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Abstract: Partial replacement of Fe by Co is an effective method to increase Curie temperature (TC),
which improves the thermal stability of magnetic properties in Nd2Fe14B-based permanent magnets.
The correlation between Fe substitution and magnetic properties has been studied in Nd2(Fe,Co)14B
via a first-principles calculation. The calculated Fe substitution energies indicate that the Co atoms
avoid the 8j2 site, which agrees with the experiments. The Co atoms are ferromagnetically coupled
with Fe sublattice and show magnetic moments of about 1.2 to 1.7 µB at different crystallographic sites,
less than that of Fe (2.1–2.7 µB), resulting in the decrease in total magnetization at ground state (0 K)
with increasing Co content. The effective exchange interaction parameter, derived from the energy
difference between varied magnetic structures, increases from 7.8 meV to 17.0 meV with increasing
Co content from x = 0 to x = 14 in Nd2Fe14−xCoxB. This change in the effective exchange interaction
parameter is responsible for the enhancement of TC in Nd2(Fe,Co)14B. The total magnetization at
300 K, derived from mean-field theory, shows a peak maximum value at x = 1 in Nd2Fe14−xCoxB.
The phenomenon results from the interplay between the reduction of the magnetic moment in the
Fe(Co) sublattice and the enhancement of TC with increasing Co content.

Keywords: Nd2Fe14B; Nd-Fe-Co-B; substitution energy; magnetization; exchange interaction; perma-
nent magnet; Cobalt

1. Introduction

Nd-Fe-B (Nd2Fe14B) permanent magnets have been widely applied in green energy
fields such as wind generators and electric vehicles [1–5]. Although the Nd-Fe-B magnet
is the strongest magnet at room temperature, the extrinsic magnetic properties, such as
coercivity and maximum energy product, decrease rapidly above 100 ◦C because of its
relatively low Curie temperature (TC = 312 ◦C) [5,6]. One approach to enable the magnets to
operate above 150 ◦C is to enhance magnetocrystalline anisotropy (MCA), hence the high-
temperature coercivity, by the partial substitution of Nd with heavy rare earth elements
(HRE) such as Dy or Tb, i.e., (Nd1−xHREx)2Fe14B (2:14:1) [3,7–12]. The strong MCA
originates from the interaction between the crystal field and the spin–orbit coupling of
rare earth 4f electrons [13,14]. The enhancement of the MCA field by Dy or Tb is related
to the special 4f electron structure and the exchange coupling with the Fe sublattice in
Nd2Fe14B [14,15]. Upon the partial replacement of Nd by Dy or Tb, the coercivity can
increase from about 12 kOe to 30 kOe. The replacement of Nd by Dy or Tb also reduces
the saturation magnetization of the 2:14:1 phase, decreasing the maximum energy product.
Further, the resource scarcity and high cost of Dy and Tb limit their application. To reduce
the use of Dy and Tb in Nd-Fe-B magnet, researchers developed the grain boundary
diffusion processing (GBDP) approach to enhance the coercivity [16–18]. A straightforward
approach to GBDP is dip-coating DyF3 or TbF3 on the surface of the Nd-Fe-B magnet plus
the subsequent heat treatment above the Nd-rich grain boundary phase (GBP) melting
point [18]. In GBDP-treated NdFeB magnet, the Dy or Tb-rich layer on the 2:14:1 surface
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suppresses the nucleation of the reverse magnetic domain during the demagnetization
process, enhancing the coercivity [18]. The partial replacement of Nd by Dy or Tb can
effectively increase the absolute value of coercivity, but the temperature coefficients of
coercivity (i.e., the rate of decrease with temperature) are still high. A small amount of Co is
often added to improve the TC and enhance the thermal stability of magnetic properties in
Nd-Fe-B [6,19]. The partial replacement of Fe by Co will reduce the temperature coefficient
of magnetic remanence and coercivity. However, the absolute value of MCA also decreases
with increasing Co content. In high-performance Nd-Fe-B magnet manufacturing, both Co
and Dy or Tb are used to maximize the performance. In addition, some elements, such as
Al, Si, Ga, and Cu, have limited solubility in the 2:14:1 phase but will modify the Nd-rich
grain boundary phase (GBP) to enhance coercivity [20–23].

