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Abstract: As a planarization technique, chemical mechanical polishing (CMP) continues to suffer
from pattern effects that result in large variations in material thickness, which can influence circuit
performance and yield. Therefore, tools for predicting post-CMP chip morphology based on the
layout-dependent effect (LDE) have become increasingly critical and widely utilized for design
verification and manufacturing development. In order to characterize the impact of patterns on
polishing, such models often require the extraction of graphic parameters. However, existing extrac-
tion algorithms provide a limited description of the interaction effect between layout patterns. To
address this problem, we calculate the average density as a density correction and innovatively use a
one-dimensional line contact deformation profile as a weighting function. To verify our hypothesis,
the density correction method is applied to a density step-height-based high-K metal gate-CMP
prediction model. The surface prediction results before and after optimization are compared with the
silicon data. The results show a reduction in mean squared error (MSE) of 40.1% and 35.2% in oxide
and Al height predictions, respectively, compared with the preoptimization results, confirming that
the optimization method can improve the prediction accuracy of the model.

Keywords: die-scale CMP model; effective planarization length (EPL); layout-dependent effects;
density correction; HKMG; layout extraction

1. Introduction

Chemical mechanical polishing (CMP), the preferred surface planarization technique
for advanced semiconductor processing, is widely used in the fabrication of high-K metal
gates (HKMGs), copper interconnect structures, and dielectric layers. However, during the
manufacturing process, the chip surface after CMP exhibits morphological fluctuations.
The topographic variation of the chip after CMP is closely related to the layout pattern; this
is called the layout-dependent effect (LDE) in the CMP process.

As the process node advances, surface variations after CMP pose numerous challenges
in semiconductor manufacturing [1], such as depth-of-focus (DOF) control [2] and device
defects [3]. In addition to technology optimization, another approach to improve chip
flatness is to simulate and optimize the layout design during the design flow. Through
simulations, designers can determine the influence of LDE on manufacturing and optimize
the chip design, which is called design for manufacturing (DFM). Then, a DFM tool for
CMP simulation based on the LDE becomes essential to ensuring process yield, improving
the accuracy of electrical performance prediction and developing layout design rules.

The Massachusetts Institute of Technology (MIT) was the first to incorporate LDE into
the CMP topography prediction model. In [4–7], it was argued that the layout pattern
influences the pressure distribution on the chip surface during the CMP process, resulting
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in a nonuniform material removal rate (MRR) and influencing the final surface topography.
Based on this theory, a density step height (DSH) topography prediction model is proposed
to determine the influence of the layout pattern density and step height on the pressure
distribution. References [8,9] added the influence of the line width and line space infor-
mation on the CMP topography based on the DSH model. In [10], the linear relationship
between step height and MRR was modified to an exponential relationship to improve the
accuracy of topography prediction. In addition, in [11,12], the EDA Center of the Institute
of Microelectronics, Chinese Academy of Sciences, combined chemical corrosion and me-
chanical wear mechanisms for an improved topography prediction after CMP. In [13], Bao
attempted to predict topography using a convolutional neural network. Although there
are differences in the mechanism, the chip-level CMP topography prediction based on the
LDE can be divided into the following three processes:

1. Layout grid area division;
2. Grid pattern parameter extraction;
3. Surface profile prediction with pattern parameters.

As mentioned earlier, the prediction of chip morphology after CMP needs to consider
the LDE. However, for mathematical models, abstract set structures cannot be directly
incorporated into model predictions. The model requires graphical parameters that can
represent the features of the patterns as input quantities that affect model predictions, such
as the width, perimeter, and density of the patterns. This necessitates the division of the
layout into regions, also known as grid area division. The graphical parameters within each
grid area are statistically analyzed to serve as the graphical input for the model. However,
after dividing the layout into multiple grids, we found that the topography of a single
grid was influenced not only by the grid pattern but also by the pattern in adjacent grids.
Based on Figure 1, two grids with identical geometric parameters exhibit different surface
morphologies after grinding due to the different surrounding geometric environments.
Therefore, the pattern parameters extracted from a single grid cannot fully represent the
LDE of the grid topography.

To enhance the study of LDE and CMP prediction, we conducted the following work
to elucidate the mutual influence among grids.

1. Proposed the concept of effective planarization length (EPL) based on [14];
2. Hypothesized and analyzed the principles behind the emergence of EPL;
3. Determined the mutual influence weights between grids within EPL.

