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Abstract: Neem leaves have long been used in traditional medicine for promoting longevity. How-
ever, the precise mechanisms underlying their anti-aging effects remain elusive. In this study, we
investigated the impact of neem leaf extract (NLE) extracted from a 50% ethanol solution on the
chronological lifespan of Saccharomyces cerevisiae, revealing an extension in lifespan, heightened ox-
idative stress resistance, and a reduction in reactive oxygen species. To discern the active compounds
in NLE, LC/MS and the GNPS platform were employed. The majority of identified active compounds
were found to be flavonoids. Subsequently, compound-target pharmacological networks were con-
structed using the STP and STITCH platforms for both S. cerevisiae and Homo sapiens. GOMF and
KEGG enrichment analyses of the predicted targets revealed that “oxidoreductase activity” was
among the top enriched terms in both yeast and human cells. These suggested a potential regulation
of oxidative stress response (OSR) by NLE. RNA-seq analysis of NLE-treated yeast corroborated
the anti-oxidative effect, with “oxidoreductase activity” and “oxidation-reduction process” ranking
high in enriched GO terms. Notably, CTT1, encoding catalase, emerged as the most significantly
up-regulated gene within the “oxidoreductase activity” cluster. In a ctt1 null mutant, the enhanced ox-
idative stress resistance and extended lifespan induced by NLE were nullified. For human cells, NLE
pretreatment demonstrated a decrease in reactive oxygen species levels and senescence-associated
β-galactosidase activity in HeLa cells, indicative of anti-aging and anti-oxidative effects. This study
unveils the anti-aging and anti-oxidative properties of NLE while delving into their mechanisms,
providing novel insights for pharmacological interventions in aging using phytochemicals.

Keywords: Azadirachta indica; aging; antioxidant; catalase; Saccharomyces cerevisiae; chronological
lifespan; network pharmacology

1. Introduction

Azadirachta indica (Neem), a medicinal plant of the mahogany family, has been utilized
for centuries in India and Africa to treat both acute and chronic diseases. Preclinical
studies have revealed that neem and its constituents are promising for the treatment of
cancer [1,2], diabetes [3], skin diseases [4], and more [5,6]. Clinical trials have further shown
the effectiveness of neem and its constituents against conditions like ulcer [7], psoriasis [8],
and cervical cancer [9].

To date, over 300 chemicals have been identified in different parts of neem, targeting a
wide range of proteins and cell signaling pathways [9]. Neem leaves, enriched with bioac-
tive compounds such as glycoproteins, flavonoids, polyphenols, and isoprenoids, have
been found to exert various effects on human cells. For instance, the glycoprotein found in
neem leaves triggers the perforin-mediated destruction of tumor cells by T and NK cells
via the selective modulation of IFNγ signaling [10]. Additionally, neem leaf glycoprotein
restores dysregulated C-C motif chemokine signaling for monocyte/macrophage chemo-
taxis in patients with head and neck squamous cell carcinoma [11]. Neem leaf extract (NLE)
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has been shown to modulate pro-inflammatory pathways and reduce the proliferation,
inflammation, migration, and invasion of human colon cancer cells [12]. Moreover, NLE
significantly mitigated the H2O2-induced oxidative damage to red blood cells [13]. Neem
leaves have traditionally been used for promoting longevity [14]. However, despite this
traditional use, the anti-aging effects of neem leaves on human cells have scarcely been
studied, and the potential mechanisms remain unaddressed.

The budding yeast, Saccharomyces cerevisiae, serves as a simple yet powerful eukaryotic
model organism for aging research [15]. Yeast cells are easily grown and manipulated in
the laboratory, and many aging-relevant pathways are highly conserved between yeast and
humans, including nutrient and energy signaling, DNA repair, mitochondrial homeostasis,
stress responses, and more [16]. Utilizing this unicellular system, potential anti-aging
compounds can be screened more efficiently, and drug targets can be tested through yeast
gene deletion or overexpression collections. Notably, yeast-based studies have previously
led to the identification of potential anti-aging drugs such as resveratrol and spermidine [16].
Therefore, yeast can be also useful for understanding the potential anti-aging effects of
neem leaf and its constituents.