Since the Nd-Fe-B magnet’s discovery, much research has been conducted on the
elemental substitutions in Nd2Fe14B [6,19]. One interesting phenomenon is that the Fe
substitution by other elements in Nd2Fe14B shows strong site preferences that are intimately
related to the changes in magnetic properties. To determine the element substitution scheme
in 2:14:1 and its effect on magnetic properties, scientists can perform experiments such as
neutron diffraction, Mössbauer spectroscopy, and magnetic measurements. For example,
Moze et al. reported that chromium and manganese are preferred substitutes for iron at
the 8j2 sites in Y2Fe14B [24]. The remaining Fe sites have a fractional occupation of Mn or
Cr at a concentration below the overall stoichiometry. Neutron diffraction has been used
to show that Co avoids the 8j2 site and slightly favors the 4e site in 2:14:1 [25]. van Noort
and Buschow [26] found that Fe atoms strongly prefer occupying the 8j2 and 16k2 sites
from Mössbauer spectroscopy. Similarly, using Mössbauer spectroscopy, Ryan et al. [27]
concluded that Fe prefers the 8j2 sites, the other sites being randomly occupied by Co in
Nd2Fe14−xCoxB. Eslava et al. reported that the Co occupancy preference depends on the Co
content in Nd2Fe14−xCoxB [28]. Despite these labor-, time-, and cost-intensive experimental
approaches, the first-principles DFT (density function theory) calculations can predict the
site occupancy and its effect on magnetic properties in intermetallic compounds such as
the 2:14:1 system. It was reported [29–31] that the predictions from DFT calculations agree
well with the experiments for the Fe substitution scheme in Nd2(Fe, M)14B with M = Al, Si,
Ga, etc.

Nd2Fe14−xCoxB forms solid solutions in all the compositional ranges [32,33]. Theo-
retically, understanding the role of doping Co into the 2:14:1 system at the atomic level
can help develop high-performance Nd-Fe-B magnets. The knowledge gained from the
2:14:1 system and the methods developed can be applied to study other novel rare earth
(RE) transition metal magnets, such as Sm(Fe, Co, Ti)12 with a tetragonal ThMn12 type
structure [34–36]. In this work, we studied the role of Co in Nd2(Fe,Co)14B from the first
principle DFT calculations. We report the Co and Fe occupancy schemes at different crystal-
lographic sites and their effect on magnetic properties in Nd2(Fe,Co)14B. The magnetization
of Nd2Fe14−xCoxB at the finite temperature was also derived from the DFT calculation and
mean-field theory.

2. Method and Computational Details

The substitution energy of the Co atom in Nd2(Fe,Co)14B (Esub) is calculated as the
change in the cohesive energy of Nd2(Fe,Co)14B to Nd2Fe14B. Esub is derived from the
DFT total energy calculations. In the calculation, the unit cell size and atomic position are
relaxed. The calculation details of Esub were reported previously [37]. Here, we perform
the DFT modeling using a linear combination of pseudo-atomic orbital (LCPAO) methods
implemented in OpenMX code [38,39]. Exchange and correlation effects are approximated
with a generalized gradient approximation (GGA) given by Perdew et al. [40]. The rel-
ativistic effects are included by solving a scalar relativistic wave equation. Due to the
strong on-site correlation effects, the Nd 4f electrons are localized as atomic-like states [41].
The 4f electrons of Nd are treated as an open-core state in the calculation. The open core
pseudopotential is generated by assuming that the 4f -states are part of the core states. The
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basis sets are s3p2d1f 1, s3p2d1, s2p2d1, and s3p2d1 for Nd, Fe, B, and Co with cutoff radii of
8.0, 6.0, 7.0, and 6.0 atomic units (a.u.), respectively.

Following Hund’s rules, the atomic magnetic moment of Nd, from the 4f electrons, is
3.27 µB [42]. The contribution of Nd 4f electrons is taken as 3.27 µB for the total magnetic
moment calculation. The Nd 5d, 6s, and 6p contribution is directly derived from the DFT
calculation. The calculated orbital moments of Fe and Co are small, ranging from about
0.03 to 0.1 µB.

Based on the Maxwell–Boltzmann distribution [43], the occupation probability of Co
at each Fe site in Nd2(Fe,Co)14B can be expressed as

Pi =
giexp

(
− ∆Ei

kBT

)
∑i giexp

(
− ∆Ei

kBT

) (1)

where gi, ∆Ei, T, and kB are the multiplicity of the crystallographic site i, internal energy
change (i.e., Esub), temperature, and Boltzmann’s constant, respectively.