(a) Diagram of layout pattern (b) AFM data of chip surface

Figure 1. Grids 1 and 2 have the same grid pattern characteristics; however, the surface profiles of
Grids 1 and 2 are different owing to the different surrounding pattern environments.

EPL is defined as the maximum distance between two grids that have a mutual effect
during the CMP topography prediction. The longer the distance between two grids, the
weaker their interaction. When the distance between the grids exceeds the EPL, there is
no interaction between the grid topographies. To reflect this influence in the CMP model,
convolution was used to correct the grid pattern density. This approach is similar to that
presented in [15]. However, the weighting function presented in [15] does not fit the CMP
prediction of an advanced process. In this study, we investigate the contact deformation
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between the pad asperity and chip surface to obtain a reasonable weight function. Finally,
we innovatively use the one-dimensional line contact deformation function as the grid
weight function, which is introduced in Section 3. The density after the correction is called
the effective density. Compared with the pattern density, the effective density can better
reflect the influence of the LDE on the morphology. We apply this density correction
algorithm to an existing HKMG-CMP topography prediction tool based on the DSH model,
as indicated in Figure 2. The shape prediction data of the tool are compared with the
atomic force microscopy (AFM)–measured data before and after density correction, which
confirms that density correction can improve the prediction accuracy of the model.

Figure 2. Diagram of density correction flow containing layout division, parameters extraction, and
density correction. D is the side length of the grids. L is the EPL. W, S, and P represent the layout
parameters as width, space, and density, respectively. fw is the correction matrix. After density
correction, the pattern parameters are used in chip surface prediction.

The structure of this paper is as follows: Section 2 introduces the existing DSH chip-
level CMP topography prediction models and the problems of existing graphical parameter
extraction algorithms. Section 3 defines the EPL and optimizes the model using the
EPL. Section 4 introduces the HKMG layout structure and chip surface measurement
method. Section 5 compares the model prediction results before and after graphical density
correction with the measured data. Section 6 summarizes and discusses the study.

2. DSH Model Chip-Level CMP Surface Topography Prediction

The following sections introduce the DSH model and its mechanism, layout extraction
algorithm, and MRR calculation. In addition, we discuss the problem found in the layout
extraction and relationship between the problem and the EPL.

2.1. DSH Prediction Model

The DSH model was first proposed by MIT in [6]. It calculates the remove rate (RR)
with a pressure distribution, as indicated in Equations (1) and (2).
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Pup =

{
P0 + P0(

1−ρ
ρ ) H

Dmax
, 0 ≤ H ≤ Dmax,

P0
ρ , H ≥ Dmax

(1)

Pdown =

{
P0(1 − H

Dmax
), 0 ≤ H ≤ Dmax,

0, H ≥ Dmax
(2)

Pup and Pdown denote the pressure carried in the higher and lower regions of the grid,
respectively. H is the step height and represents the average difference between the higher
and lower regions. P0 is the average load of the abrasive pad. ρ is the proportion of the
graphical area of the higher region, also known as graphical density. Dmax is the fitting
parameter related to the line width (w) and space (s). In Figure 3, w, s, and H are demon-
strated visually. After obtaining the pressure distribution, the MRR is calculated using the
Preston formula [16], as indicated in Equation (3). In Equation (3), K, α, and β represent
different fitting factors. P represents the pressure calculated using Equations (1) and (2),
and V represents the relative speed between the pad and wafer in the CMP process.

MRR = KPαVβ, (3)

Figure 3. Diagram of line/space structure and definition of pattern parameters.

2.2. Layout Pattern Parameter Extraction

In the actual layout design, there is virtually no standard trench structure with the
width and space required by the DSH model. Therefore, it is necessary to equate the actual
complex grid pattern with graphic parameters such as line width, spacing, and density. We
use the method described in [13]. For each grid, the pattern parameter extraction process is
summarized in the following four steps:

1. Count the perimeter Ci and area Si of each polygon in the grid figure, where i is the
number of the polygon in the grid.