Aging is a complex biological process involving numerous pathways and targets,
and the compounds in neem leaf are diverse and complex. Thus, the traditional ‘one
disease–one target–one drug’ dogma of medicine study is not suitable for comprehend-
ing the potential anti-aging effects of neem leaf. In this context, network pharmacology
approaches that analyze the mechanistic actions of two or more drugs on multitargets
become instrumental [17]. These approaches construct networks containing all the active
compounds, targets and compound–target interactions [18]. The networks are constructed
by firstly predicting the targets of the active compounds using one or more online plat-
forms/databases. Then, the networks are constructed based on the topology of the active
compounds, targets and compound–target interactions. Combined with Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, these
networks provide better knowledge of the comprehensive effects of NLE and mechanisms
underlying multitarget signaling modules. Due to the multi-compound and multi-target
characteristics of photomedicine, network pharmacology approaches have been widely
used in relevant studies [19–21]. However, network pharmacology studies of neem leaf
extract have barely been undertaken.

A significant challenge for network pharmacology studies of anti-aging drugs is the
validation of targets and phenotypes, a challenge partially addressed by employing the
yeast system. In this study, we applied network pharmacology methods to identify aging-
related pathways targeted by neem leaf compounds. These targets were further studied and
validated in yeast. Our research contributes a mechanistic understanding of the anti-aging
potential of neem leaves and serves as an example of anti-aging drug discovery through
network pharmacology using yeast.

2. Materials and Methods
2.1. Strains and Cell Culture

The sources of yeast strains and human cells are described in Table 1. The SDC
culture medium followed published procedures [22]. HeLa cervical cancer cells were
cultured by Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L glucose (BasalMedia,
Shanghai, China, L110KJ). Other reagents include serum (BasalMedia, S660KJ), Penicillin–
Streptomycin solution (BasalMedia, S110JV) and pancreatin (BasalMedia, S310JV).

2.2. Preparation of Neem Leaf Extracts

Neem leaves, sourced from mountainous areas in the suburbs of Panzhihua City,
Sichuan province, China, were dried to a constant weight and ground into a powder
using a crusher, followed by sieving. The powdered material underwent ultrasound-
assisted extraction [23] using a 50% or 75% ethanol–water solution (liquid to powder
ratio of 12.5 mL/g) for 15 min. Subsequently, the extract was left to stand overnight
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at 4 ◦C and then centrifuged for 10 min at 20,000× g. The supernatant underwent an
additional centrifugation step for 10 min at 20,000× g and was filtered through a 0.22 µm
PES membrane.

Table 1. Strains and cells used in this research.

Strain/Cell Line Genotype Source

BY4741 MATa his3-∆1 leu2-∆0
ura3-∆0 met15-∆0 Lab stock

BY4742 MATalpha his3-∆1 leu2-∆0
ura3-∆0 lys2-∆0 Lab stock

∆ctt1 BY4741 with ctt1::KAN Saccharomyces Genome Deletion Project
∆qcr8 BY4741 with qcr8::KAN Saccharomyces Genome Deletion Project
∆gnd2 BY4741 with gnd2::KAN Saccharomyces Genome Deletion Project
∆qcr9 BY4741 with qcr9::KAN Saccharomyces Genome Deletion Project
HeLa ATCC

2.3. Chronological Lifespan Assays

Chronological lifespan assays followed the published procedure [22]. In brief, yeast
colonies were inoculated into 20 mL of YPD medium and incubated overnight at 30 ◦C.
Subsequently, yeast cells were diluted into 20 mL of SDC medium (in a 50 mL flask) to
achieve an initial A600 nm of 0.05. At the point of yeast cell inoculation, NLE or ethanol
were added at the indicated concentration. The yeast cells in the SDC medium were then
incubated at 30 ◦C in an air bath shaker (200 rpm) until reaching the stationary phase, and
cell viability was assessed on day 0. This was undertaken by diluting the cells with 100 mM
K-phosphate buffer (pH 6.0) and spreading them on YPD plates. The YPD plates were
incubated at 30 ◦C for 72 h, after which colonies were counted. Then, at every indicated
day X, cell viability was assessed. The survival rate was calculated by dividing the number
of colonies at day X by the number of colonies at day 0.

2.4. Oxidative-Stress-Resistance Assays

Oxidative-stress-resistance assays followed the published procedure [24]. In brief,
stationary cells were prepared in accordance with the protocol described for Chronological
Lifespan assays. Subsequently, the cells were collected and resuspended in 1 mL of 100 mM
K-phosphate buffer (pH 6.0) to achieve an A600 nm of 1. H2O2 was then added to a
final concentration of 50 mM to induce oxidative damage. Following treatment with
H2O2 for the specified duration at 30 ◦C, the cells were diluted 10, 102, 103 and 104 times
by 100 mM K-phosphate buffer (pH 6.0). Subsequently, 4.5 µL of each dilution was
spread onto a YPD plate and incubated for 2 days at 30 ◦C to test viability. The results
were photographed and then the pictures were converted into black and white format by
PowerPoint software(2404 Build 16.0.17531.20140 64-bit).

