distribution of sampling points across the cotton field, where plant heights are extracted from CHM
data. Panel (b) illustrates the established 30 cm buffer zones around each sampling point, used to
accurately match canopy height values from geographic coordinate data within the ArcMap software.

3.2. Accuracy Assessment of Cotton Plant Height Information Extraction

The CSF algorithm was applied to two sets of point cloud data from Zengcheng
and three sets from Tumxuk, extracting the estimated plant heights for comparison with
the ground truth measurements. The fitting results, displayed in Figure 9a (Zengcheng)
and Figure 9b (Tumxuk), demonstrate the algorithm’s performance across different growth
stages, including the flowering, boll-forming, and boll-opening periods.
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(b) Tumxuk.

Similarly, the PTD algorithm was tested on the same datasets from Zengcheng and
Tumxuk, with the objective of comparing the algorithm-derived height estimates against
the ground-measured data. The fitting outcomes, as shown in Figure 10a (Zengcheng)
and Figure 10b (Tumxuk), reveal the algorithm’s efficacy in height estimation across vari-
ous growth stages.

The accuracy of the cotton plant heights extracted using the CSF and PTD algorithms
was assessed using a set of statistical measures (Table 1): the coefficient of determination
(R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). These metrics
provided insight into the precision and reliability of the plant height estimates derived from
the UAV-borne LiDAR data in the distinct agricultural settings of Zengcheng and Tumxuk.
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Table 1. Accuracy evaluation of the two algorithms in each period.

Method Location Periods R2 RMSE (cm) MAE (cm)

CSF

Zengcheng
flowering 0.4434 11.6684 9.1448

boll-forming 0.3380 19.4277 14.1307
all 0.4078 15.7813 11.4777

Tumxuk

flowering 0.2245 21.2403 17.1366
boll-forming 0.2799 43.0986 39.3086
boll-opening 0.3697 31.2330 26.2427

all 0.4019 33.3241 27.5602

PTD

Zengcheng
flowering 0.7112 8.8591 7.2769

boll-forming 0.7019 10.6853 8.8164
all 0.7064 10.1510 7.9983

Tumxuk

flowering 0.7429 8.5152 6.4152
boll-forming 0.6749 10.0503 7.7189
boll-opening 0.6858 12.4963 10.2013

all 0.8249 10.7192 8.1128

In Zengcheng, the CSF algorithm resulted in a lower R2 of 0.4078, indicating a moder-
ate correlation between the estimated and actual plant heights. The RMSE and MAE values,
standing at 15.7813 cm and 11.4777 cm, respectively, further reflect the discrepancies in
the height estimates. Conversely, the PTD algorithm demonstrated superior accuracy with
an R2 of 0.7064, suggesting a strong correlation between the estimated and ground truth
heights. The RMSE and MAE were significantly lower at 10.1510 cm and 7.9983 cm, respec-
tively, underscoring the PTD algorithm’s enhanced precision in plant height estimation
in Zengcheng.

Similarly, in Tumxuk, the CSF algorithm produced an R2 of 0.4019, an RMSE of 33.3241 cm,
and an MAE of 27.5602 cm. These metrics indicate a comparable level of accuracy to that
observed in Zengcheng, with considerable room for improvement in the height estimation
accuracy. The performance of the PTD algorithm in Tumxuk was markedly better, yielding
an R2 of 0.8249, which suggests a very high degree of correlation between the estimated
and actual plant heights. The RMSE and MAE were significantly reduced to 10.7192 cm
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and 8.1128 cm, respectively, highlighting the PTD algorithm’s robustness and reliability in
extracting plant heights in the challenging environment of Tumxuk.

3.3. Cotton Plant Height Growth Dynamics

In Zengcheng, the cotton plant heights were extracted using the PTD algorithm in
conjunction with the ground truth coordinates. Starting from the emergence date of
10 March 2023, the growth dynamics were plotted with days after emergence on the x-axis
and the cotton plant heights on the y-axis. Six sets of point cloud data were collected on
various dates, illustrating the growth trend over the entire cycle, as shown in Figure 11a.
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Figure 11. Dynamic growth curves of cotton varieties. Panel (a) illustrates the growth progression
of 306 cotton varieties in the Zengcheng test area, plotted over the entire growth cycle with plant
height against days after emergence, using the PTD algorithm for height extraction. Panel (b) depicts
analogous growth trajectories for the Tumxuk test area.