2. Solve Equation (4) to obtain the length Qil and width Qiw of the equivalent rectangle
for each polygon in turn by rectangular equivalence:

x2 − (
Ci
2
)x + Si = 0. (4)

3. Calculate the average line widths of all polygons in the grid using the polygon areas
as weights:

W =
∑n

i=1 QiwSi

∑n
i=1 Si

. (5)

4. Calculate the density of graphs in the grid ρ; D is the length of the grid side.
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ρ =
∑n

i=1 Si

D2 (6)

The statistical parameters of the graphical parameters are used to calculate the DSH
model for computing the mesh morphology.

2.3. EPL and Density Correction

During the tests, we identified several problems with the pattern parameter extraction
and topography prediction. Intuitively, a smaller grid size and a higher resolution lead
to a higher accuracy of the parameter extraction, which should improve the accuracy
of topographic prediction. However, the experimental results demonstrate the opposite
trend. Reducing the grid size does not improve the accuracy of topography prediction.
Conversely, a small grid size reduces the prediction accuracy. We believe that the reason for
this phenomenon is that the surface topography within a single grid region is influenced by
the pattern within the grid and the pattern of the adjacent grid region in CMP. As indicated
in Figure 1 shown in Section 1, the AFM data confirm that the grid topography is influenced
by the surrounding patterns. When the grid size is reduced, even if the extracted graphical
information is more accurate, the result of the topography prediction within the grid
becomes inaccurate because the influence of the surrounding grid graphical information is
ignored. As indicated in Figure 4, compared with (a), the grid size in (b) is smaller because
the grid surface morphology is jointly influenced by the pattern in the surrounding L range.
Therefore, in (a), the parameters extracted from (b) ignore more information regarding the
surrounding area pattern, resulting in a lower prediction accuracy for the (b) surface. We
refer to L as the EPL, which is the maximum distance between two grids where there is a
mutual influence.

To add the influence of the surrounding area pattern to the prediction model, we
weighted and summed the grid graphic densities within the EPL after the graphical param-
eter extraction process introduced in Sections 2 and 3 to obtain the modified grid graphic
density, which is called the effective density of the central grid. We believe that the effective
density can better reflect the influence of the LDE on the morphology than the graphic
density. In the next section, we present the physical meaning of the EPL and determine
a new equation based on its physical meaning as a weighting equation to calculate the
effective density.

(a) (b)

Figure 4. CMP topography of the central blue grid region is influenced by the graphs within the
surrounding L. Compared with (a), in (b), the grid density is extracted more accurately; however, the
prediction accuracy is lower, setting L as the EPL.

3. EPL and Weighting Function

The following sections introduce the weighting function used for the density correc-
tion. Referring to the method introduced in [15], we propose a new weight equation that
considers asperity deformation. In addition, we provide a superior explanation of the
effective flattening length.
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3.1. One-Dimensional Line Contact and Partial Deformation of Pad Asperity

During the CMP process, the pressure distribution on the chip surface due to the defor-
mation of the pad is an important factor influencing the chip topography. The deformation
generated by the contact between the pad and grid surface structure propagates along the
pad to the periphery, which in turn influences the contact between the grid and the pad at
other locations of the chip. Therefore, we believe that the EPL and weighting functions are
related to the pad deformation profile.

Compared with [15], we believe that the grid-to-grid interaction is more relevant to
partial deformation. From the topographic data, the interaction distance between the grids
is considerably smaller than the wafer size and closer to the asperity size observed in [17].
Therefore, it is unreasonable to use the entire polishing pad deformation instead of asperity
deformation as the weight function. However, calculating the deformation of pad asperities
is reasonably complex and involves multiple factors, such as the topography of the contact
surface, graphical dimensions, pressure load, Young’s modulus of the pad, Poisson’s
ratio, and the size of the asperities. To describe this deformation, [18] assumed that the
deformation of asperity satisfies the Hertz contact, and [19] considered the effect caused
by a random asperity size. Both are valuable, yet overly complex to optimize a chip-scale
CMP prediction tool. To simplify the model, we investigate a single asperity deformation
in contact with the trench structures as an approximation of the actual deformation profile.
The asperity deformation in contact with the trench is displayed in Figure 5a. The single
feature in contact with the asperity is a slender rectangular structure along the y-direction,
with the width of the rectangle being considerably smaller than the asperity size. At this
contact, the rectangular structure applies a linear load P to the asperity. This contact satisfies
the following conditions:

1. The size of the structure in the x-axis direction is considerably smaller than the size of
the rough peak.

2. There is no change in the distribution of the structure in the y-axis direction.

Therefore, this contact satisfies the conditions for the application of the one-dimensional
linear contact deformation model presented in [9]. The deformation distribution of the
plane in the normal direction along the x-axis satisfies Equation (7). The asperity deforma-
tion is illustrated schematically in Figure 5b.