2.5. Reactive Oxygen Species Measurement

To measure reactive oxygen species (ROS) in yeast cells [25], stationary cells were
prepared following the procedure outlined in the Chronological Lifespan assay. The cells
were then collected and resuspended in 1 mL of PBS buffer to achieve an A600 nm of 1.
The cell suspension was incubated with 10 µM DCFH-DA at 30 ◦C for 60 min. Following
staining, the cells were thoroughly washed twice with PBS buffer and subsequently re-
suspended in 1 mL of PBS. DCFH-DA-stained cells were examined using fluorescence
microscopy (excitation/emission: 488 nm/530 nm). For ROS measurements in HeLa cells,
approximately 5 × 105 cells/well were seeded into a 6-well plate. After 12 h of incubation,
NLE or 50% ethanol was added to a final concentration of 0.3%. Following a 12 h treatment,
cells were washed twice with PBS, and 1 mL of 10 µM DCFH-DA (in PBS)/well was added.
After 30 min of staining, cells were washed twice with PBS and 1 mL of 1 mM H2O2 (in
PBS)/well was added. After an additional 30 min, cells were washed twice with PBS
and observed using fluorescence microscopy (excitation/emission: 488 nm/530 nm). The
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fluorescence intensity of the DCFH-DA-stained cells was quantified by ImageJ software
(1.48v) as the value of integrated density (IntDen).

2.6. Analysis of Active Compounds of NLE

Initially, LC-MS (EKspert nanoLC415/ Triple TOF 5600, SCIEX, Singapore) was em-
ployed to determine the constituents of 50% ethanol NLE. The LC-MS analytical conditions
were as follows: the samples were separated using an Agilent ZORBAX SB-C18 Rapid
Resolution HD (Agilent, Santa Clara, CA, USA) 2.1 × 100 mm 1.8-micron column, and
the column temperature was maintained at 40 ◦C. The flow rate was set at 0.4 mL/min.
The mobile phases consisted of 0.1% formic acid (A) and acetonitrile (B). The gradient was
programmed as follows: 5% B for 0.5 min; 5–95% B over 11 min; and 95% B for 2.5 min, fol-
lowed by a decrease to 5% B for 0.1 min and re-equilibration of the column for 2.4 min with
5% B. The injection volume was 1 µL, and the sampler temperature was set at 15 ◦C. Mass
spectrometry employed an electrospray ionization (ESI) source. The source parameters
in positive/negative polarity were set as follows: ion source gas 1:50 psi; ion source gas
2:50 psi; curtain gas: 35 psi; CAD gas: medium; temperature: 500 ◦C; and spray voltage:
5500/−4500 V.

The LC-MS results were transformed to mzML format using Proteowizard software
(3.0.23199 64-bit) with the ‘Peak Picking’ filter (parameters: vendor msLevel = 1-). Sub-
sequently, the result files were uploaded to Global Natural Products Social Molecular
Networking (GNPS, https://gnps.ucsd.edu/, accessed on 20 July 2023) for molecular
network analysis. The outcomes of the molecular networking analysis can be accessed on
two websites: (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=14b9aa1c8e474f80a5
ad474d3782d8fb (accessed on 21 July 2023) and https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=e3bac4a72ff243529d67b8c1082928ed (accessed on 21 July 2023)). The parameter
settings are available on these websites as well. In summary, Precursor Ion Mass Tolerance
and Fragment Ion Mass Tolerance were set to 0.01 and 0.02, respectively; other parameters
were left at their default values. Compounds identified through molecular networking
were filtered based on data information, including ‘wrong IonMode’, ‘N/A InChiKey’, and
‘TIC_Query < 2000’. The remaining compounds with high-quality data were identified as
potential active compounds of NLE, as shown in Table S1. Their names were retrieved
from PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 24 July 2023) based on
their InChiKey.