Similarly, in Tumxuk, the plant heights were determined using the PTD algorithm.
With an emergence date of 15 April 2023, seven point cloud datasets were collected, re-
flecting the dynamic growth of cotton over the cycle. The growth trend is visualized in
Figure 11b, highlighting significant growth stages.

Given the dense nature of the growth dynamics curves in Figure 11, cluster analysis
was performed to facilitate a clearer analysis. The Elbow Method estimated the optimal
number of clusters, indicating a significant decrease in the sum of squared errors (SSE) up
to 4 clusters, beyond which the reduction in the SSE becomes negligible. This suggests
that four clusters represent a balanced trade-off between the number of clusters and cluster
quality, as illustrated in Figure 12.
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The clustered growth dynamics, shown in Figure 13, display variations in the growth
rates among different cotton varieties over time, with each color representing a distinct cluster.
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Table 2 (Zengcheng) and Table 3 (Tumxuk) present the mean plant heights for different
clusters at various growth stages. A comparative analysis between regions and among
varieties revealed the following. Regional Comparison: In Zengcheng, the clusters showed
varying growth rates, with Cluster 3 demonstrating rapid growth, especially between
49 and 76 days. Tumxuk displayed faster growth rates in all the clusters, particularly
between 82 and 92 days, compared to Zengcheng. Varietal Comparison: In both Zengcheng
and Tumxuk, specific clusters exhibited faster growth rates during certain periods, with
Cluster 3 in Zengcheng and Cluster 1 in Tumxuk showing the most vigorous growth. The
analysis suggests that Cluster 3 in Zengcheng and Cluster 1 in Tumxuk are more robust in
their growth dynamics compared to the other clusters.

Table 2. Height mean value of Zengcheng cotton plant in each cluster.

Cluster
Height (cm)

Days
0 49 76 82 97 103 108 170

0 0.00 17.89 59.92 64.87 83.29 87.45 83.29 0.00
1 0.00 20.07 45.51 52.45 62.93 65.78 62.93 0.00
2 0.00 18.92 53.28 60.30 0.59 0.55 0.59 0.00
3 0.00 26.96 71.23 81.48 93.31 98.29 93.31 0.00

Table 3. Height mean value of Tumxuk cotton plant in each cluster.

Cluster
Height (cm)

Days
0 82 92 107 115 124 147 161

0 0.00 52.13 69.57 74.85 85.27 60.73 66.86 62.95
1 0.00 64.12 79.91 80.37 95.60 93.64 96.50 89.29
2 0.00 69.72 92.09 86.50 103.00 47.66 55.04 62.22
3 0.00 73.87 95.68 94.37 116.94 90.20 91.18 79.48

The growth rate analyses (Table 4 for Zengcheng and Table 5 for Tumxuk) reveal that
the highest growth rates occurred at different stages for each cluster (Figure 14), indicating
distinct growth patterns. The average growth rates suggest Cluster 3 in Zengcheng and
Cluster 1 in Tumxuk as the fastest-growing, whereas Cluster 2 in both regions exhibited
slower growth rates.
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Table 4. Growth rate of Zengcheng cotton plant height in each cluster.

Cluster
Height (cm/day)

Days Range
0–49 49–76 76–82 82–97 97–103 103–108 Mean

0 0.37 1.56 0.83 1.23 0.69 −0.83 0.64
1 0.41 0.94 1.16 0.70 0.48 −0.57 0.52
2 0.39 1.27 1.17 −3.98 −0.01 0.01 −0.19
3 0.55 1.64 1.71 0.79 0.83 −1.00 0.75

Table 5. Growth rate of Tumxuk cotton plant height in each cluster.