(a)

(b)

Figure 5. (a) Schematic diagram of line/space single graphical structure with pad asperity contact;
(b) schematic diagram of one-dimensional line contact deformation.

U(x) = −2P
1 − ν2

πE
ln(

R0

x
) (7)
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U(x) is the deformation variable of asperity, P is the pressure per unit length applied
to the contact surface, ν is Poisson’s ratio of the abrasive pad material, E is Young’s modulus
of the abrasive pad, and R0 deformation is the absolute value of the coordinate of the x-axis
when R0 deformation is zero. R0 has a similar concept with the EPL.

3.2. Weight Function and EPL

The deformation of the asperity caused by contact with a single trench feature satisfies
one-dimensional line contact. Conversely, the partial deformation induced by the contact
of the pad with the trench structures can be considered a result of the superposition of the
one-dimensional line contact deformations induced by the contact of the pad with multiple
structures, as indicated in Figure 6. In Section 3.1, we demonstrate that the interaction
between the grids during the CMP process is related to the pad’s partial deformation.
Therefore, we use the one-dimensional line contact deformation profile as a weighting func-
tion to describe the grid interaction. The weighting function is in the form of Equation (8),
where fw is the weighting value, L is the EPL, and m is the normalized fitting parameter.

Figure 6. Abrasive pad and complex surface pattern contact deformation contour diagram.

fw = mln(
L
x
) (8)

The weighting function is discretized as the corrected weight of the grid density.
Because the value of the weight function is infinite at x = 0, the value of the weighting
function at x = 0.5D is used as the value of the center grid weight after discretization. The
weights of the surrounding grid are calculated in the order of x = 1D, 2D, . . . , nD, where
n depends on L

D . Weighting correction to the density is essentially a convolution process,
and the EPL determines the size of the convolution kernel. After determining the weights,
the relationship between the weighting function and convolution kernel is displayed in
Figure 7. The corrected effective density of the grids can be expressed as Equation (9). In
Section 4, we introduce the layout design for measuring the EPL.

ρe f f = ρ ⊗ fw (9)

Figure 7. Weight matrix after discretization of weight function.
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4. Layout Design and Experimental Measurement Method of EPL

To obtain the EPL and specific weighting function described in Section 3 and verify the
effect of the correction algorithm on the CMP prediction result, we designed the layout of
the HKMG structure, as displayed in Figure 8. Test chips were fabricated by Semiconductor
Manufacturing International Corporation (SMIC) with a subset of the process steps (to the
formation of the replacement of metal gates). After the final CMP process, the chip surface
profile AFM data were used to obtain the EPL and verify the effect of the density-corrected
algorithm on the accuracy of the model prediction. The layout parameters are listed in
Table 1.

Table 1. Layout parameters.

Region Width Space Density
Number w (µm) s (µm) ρ (%)

L1_1 4 1 80

L1_2 1 4 20

L1_3 3.5 1.5 70

L1_4 1.5 3.5 30

L2_1 2.5 2.5 50

L2_2 3 2 60

L2_3 2 3 40

L2_4 2.5 2.5 50

Figure 8. Test layout design and AFM measurement path. The focus is on measuring the surface
topography within the transition profile area.

As indicated in Figure 8, layout areas with different parameters were marked with
serial numbers from L1_1 to L2_4. In this study, we selected the transition topography from
L1_1 to L1_2 as indicated in Figure 9 to introduce our experiment. From the topography
data, it is clear that the topography at the center of the array is stable, which means that the
height of the Al gate does not fluctuate in the general trend. However, the topography of
the transitional region between the arrays indicates an apparent trend, which is caused by
the influence of different patterns on adjacent arrays. Therefore, the range of the transitional
topography region reflects the range of interactions between grids, which is equal to the
EPL. Figure 10 displays the relationship between the range of the transitional topography
region and the EPL.
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Figure 9. Schematic of AFM surface topography profile.

Figure 10. Schematic diagram of the relationship between the transitional topography region and
the EPL. The variation in surface topography is caused by the different pattern on adjacent arrays.
The distance from the position at the array edge to the stable topography region represents the range
of pattern interaction, i.e., the EPL. The EPL is therefore one-half of the transitional topography
region range.