To mimic the random distribution of Co at a specific crystallographic site of Fe, we
adopt a virtual crystal approximation (VCA), implemented in the Questaal, which is an all-
electron full-potential Linear Muffin-Tin Orbital (LMTO) DFT code [44,45]. Again, the Nd
4f electrons are treated as open-core states in the DFT calculation. The k-space integrations
were performed with the tetrahedron method [46,47]. The effective exchange interaction
parameters of Nd2(Fe,Co)14B are derived from the energy difference between the different
magnetic structures of 2:14:1. The Curie temperature is estimated from the calculated effec-
tive exchange parameter based on Weiss molecular field model and Brillouin theory—the
first mean-field theory for the magnetic transition [42,48]. The magnetization at finite
temperature is also calculated based on the general Brillouin theory of localized magnetic
moments system (i.e., mean-field theory). The temperature dependence of magnetization is
described using a Brillouin function [42].

3. Results and Discussion
3.1. Substitution Energy and Site Preference of Co in Nd2(Fe,Co)14B

Nd2Fe14B crystallizes in a tetragonal structure with a space group P42/mnm. In the
unit cell, there are four formula units of Nd2Fe14B, i.e., 68 atoms (Nd8Fe56B4). To evaluate
the effect of the Fe substitution by Co in Fe-rich Nd2(Fe,Co)14B compound, one Co atom is
doped at a specific Fe site in a single unit cell of 2:14:1. In other words, it has a nominal
composition of Nd2Fe13.75Co0.25B or 1.7% of Fe replaced with Co in the super-cell. Since
2:14:1 has six crystallographically inequivalent Fe sites in the unit cell, there are six geomet-
rically different patterns for doping Co into the unit cell. Similarly, to understand the site
occupancy scheme of Fe in Co-rich Nd2(Fe,Co)14B phase, one Fe atom is set at a specific Co
site in the 2:14:1 unit cell, i.e., a nominal composition of Nd2Co13.75Fe0.25B.

The calculated lattice constants of Nd2Fe14B (a = 8.7764 Å, c = 12.1640 Å) are compara-
ble to the experimental values (a = 8.8 Å, c = 12.2 Å) [6]. The difference in the calculated
lattice constants between Nd2Fe14B and Nd2Fe13.75Co0.25B is less than 0.02 Å. The results
indicate that a small substitution of Fe content with Co (1.7%) has almost no effect on the
lattice constants in 2:14:1. As shown in Table 1, the Esub values for Co are positive at the
8j2 site (0.16 eV/atom). At the same time, the values are negative at all other Fe sites in
Nd2Fe13.75Co0.25B. The results reveal that the Co atoms prefer to avoid the 8j2 site in Fe-rich
Nd2(Fe,Co)14B phase. Esub has a relatively lower value at the 8j1 site (comparable with the
4c site), implying a moderate occupation preference of Co at those sites in Nd2Fe13.75Co0.25B.
On the other hand, the Esub values for Fe are negative at all the six Co crystallographic
sites in Nd2Co13.75Fe0.25B. Esub has the lowest value at the 8j2 site (−0.40 eV) but the high-
est value at the 4e site (−0.13 eV) in Nd2Co13.75Fe0.25B. This indicates that in the Co-rich
Nd2(Fe,Co)14B phase, Fe prefers to enter the 8j2 site and has the least preference for the
4e site. The result agrees with the experimental reports that in Nd2(Fe,Co)14B, Co and Fe
prefer to avoid and occupy the 8j2 site, respectively [25–28].
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Table 1. Substitution energy Esub (eV/atom per unit cell) of Fe and Co sites in Nd2Fe13.75Co0.25B and
Nd2Co13.75Fe0.25B, respectively. The nearest neighbors (NN) and the Wigner–Seitz volume (WSV, Å3)
of each Fe crystallographic site in Nd2Fe14B are also listed.