2.7. Target Prediction of NLE

To predict the potential targets of the identified potential active compounds of NLE,
the InChiKey or SMILES of these compounds were uploaded to the Swiss Target Prediction
platform (STP, http://www.swisstargetprediction.ch/index.php/, accessed on 24 July 2023)
and STITCH platform (https://stitch.embl.de//, accessed on 24 July 2023). Gene Ontology
(GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the
targets were performed using the Metascape platform (www.metascape.org//, accessed
on 30 July 2023).

2.8. RNA-Seq

The preparation of stationary cells adhered to the protocol outlined in the Chronologi-
cal Lifespan assay. Four biological replicates were collected and promptly snap-frozen in
liquid nitrogen for subsequent total RNA extraction. The mRNA samples were sequenced
on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA, USA), and paired-end 150-bp
reads were generated following the published procedure [26]. Reads containing greater
than 10% poly-N and greater than 50% low-quality reads (Q ≤ 20) were removed from
the raw data using Trimmomatic v0.33. Simultaneously, Q20 and Q30 values, GC content,
and sequence duplication levels of the clean data were computed. All subsequent anal-
yses were conducted using clean and high-quality data. The RNA-Seq reads underwent
alignment to the yeast reference genome (Saccharomyces cerevisiae, Ensembl_R64-1-1)

https://gnps.ucsd.edu/
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=14b9aa1c8e474f80a5ad474d3782d8fb
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=14b9aa1c8e474f80a5ad474d3782d8fb
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e3bac4a72ff243529d67b8c1082928ed
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e3bac4a72ff243529d67b8c1082928ed
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/index.php/
https://stitch.embl.de//
www.metascape.org//
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employing TopHat 2 (v2.1.0). Each read was mapped using Cufflinks (v2.1.1), a program
that assembled the alignments in the Sequence Alignment/Map format into transfrags.
Subsequently, the assembly files were merged with reference transcriptome annotations for
further analysis. The differential expression of each gene was computed by quantifying
the Illumina reads based on fragments per kilobase of transcript per million fragments
mapped (FPKM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis for the Differentially Expressed Genes (DEGs) were carried
out using the Metascape platform (www.metascape.org/).

2.9. RT-qPCR

Total RNA extraction was carried out using Beyozol Reagent in accordance with the
manufacturer’s instructions (Beyotime, Shanghai, China, R0011). Subsequently, genomic
DNA was eliminated, and cDNA was synthesized through reverse transcription using the
BeyoRT™ II First Strand cDNA Synthesis Kit with gDNA Eraser (Beyotime, D7170M). The
primers utilized in this study are detailed in Table 2, and the HotStart™ Universal 2X SYBR
Green qPCR Master Mix (APExBIO, Houston, TX, USA, K1170) was employed. For the
RT-qPCR steps, the settings were configured as follows: 95 ◦C for 2 min (1 cycle); 95 ◦C for
15 s, 60 ◦C for 30 s (40 cycles); and 95 ◦C for 15 s, 60 ◦C for 60 s, 95 ◦C for 15 s (1 cycle).

Table 2. Primers used in this research.

Gene
Primer (5′ to 3′)

Forward Reverse

Actin CCATCCAAGCCGTTTTGTCC TGAGCAGCGGTTTGCATTTC
CTT1 CATGCCAAAGGTGGTGGTTG CAGTCATGGTTCCCCCACTC
TKL2 GGTGTGAGGGAACACGGAAT TTGGACCATCCTCACCAAGC
COX4 TTCAGCAAAAACCCGTGGTG AGAACCCGTACAACCGACAT
QCR8 TCACATGGGTGGTCCAAAGC ACTCGTTACCGTTCTTCCACC
GND2 ACGGATTTACCGTGGTTGCT TAAAGTGTCGACCGGAGCAC
QCR9 TGCAGGTGCCTTTGTTTTCC CCTGCAGCTATTCGAGCCTT

2.10. Senescence-Associated β-Galactosidase Staining

HeLa cells were seeded at 1 × 105 cells/well on 6-well plates. After 12 h of culture,
NLE or 50% ethanol was added at a final concentration of 0.3%. After 12 h of treatment,
these cells were stained using a Senescence β-Galactosidase Staining Kit (Beyotime, C0602).