Cluster
Height (cm/day)

Days Range
0–82 82–92 92–107 107–115 115–124 124–147 147–161 Mean

0 0.64 1.74 0.35 1.30 −2.73 0.27 −0.28 0.18
1 0.78 1.58 0.03 1.90 −0.22 0.12 −0.52 0.53
2 0.85 2.24 −0.37 2.06 −6.15 0.32 0.51 −0.08
3 0.90 2.18 −0.09 2.82 −2.97 0.04 −0.84 0.29
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Figure 14. Comparative daily growth rates of each cotton cluster. Panel (a) presents the daily growth
rate in centimeters for clusters of cotton varieties in the Zengcheng region, highlighting the variable
growth patterns at different developmental stages. Panel (b) shows the analogous daily growth rate
for clusters in the Tumxuk region. These representations provide a clear visualization of growth rate
disparities among clusters over time.

4. Discussion

This study embarked on a comprehensive exploration of utilizing point cloud data,
facilitated through preprocessing techniques, and employing both the Cloth Simulation
Filter (CSF) and Progressive TIN Densification (PTD) algorithms for segmenting point
clouds to generate Digital Surface Models (DSMs) and Digital Elevation Models (DEMs).
The subsequent derivation of the Canopy Height Model (CHM) and matching it with the
ground truth coordinates enabled precise cotton plant height information extraction.

4.1. Cotton Plant Height Information Extraction

The comparative analysis reveals that the PTD algorithm consistently outperformed
the CSF algorithm in both Zengcheng and Tumxuk. This superior performance is attributed
to the PTD algorithm’s efficacy in distinguishing between ground and non-ground points,
effectively capturing the terrain and plant surface features more accurately. The precision
in separating the ground points is crucial for high-density crop height extraction, as demon-
strated by the PTD algorithm’s higher accuracy; this further verifies the effectiveness of the
PTD algorithm [34,40].

The decline in accuracy (R2 from 0.74 to 0.69) of the PTD algorithm across different
growth stages—flowering, boll-forming, and boll-opening—highlights the impact of an
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increasing plant density and instances of plant lodging on the quantity of the canopy-
intercepted point clouds. This densification and structural changes in the cotton plants
lead to a scarcity of ground points, adversely affecting the accuracy of the DEM model and
consequently the precision of plant height extraction.

4.2. Cotton Plant Height Growth Dynamics

The analysis using the PTD algorithm elucidates the growth behavior of different
cotton varieties in Zengcheng and Tumxuk. Cluster analysis helped discern the growth
patterns, with certain clusters showing a stronger growth performance. The findings
underscore the variability in the growth dynamics across different cotton varieties and
regions, providing valuable insights for agricultural management and varietal selection [41].

The comparison of the plant height means and growth rates between Zengcheng
and Tumxuk indicated varietal responses to environmental conditions. Notably, adverse
weather conditions, such as heavy rainfall in Zengcheng and sandstorms in Tumxuk, signifi-
cantly impacted plant growth and survival. These observations point to the critical influence
of environmental factors and varietal resilience on cotton growth dynamics [42,43].

The study encountered several challenges, including negative growth rates and re-
duced survival rates among the 306 cotton varieties tested. The findings suggest that
environmental adversities, poor lodging resistance, and soil incompatibility are the primary
factors affecting plant growth and survival. The observed varietal decline from emergence
to the boll-opening stage underlines the necessity of selecting environmentally adaptable
and resilient cotton varieties for cultivation in diverse agricultural landscapes.

5. Conclusions

In this study, the application of UAV remote sensing technology to cotton height infor-
mation extraction across growth cycles demonstrates significant potential for enhancing
precision agriculture practices. In constructing Canopy Height Models (CHMs) using
Kriging, the Progressive TIN Densification (PTD) algorithm demonstrated greater accuracy
than the Cloth Simulation Filter (CSF) method in both the Zengcheng and Tumxuk trial
areas. This advancement offers a rapid and efficient means for large-scale monitoring of
cotton growth, essential for optimizing agricultural production and management.

The PTD algorithm’s superior accuracy (R2 0.82) in height extraction underscores its
utility in precision agriculture, facilitating the rapid and accurate monitoring of cotton growth.

Cluster analysis of the growth dynamics provided valuable insights into varietal
performance and regional adaptability, critical for selecting superior cotton varieties and
enhancing crop management strategies.

Future research should focus on refining the extraction algorithms and expanding
varietal testing to identify the cotton varieties best suited to different environmental condi-
tions. This approach holds promise to significantly improve cotton production efficiency
and sustainability, contributing to the advancement of precision agriculture in China and
potentially globally.
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