Co
(Nd2Fe13.75Co0.25B)

Fe
(Nd2Co13.75Fe0.25B) NN WSV

Esub(16k1) −0.10 −0.17 2Nd, 1B, 10Fe 11.9
Esub(16k2) −0.19 −0.15 2Nd, 10Fe 11.6
Esub(8j1) −0.30 −0.20 3Nd, 9Fe 12.4
Esub(8j2) 0.16 −0.40 2Nd, 12Fe 12.8
Esub(4e) −0.04 −0.13 2Nd, 2B, 9Fe 12.1
Esub(4c) −0.24 −0.30 4Nd, 8Fe 12.3

The phase stability of the 2:14:1 system is less affected by doping with Co. The
difference of the calculated cohesive energy between Nd2Fe14B and Nd2Fe13.75Co0.25B is
about 0.6–4.4 meV/atom, comparable to 7–50 K thermal energy. This small thermal energy
has almost no effect on the phase stability of Nd2Fe14B, which has a melting point of
1433 K [49]. This agrees with the fact that Nd2Fe14−xCoxB forms solid solutions across
the entire compositional range [33]. The Esub values and signs depend on the volume of a
specific crystallographic site and structural and chemical environments. We calculated the
Wigner–Seitz volume and listed the neighboring atoms of the six different crystallographic
Fe sites using the software DIDO95 [50]. As shown in Table 1, the 8j2 site has the largest
site volume (12.8 Å3). The metallic atomic radii are 1.26 Å and 1.25 Å for Fe and Co,
respectively [51]. To reduce the local strain and lower the Esub value, the small-sized
Co atoms avoid the 8j2 site, while large-sized Fe atoms prefer to enter the 8j2 site. The
distribution of Fe and Co at other sites is not completely random, as the values of Esub
vary from site to site. For example, the Esub values for Co at the 8j1 site is much lower
than that at the other sites in Nd2Fe13.75Co0.25B. In addition to the different site volumes,
the chemical environment varies from site to site. For example, the 4c site has many Nd
(four Nd atoms) neighbors, while the 4e site has more boron nearest neighbors (three boron
atoms). The magnitude of Esub depends on the interplay between the volume and the
chemical affinity effects.

The site occupancy preferences of Fe and Co also depend on temperature. Figure 1a
displays the temperature dependence of the site occupancy of Co in Nd2Fe13.75Co0.25B over
the six Fe(Co) crystallographic sites. The Co atoms prefer to enter the 8j1 site but avoid the
8j2 site. With increasing temperature, the occupancy fraction of Co at the 8j1 site decreases
slightly while the occupancies of Co atoms at other sites increase (Figure 1a), which is
driven by thermal energy. To highlight the site occupancy preferences, we normalize them
to those expected for random distribution, which can be expressed as

Relat.Pi =
56 exp(−∆Ei/kBT)
∑i gi exp(−∆E/kBT)

(2)

The difference between Formulas (1) and (2) is the normalization factor gi/56, where
gi is the multiplicity of the crystallographic site i, and the total number of Fe(Co) atoms is
56 in the unit cell. Following this normalization, the relative occupancy Pi will be 1 for a
random distribution. If the Co atom strongly prefers a specific crystallographic site i, the
relative occupancy Pi will be much higher than 1. Similarly, the value will be much lower
than one if the Co atom prefers to avoid the site. A similar method was applied to analyze
the site occupancy preference from neutron diffraction data in the 2:14:1 system [28]. As
shown in Figure 1b, the relative occupancy Pi for the 8j1 site has the largest value (2.8 at
1400 K), while that at the 8j2 site has the lowest value (0.03 at 1400 K). The results highlight
that the Co atoms prefer the 8j1 site and avoid the 8j2 site in Nd2Fe13.75Co0.25B. Co also
has a moderate preference for the 4c site. These results are in good agreement with the
experiments [28].
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Figure 1. (Online color) Temperature dependence of the site occupancy fraction (a) and the normalized
relative occupancy (b) of Co in Nd2Fe13.75Co0.25B.

Figure 2 displays the temperature dependence of the site occupancy of Fe in
Nd2Co13.75Fe0.25B. Fe strongly prefers to enter the 8j2 site due to its larger atomic size.
Interestingly, Fe has a moderate preference at the 4c site in Co-rich Nd2(Fe,Co)14B. As dis-
cussed above, Co also moderately prefers to occupy the 4c site in the Fe-rich Nd2(Fe,Co)14B.
One possible explanation is that the Fe(Co) at the 4c site is preferred to the neighbors of
Co(Fe) as the mixing heating of Fe-Co is lower than Fe-Fe and Co-Co alloys based on the
Miedema model [52]. The results indicated that the Co(Fe) occupancy scheme is sensitive
to the composition of Nd2Fe14−xCoxB.
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3.2. Atomic Resolved Magnetic Moments in Nd2(Fe,Co)14B