Table 2 displays the measured length of the transitional topography regions; the
average length of these regions was 44.5 µm. In this paper, we implemented the topography
prediction model using a 10 µm sized grid for pattern parameter extraction. Considering
the relationship between the EPL and the edge length of the grid, the EPL for the grid
density correction was set to 25 µm. Using Equation (8), the weighting convolution kernel
for the grid density correction was obtained. After ensuring the EPL and weighting kernel,
we added the density correction algorithm to the HKMG CMP topography prediction tool
to verify the accuracy of the topography prediction results.

Table 2. Measurement of transition area length.

Region L1_1-2 L1_2-3 L1_3-4 L2_1-2 L2_2-3 L2_3-4

L (µm) 41 43 49 52 42 40

The EPL is an important parameter for the optimization algorithm. Before the mea-
surements, we attempted to calculate the EPL without using silicon data to improve the
applicability of the model. Unfortunately, it is difficult to build a model to calculate the
EPL using the CMP processing parameters. If DFM optimization for every batch of chips
relies on the premeasurement of the EPL, this optimization method would become virtually
impossible to apply because of cost. However, according to [15], EPL is only relevant to
the CMP process, not to graphics or layout design. This means that, for a particular CMP
process, regardless of the layout, the EPL remains the same. Therefore, for other types of
geometries and configurations, if the process nodes are the same, the previously mentioned
optimization algorithm can be applied.

To verify the effect of the density correction algorithm on the prediction results of
the CMP prediction model, the prediction results of the model before and after density
correction were compared with the measured AFM data. Figure 11 displays the statistical
approach for the surface topography data. The topography statistics use a µm observation
window consistent with the model grid size to extract the average height of the Al gate
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within the observation window. Because the AFM profile data indicate the relative amount
of variation in the surface topography, the absolute thickness of the Al grid cannot be
measured in the absence of a benchmark. In this study, the following test benchmark was
used: the average height of the Al gate in the first observation window on the left side of
the transitional topography area was used as the baseline, and the relative height of the
Al gate in the other observation windows was counted relative to the baseline. The same
statistical method was applied to the relative heights of the oxide layers.

To reduce measurement error, we attempted to study the data noise caused by the
AFM equipment. According to the data analysis and research in [20], probe vertical drift
and probe tilt were the main causes of noise during the AFM test. The vertical drift of
the probe is caused by the mechanical vibration of the probe during CMP, which causes
high-frequency noise in the data. To solve the high-frequency noise, we observed the
energy frequency distribution of the AFM data from the frequency domain and performed
noise reduction on the AFM data by setting the energy threshold. A probe tilt indicates that
the probe is not vertical across the chip surface. This type of equipment error causes a low-
frequency noise. We calculated the average gradient of AFM data to remove the influence
of low-frequency noise caused by probe tilt. In addition to the AFM data processing
approach, we are also considering reducing the errors by changing the measurement
method. For example, several AFM scans and averages of the resulting profiles can reduce
the observation error effectively. Moreover, we are considering other surface measuring
methods such as an optical profilometer as a validation of AFM to better observe the surface
profile. In Section 5, the measured relative heights of the Al and oxide are compared with
the model predictions to confirm that density corrections can have a positive effect on the
CMP prediction tool.

Figure 11. Height measurement method of transection topography area. The dashed line indicates
the observation window, which has the same size as the layout grids. The red line represents the
observed value of the oxide height. The green line represents the observed value of the Al height.

5. Data Comparison and Result Analysis

The effect of the density correction on the accuracy of the model prediction results
was observed by comparing the surface topography data displayed in Section 4 with
the predicted data from the chip-level CMP topography prediction model. Figure 12a,b
display the predicted values of the oxide and Al gate relative thicknesses in the six regions
compared with the measured values. The prediction accuracy of the model before and after
the density correction was determined using the root mean square error (RMSE). After the
observation made in Section 4, the AFM data of the transectional topography were divided
into six windows and the Al and oxide heights for each window were obtained. For Al,
for example, the RMSE was calculated using Equation (10), where Ai represents the Al
height of each window measured from the AFM data and Bi is the simulation value of the
optimized CMP model. In Equation (10), n represents the number of observation windows,
which depends on the EPL and grid size. The RMSE of each region are listed in Table 3.