2.11. Statistical Analysis

The data are expressed as mean ± S.E.M. Statistical comparisons were performed
using Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. NLE Extends the Lifespan of Yeast Cells

To assess the potential anti-aging effects of neem, we initially obtained neem leaf
extracts (NLE) using varying concentrations of ethanol solutions. By testing the chrono-
logical lifespan of the yeast strain BY4742 in the presence of NLEs, we observed that NLE
extracted from 50% or 75% ethanol significantly extended the cells’ lifespans, as depicted
in Figure 1A,B. Consequently, in subsequent studies, we utilized NLE extracted from 50%
ethanol to explore its anti-aging effects.

BY4742 is an engineered haploid MATalpha strain derived from the S288C back-
ground, sharing similarities with another commonly used laboratory MATa strain, BY4741
(PMID:9483801). While the variations between BY4742 and BY4742 are minimal, differ-
ences in selectable marker genes and mating types may influence their lifespan response
to nutritional and environmental signals. Therefore, we investigated whether NLE also
extends the lifespan of BY4741 cells. Our findings revealed that 0.2% of NLE slightly, yet
significantly, extended the lifespan of BY4741 cells, as illustrated in Figure 1C. Furthermore,

www.metascape.org/
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increasing the concentration of NLE to 0.8% resulted in additional lifespan extension, al-
though not to the extent observed in BY4742 cells. This suggests that, even though BY4741
and BY4742 cells exhibit differential responses to NLE, NLE effectively extends the lifespan
of both strains.
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Figure 1. NLE extends the chronological lifespan of yeast. (A,B) BY4742 yeast cells were inoculated
at an initial OD600 nm of 0.05 and treated with either 50% ethanol NLE (A) or 75% ethanol NLE (B) at
a final concentration of 0.5%, or left untreated. After growing into stationary phase, the chronological
lifespan was measured. Triplicate cultures were used to achieve the mean ± SEM of survival rates
(n = 3, Student’s t-test for each point, * p < 0.05, ** p < 0.01, *** p < 0.001). (C–E) BY4741 yeast cells
were treated with or without 50% ethanol NLE with a final concentration of 0.2% (C), 0.8% (D), and
2% (E) while inoculated with the initial OD600 nm of 0.05. After growing into the stationary phase, the
chronological lifespan was measured. Quadruplicate cultures were used to achieve mean ± SEM of
survival rates (n = 4, Student’s t-test for each point, * p < 0.05, ** p < 0.01, *** p < 0.001).

3.2. NLE Enhances the Oxidative Stress Response (OSR) in Yeast Cells

In general, the extension of the chronological lifespan of yeast cells is closely linked
to an improved oxidative stress response (OSR). To investigate the mechanism by which
NLE extends lifespan, we initially examined the impact of NLE on OSR. When BY4742 cells
were exposed to 50 mM H2O2 in YPD medium for 60 or 120 min, a majority of the cells
died. However, the pre-incubation of cells with NLE significantly promoted survival under
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H2O2-induced oxidative stress (Figure 2A). A similar effect of NLE on OSR in BY4741 was
also observed (Figure 2B).
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Figure 2. NLE enhances the OSR of yeast. (A,B) Resistance of NLE-treated BY4742 (A) and BY4741
(B) cells to 50 mM hydrogen peroxide (H2O2) stress at stationary phase. Photographs show the
colonies of a ten-fold dilution series of yeast cells (from (left) to (right)). (C,D) The fluorescence of
DCFH-DA, which indicates the generation of reactive oxygen species (ROS) in BY4742 (C) and BY4741
(D) during the stationary phase under NLE treatment, was captured using a fluorescence microscope
(left) and quantified by calculating the integrated density per cell (IntDen/Cell) of positively stained
cells (right). n = 4 (C) or 3 (D), Student’s t-test, ** p < 0.01.

Using fluorescent ROS probe DCFH-DA, we monitored the relative level of ROS in
yeast cells when exogenous H2O2 is added into culture medium. The addition of exogenous
H2O2 significantly increased the level of intracellular ROS, which was attenuated by the pre-
incubation of NLE (Figure 2C). These results suggest that NLE has the ability to suppress
oxidative stress in yeast cells.

3.3. Active Compounds and Target Prediction of NLE

The effects of NLE on lifespan and the OSR of yeast cells raise the question of which
compounds in NLE are responsible for those effects. To address this question, the metabo-
lites with NLE extracted from 50% ethanol were analyzed by liquid chromatography–
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tandem mass spectrometry (LC-MS/MS). The resulting spectra were submitted to the
GNPS platform, identifying 80 compounds (Table S1), with flavonoids being the predomi-
nant constituents. Details of the compounds are shown in Table S1.