Fe (Co) atoms exhibit different magnetic moments depending on the specific crys-
tallographic site. Table 2 shows the atomic magnetic moments of Co and Fe at various
crystallographic sites in Nd2Fe13.75Co0.25B. The Co atoms show positive magnetic moments
and are ferromagnetically coupled with the Fe sublattice. The Co magnetic moments range
from 1.23 to 1.70 µB (Table 2). Cobalt has the smallest magnetic moment of 1.23 µB at the 4e
site and the largest magnetic moment of 1.7 µB at the 8j2 site. Similarly, Fe has the largest
(2.68 µB) and the smallest (2.11 µB) magnetic moments at the 8j2 and 4e sites, respectively.
This behavior is ascribed to the largest site volume of the 8j2 site (12.8 Å3) and the largest
amount of boron nearest neighbor of the 4e site in 2:14:1. As the magnetic moment of Co is
much less than that of Fe, it is expected that the magnetization of Nd2Fe14−xCoxB would
decrease with Co content.
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Table 2. The atomic magnetic moments m (µB) of Co and Fe at different crystallographic sites in
Nd2Fe13.75Co0.25B.

16k1 16k2 8j1 8j2 4e 4c

Fe 2.30 2.37 2.31 2.68 2.11 2.48
Co 1.37 1.48 1.42 1.70 1.23 1.53

Table 3 displays the site-resolved magnetic moments in Nd2Fe14−xCoxB. For x = 0.25
and 13.75, we assume that Co and Fe occupy 8j1 and 8j2 sites, respectively. The reason is
that Co at the 8j1 site and Fe at the 8j2 site have their respective minimum Esub values at
x = 0.25 and x = 13.75. It should be noted that the crystallographic symmetry of the unit
cell is reduced, and each site will be split into several sub-sites upon doping Co(Fe) in the
unit cell. To facilitate the comparison, we use the original site notations and list the average
magnetic moment for each site. As expected, the partial replacement of Fe by Co reduces
the site-resolved magnetic moment while having little effect on the magnetic moment at
other sites. Again, the atoms of Fe or Co have the largest atomic magnetic moment at the
8j2 site. The magnitude of magnetic moment at the different site decreases following the
order from 8j2 to 4c, 16k2, 8j1, 16k1, and 4e.

Table 3. Site-resolved magnetic moments of M (µB) at different sites in Nd2Fe14−xCoxB.

Site x = 0 x = 0.25
(Co@8j1)

x = 13.75
(Fe@8j2) x = 14

16k1 2.29 2.29 1.23 1.23
16k2 2.36 2.36 1.45 1.45
8j1 2.30 2.18 1.51 1.51
8j2 2.68 2.68 1.71 1.57
4e 2.11 2.12 1.05 1.06
4c 2.48 2.48 1.60 1.60

3.3. Exchange Interaction and Curie Temperature in Nd2(Fe,Co)14B

The partial substitution of Fe by Co effectively enhances TC in Nd2(Fe,Co)14B. To
understand the mechanism of the enhancement of TC induced by doping Co, we estimate
the effective exchange interaction parameter in the 2:14:1 system by comparing the energy
difference between different magnetic ordering structures. Figure 3 displays a ferromag-
netic (FM) structure (a) and an antiferromagnetic (AFM) structure (b) of 2:14:1, which is
created using the VESTA package [53]. According to the Heisenberg model, the exchange
interaction parameter, J, can be expressed as [42]

H = −JŜ1.Ŝ2 (3)

where S1 and S2 are dimensionless unit spin operators, and H is the Heisenberg Hamilto-
nian. The effective value of J can be estimated as follows:

J = − 1
2n2 (EAFM − EFM) (4)

where n, EAFM, and EFM are the average number of Bohr magnetons for each magnetic
atom and the total energy for the AFM and FM structure, respectively.
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Figure 3. Unit cell of 2:14:1 with a ferromagnetic (FM) structure (a) and an antiferromagnetic (AFM)
structure (b). The large red and light gold balls represent Nd atoms at 4f and 4g, respectively. The
small green ball is for B. The moderate-sized blue and deep gold balls are for Fe(Co) at the 8j2 and
the other sites, respectively. The arrows represent the magnetic moment direction of each magnetic
atom. The green area highlights the position of the crystal plane with Fe(Co) 8j2 atoms perpendicular
to the c-axis. All the images are generated using the VESTA package [53].