RMSE =

√
∑n

i=1(Ai − Bi)2

n
(10)
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(a)

(b)

Figure 12. Comparison of relative height data of six transition topography areas: (a) oxide height;
(b) Al height.

Table 3. RMSE of surface prediction.

Region No Correction Correction No Correction Correction
Number Oxide (nm) Oxide (nm) Al (nm) Al (nm)

L1_1-2 1.137 0.748 1.331 0.912

L1_2-3 0.998 0.179 0.778 0.457

L1_3-4 1.131 0.727 0.682 0.609

L2_1-2 0.484 0.345 0.424 0.394

L2_2-3 0.729 0.331 0.502 0.268

L2_3-4 0.320 0.088 0.434 0.202

Avg 0.811 0.525 0.701 0.474

From the comparison of the relative height and RMSE, it is clear that using the den-
sity correction algorithm to correct the grid pattern information extraction of the CMP
topography prediction model can effectively improve the prediction accuracy of the model.
The corrected grid pattern density can better reflect the influence of the LDE on the CMP
surface topography in the transitional regions. Overall, after adding the density correction,
the RMSE of the model prediction of the relative heights of the Al grid and oxide layer was
smaller. This demonstrates that density correction improves the model prediction accuracy.

Table 4 displays the variation in the RMSE for each region. By region, the RMSEs of
the oxide and Al layer heights were reduced; however, the percentage of reduction was
not the same. For example, the RMSE improvement effect in L2_1–L2_2 was not evident.
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We believe that this is because of the small differences in the layout parameters designed
for the L2_1 and L2_2 regions, for which the width/line was (2.5 µm, 2.5 µm) and (3 µm,
2 µm), respectively. Because of the small differences in the pattern, the surface topography
tends to be less undulating after CMP. This leads to random errors, which have a more
serious effect on the on-chip surface. As the tendency of the surface undulate decreases, the
share of the measurement error in the surface profile measurement increases. This random
measurement error cannot be resolved according to the CMP model system optimization
method. However, for the L2_1–L2_2 topography data, this can be considered a bad data
point, which introduces excessive low-frequency noise into the measurement process such
that the measured data are distant from the chip surface. Consequently, a comparison
between the predicted and measured results in this region becomes meaningless, and the
topography prediction becomes difficult to match to the measured data with noise pollution.

Regarding the measured morphology data, it should be noted that not all areas with
“small differences in design parameters” are not significantly optimized. For example, re-
gion L2_3–L2_4 has similar design parameters to those of L2_1–L2_2, yet the optimization
effect in this area is clear. For this phenomenon, we argue that the effect of low-frequency
noise on the observations is randomized. With this random factor interference, the credibil-
ity of the surface prediction is low. It is clear that the optimization of the L2_3–L2_4 region
is well above average. This overly strong or weak optimization effect, influenced by noise,
is not credible. Therefore, in the subsequent discussion, we consider regions L2_1–L2_2
and L2_3–L2_4 as bad data points and exclude them. Moreover, we must solve for the
low-frequency noise reduction. However, low-frequency noise does not have as distinct
a frequency characteristic as high-frequency noise does. Thus, we could not determine
whether the signal components in the AFM data were low-frequency noise or raw mor-
phologies. The cross-validation of multimode measurements could be a solution to this
problem. For example, scanning electron microscopy is used to measure the topography of
the same area and compare it with AFM data to identify and eliminate low-frequency noise.

Table 4. Reduction of RMSE after optimization.

Region Reduction in RMSE

Number Oxide Al

L1_1-2 34.2% 31.4%

L1_2-3 82.0% 41.2%

L1_3-4 44.6% 22.1%

L2_1-2 28.7% 7%

L2_2-3 54.5% 46.5%

L2_3-4 72.6% 53.4%

Avg 51.5% 35.9%

From Table 4, we can observe that the modified model optimizes differently for differ-
ent material thickness predictions. The predictions of the oxide thickness were generally
more optimized than the thickness predictions for Al in the same region. We believe that
this phenomenon was triggered by the design of the density correction weight function.
When designing the weight function, we referred to the following contact deformation
equation. Clearly, after CMP, the surface heights of the oxide were higher than those of Al.
Therefore, the deformation of the pad asperity caused by the oxide matches the contact
deformation equation more closely than the deformation caused by Al. Therefore, after
applying this weighting equation for density correction, the optimization of the oxide
outperformed that of Al. This also implies that the weighting equation is not perfect, and
that the method can be further optimized in terms of the design of the weighting equations.