To estimate the potential effects of NLE compounds on yeast and human cells, we
utilized both the STITCH platform and the Swiss Target Prediction (STP) platform to
predict the potential targets of these compounds. For yeast, STITCH identified a total of
378 potential gene targets for 28 compounds. The top six compounds with the most targets
were quercetin, kaempferol, phloretin, nonaethylene glycol, trehalose, and L-epicatechin
(223, 110, 54, 44, and 43 targets, respectively). The top seven targets with the most com-
pounds were ERG5, DIT2, YPK2, YPK3, YPK1, SCH9, and HMX1, each associated with
seven compounds. The compound–target network details are presented in Figure 3A. To
investigate the critical molecular functions and pathways of all these predicted targets,
GOMF and KEGG enrichment was conducted. The results indicate that “oxidoreductase
activity” (Figure 3B) and “longevity-regulating pathway” (Figure 3C) are among the top
15 enriched terms, supporting the observed anti-oxidative and lifespan-extension effects of
NLE (Figures 1 and 2).
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For human cells, a total of 621 potential gene targets for 53 compounds were pre-
dicted by both STITCH and STP. The top six compounds with the most targets were quer-
cetin, kaempferol, myricetin, trehalose, isorhamnetin, and nonaethylene glycol (363, 240, 
139, 95, 90, and 76 targets, respectively). The top seven targets with the most compounds 

Figure 3. Network pharmacological analyses indicate that NLE may target the oxidative stress
response of both yeast and human cells. (A) The network for compound–target connection in yeast
cells. The ellipse nodes represent the compounds and diamond nodes represent targets. All nodes’
area changes are shown according to their degree value, and only gene nodes whose degree was
greater than 4 are presented in the outer circle for better clarity. Lines between two nodes represent
the predicted interaction. (B,C) The dot plot shows the enrichment results of molecular function
(B) and KEGG (C) from total targets based on the network of yeast cells. (D) The network for
compound–target connection in human cells. (E,F) The dot plot shows the enrichment results of
molecular function (E) and KEGG (F) from total targets based on the network of human cells. Terms
related to oxidative stress response (OSR) are marked by red boxes.

For human cells, a total of 621 potential gene targets for 53 compounds were predicted
by both STITCH and STP. The top six compounds with the most targets were quercetin,
kaempferol, myricetin, trehalose, isorhamnetin, and nonaethylene glycol (363, 240, 139, 95,
90, and 76 targets, respectively). The top seven targets with the most compounds were
AKR1B1, CA7, CA12, ACHE, CA2, NOX4, and CA4 (24, 21, 21, 19, 19, 18, and 17 com-
pounds, respectively). Details of the compound–target network are shown in Figure 3D.
To investigate the critical molecular functions and pathways of all these predicted targets,
GOMF and KEGG enrichment was conducted. The results show that “oxidoreductase activ-
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ity” (Figure 3E) and “chemical carcinogenesis—reactive oxygen species” (Figure 3F) are two
of the top 15 enriched terms, suggesting that NLE may regulate the OSR of human cells.

3.4. NLE Induces Transcriptome Changes to OSR in Yeast

To elucidate the mechanism by which NLE regulates OSR and lifespan, we conducted
a transcriptome analysis to examine changes in the gene expression profile of BY4742
cells treated with NLE. A total of 6031 unigenes were expressed in both control and NLE-
treated yeasts, with 31 unigenes expressed exclusively in control yeasts and 37 unigenes
expressed solely in NLE-treated yeasts (Figure 4A). In total, 1092 differentially expressed
genes (DEGs) were identified, comprising 648 upregulated genes and 444 downregulated
genes (Figure 4B).
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OSR-related terms are indicated with red boxes. (E,F) The heat maps of the top 10 upregulated DEGs
of oxidoreductase activity (E) and the oxidation-reduction process (F).
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To investigate critical biological processes and molecular functions, we performed
GO enrichment analysis on these 1092 DEGs using GOseq [27]. GO analysis demonstrates
that “oxidoreductase activity” is one of the top 15 GOMF terms (Figure 4C) and “oxidation-
reduction process” is one of the top 15 GOBP terms (Figure 4D), confirming that NLE
regulates the OSR of yeasts. The top 10 upregulated genes of “oxidoreductase activity” are
CTT1, TKL2, COX4, QCR8, GND2, MRH1, GRE2, MXR1, HFD1, and GRX4 (Figure 4E),
and the top 10 upregulated genes of the “oxidation-reduction process” are CTT1, RGI1,
GSY2, GPH1, GND2, MRH1, QCR9, BDH1, GRE2, and MXR1 (Figure 4F).