As discussed above, Co atoms prefer to avoid the 8j2 site in Nd2(Fe,Co)14B. We ignore
the small preferential occupancy over other Fe(Co) crystallographic sites and assume a
random distribution of Co at the other five sites, i.e., 16k1, 16k2, 8j1, 4e, and 4c. To mimic the
partial replacement of Fe by Co, we adopt a VCA approach in DFT calculation [41]. The
magnetization and total energies for the FM and AFM structures were calculated using a
full-potential LMTO method as a function of Co content. More details are described in the
Method and Computational Details section above.

Figure 4a shows the Co content dependence of the average magnetic moment of
Fe(Co) atoms in Nd2Fe14−xCoxB. The average magnetic moment slightly decreases with
increasing Co content for x < 3. Any further increase in the Co content decreases the
magnetic moment almost linearly. The effective exchange interaction parameter J was
derived based on Equation (3) and is shown in Figure 4b. The values of J increase almost
linearly from 7.8 meV at x = 0 to 17.0 meV at x = 16, in agreement with the fact that TC can
be substantially enhanced by doping Co in the 2:14:1 phase [6].
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The Curie temperature was also estimated using the calculated effective exchange
interaction parameter J. The 2:14:1 system has two magnetic sublattices: Nd- and Fe(Co)-
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sublattice. The exchange interaction in the Fe(Co) sublattice is much stronger than that of
the Nd sublattice and the inter-lattice exchange interaction between Nd and Fe(Co) [6]. The
Fe(Co) sublattice mainly determines TC. We estimate TC in Nd2Fe14−xCoxB based on the
mean-field theory [42,48].

Tc =
2ZJ
3kB

(5)

where TC, Z, J, and kB are Curie temperature, the average number of the nearest neighbor of
magnetic atoms, and Boltzmann’s constant, respectively. Here, Z is taken as 12 (see Table 1).

As shown in Figure 5, the calculated TC values increase with Co content in qualitative
agreement with the experimental results [25,32]. The mechanism responsible for the
concomitant increase in TC with Co content is the enhancement of the effective exchange
interaction parameter. The results imply that a mean-field model can successfully estimate
the Curie temperature of rare earth Fe (Co) intermetallic compounds. This was confirmed
in many other rare earth-3d transition metal compounds [54,55].
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3.4. Magnetization of Nd2(Fe,Co)14B at Finite Temperature

The measured saturation magnetization displays a maximum at x = 1–2 in Nd2Fe14−xCoxB
at 77 K and 293 K. However, the maximum is less pronounced at low temperatures [32]. In our
calculations, the magnetization at the ground state continuously decreases with increasing
Co content (Figure 6). To understand the peak value of saturation magnetization at finite
temperature, we calculated the temperature dependence of magnetization based on the
general Brillouin theory of localized magnetic moments (i.e., a mean-field theory), which is
expressed using a Brillouin function BJ with J = 1/2 [42].

M(T) = MSB1/2; B1/2 = 2coth(2x)− coth(x); x = M(T)·TC/T (6)

The calculated magnetization at 300 K was also plotted as a function of Co content in
Figure 6. It displays a peak value round x = 1, which is qualitatively in agreement with the
experiments [33]. The formation of a weak maximum of total magnetization results from
the interplay between the reduction of magnetic moment and the sharp increase in TC in
Nd2Fe14−xCoxB.
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4. Summary

The Fe and Co substitution scheme in Nd2(Fe,Co)14B depends on the Co content from
the DFT calculations. The calculated substitution energies indicate that the Co atoms avoid
the 8j2 site. In addition, Co atoms prefer the 8j1 and 4c sites in Nd2Fe13.75Co0.25B, while
Fe atoms prefer the 8j2 and 4c sites in Nd2Co13.75Fe0.25B. The Co atoms show magnetic
moments of about 1.2 to 1.7 µB at different crystallographic sites, less than Fe (2.1–2.7 µB).
Increasing Co content reduces total magnetization at the ground state (0 K). The effective
exchange interaction parameter is also enhanced from 7.8 meV to 17.0 meV with increasing
Co content from x = 0 to 14, which is responsible for the TC enhancement in Nd2(Fe,Co)14B.
The calculated total magnetization at 300 K shows a peak value at x = 1 in Nd2Fe14−xCoxB.
This is ascribed to the interplay between the reduced magnetic moment of the Fe(Co)
sublattice and the TC enhancement with increasing Co content.
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