In addition to the RMSE, we calculated the related coefficient (R) between the profile
data and model-predicted value before and after optimization to verify whether the pre-
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diction results of the optimized model could better describe the chip morphology trend.
The calculation method for the related coefficient (R) is displayed in Equation (11), where
Ai and Bi represent the surface AFM data and model-predicted values, respectively; Cov
represents the covariance; and Var is the variance. Table 5 lists the related coefficient results
before and after applying the optimization method. It is clear that, after density correction,
the predicted topography is closer to the chip data in terms of variation trend. Even in
Region L2_1–L2_2, there is a better-related coefficient. This means that, in L2_1–L2_2, even
if the predicted topography indicates unclear optimization, the trend of the predicted value
is closer to that of the measured value after density correction.

R =
Cov(Ai, Bi)√

Var(Ai)Var(Bi)
(11)

In conclusion, the density correction method based on the EPL described in this study
has certain limitations in the acquisition of the weight function. However, it can improve the
prediction accuracy of the DSH-model-based HKMG CMP surface topography prediction
tool. In addition to improving the prediction accuracy of the existing model, this method
demonstrates the interaction between grid patterns. The study of grid interactions becomes
increasingly important as the grid size decreases with the chip parameter size. Moreover, in
the comparison and validation of silicon data, the noise problem had a significant influence
on the optimization of the model. The study and solution of the noise problem will become
indispensable in the future for the building and optimization of a CMP prediction model.

Table 5. Related coefficient (R) of surface prediction.

Region R of Oxide R of Al

Number No Correction Correction No Correction Correction

L1_1-2 0.9901 0.9955 0.9551 0.9781

L1_2-3 0.9874 0.9994 0.9761 0.9954

L1_3-4 0.9693 0.9976 0.9841 0.9992

L2_1-2 0.9361 0.9677 0.9486 0.9599

L2_2-3 0.9941 0.9926 0.9888 0.9977

L2_3-4 0.9464 0.9955 0.9806 0.9837

6. Conclusions and Prospect

In this paper, a density correction method for the CMP surface topography prediction
model based on the EPL was proposed. This method corrects the grid density in the DSH
model by considering more pattern information of the area within a certain range around
the grid, referred to as the EPL. Based on the partial deformation of the pad during the
CMP process, a one-dimensional line contact deformation profile is used as a weighting
function to correct the grid density. This correction method was applied to a DSH-model-
based HKMG CMP topography prediction tool, and the predicted data before and after
correction were compared with the measured surface data. After excluding bad data due to
measurement noise, the results indicated that the prediction results of the density correction
model were closer to the actual surface topography data, and the RMSEs of the Al and oxide
layer relative thicknesses were reduced by 40.2% and 35.2%, respectively. Moreover, the
related coefficient indicated that the predicted data after correction exhibited a trend closer
to the AFM data than before. It was demonstrated that the density correction method based
on the EPL can improve the prediction accuracy of the CMP topography prediction model.

In subsequent studies, the acquisition of a weighting function is a direction that
deserves investigation. The weighting function describes the degree of interaction between
the grids within the EPL. Therefore, weight function is an indispensable part of the process
of studying the EPL. The choice of the weight function in this study is justified yet not
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completely reasonable, and the experimental data also reflect defects in the weighting
function. In addition, from the experiment, the problem of noise in the measurement data
is a non-negligible issue in CMP modeling. The study of noise reduction in raw data during
CMP modeling is also an important direction for future research.

As the feature size decreased, the effect of structural interactions during the CMP
process became more pronounced. Any modeling algorithm involving layout partitioning
inevitably must consider intergrid interactions. Therefore, the concept of EPL, which
describes the extent of grid interactions, is not limited to CMP prediction model correction.
This concept can also be applied to dummy fill research to consider the influence of the
interaction effect on dummy fill. A high-quality dummy fill can reduce the number of
defective points caused by graphical effects in the CMP process. This is an indispensable
part of layout correction. Therefore, the next step of this work will focus on both the internal
weighting function acquisition and its application in the field of dummy filling.
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