3.5. Oxidoreductases Are Involved in Enhanced OSR Induced by NLE

As NLE enhances OSR, we hypothesize that differentially expressed genes (DEGs)
enriched in the Gene Ontology terms “oxidation-reduction process” and “oxidoreductase
activity” may play crucial roles in the antioxidative and antiaging effects of NLE. Firstly,
we sought to determine whether the upregulation effects of NLE on oxidoreductases are
unique to the BY4742 strain. To address this, the six most significant DEGs in these GO
terms were chosen, including CTT1, TKL2, COX4, QCR8, GND2, and QCR9, and their
expression in NLE-treated BY4741 cells was monitored by using qPCR. Similar to the
results obtained by the transcriptome sequencing of NLE-treated BY4742, the expression
of these genes is also significantly upregulated in NLE-treated BY4741 cells (Figure 5A).
Notably, CTT1, which encodes catalase in yeast, is the most significantly up-regulated
oxidoreductase gene in both BY4742 and BY4741.

Next, we asked if these oxidoreductases are required for the anti-oxidative effects of
NLE. cct1, qcr8, gnd2, and qcr9 null mutants of BY4741 background were obtained from
the Saccharomyces cerevisiae Genome Deletion Project and their OSR against H2O2 with
or without NLE treatment was tested. When cells of the stationary growth stage were
treated with 50 mM of H2O2, ctt1 mutant pre-treated with or without NLE was not viable
(Figure 5B). qcr8, gnd2, and qcr9 mutants were more sensitive to H2O2 than the wild type,
and NLE could enhance their OSR (Figure 5B), indicating that these three genes are related
to OSR but not necessary for the effects of NLE.

Given the extreme sensitivity of the ctt1 mutant to 50 mM H2O2, we lowered the
concentration of H2O2 to 5 mM to evaluate the role of CTT1 for the effects of NLE. The ctt1
mutant is viable for 120 min in 5 mM of H2O2. Interestingly, the pre-treatment of NLE had
no protective effects on the ctt1 mutant (Figure 5C). These results indicate that CTT1 is the
key factor in counteracting H2O2-induced oxidative stress, and the protective effect of NLE
against H2O2 also relies on it.

3.6. CCT1 Is Required for the Lifespan-Extension Effects of NLE

Because CTT1 is necessary for NLE to enhance yeast cell resistance against H2O2-
induced oxidative stress, we investigated whether CTT1 also plays a crucial role in the
lifespan extension induced by NLE. Comparing the lifespan of the ctt1 mutant to wild-type
BY4741 cells revealed that the ctt1 mutant lived longer than the wild-type cells (Figure 6).
However, while NLE extends the lifespan of wild-type cells, it fails to extend the lifespan of
the ctt1 mutant under the same conditions. These results suggest that, although the absence
of CTT1 does not shorten the lifespan, the lifespan extension effects of NLE require CTT1.

Previous experiments have demonstrated that NLE could decrease the level of in-
tracellular ROS of wild-type yeasts (Figure 2C,D), and CTT1 plays an important role in
NLE-induced oxidative stress resistance promotion (Figure 5C). We then aimed to deter-
mine whether CTT1 also plays an important role in NLE-induced ROS reduction. However,
when the ctt1 null mutant was treated with NLE, the level of intracellular ROS still signifi-
cantly decreased (Figure 6C), indicating that NLE-induced ROS reduction does not solely
depend on CTT1. In addition to CTT1, there are other factors involved in decreasing the
ROS level of yeast cells after NLE treatment.
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Figure 5. Oxidoreductases are involved in enhanced OSR induced by NLE. (A) RT-qPCR results of the
top changed oxidoreductases of NLE-treated BY4741 (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001). (B) Re-
sistance of NLE-treated null mutants with BY4741 background against 50 mM H2O2. (C) Resistance
of NLE-treated ∆ctt1 null mutants with BY4741 background against 50 mM H2O2.

To explore the regulatory dynamics of the NLE compound–target network on CTT1,
we formulated a comprehensive interaction network, encompassing CTT1, relevant com-
pounds, and targets. This network delineates both direct and indirect connections, provid-
ing insight into the intricate relationships between CTT1 and its associated compounds
and targets (Figure 6D). A total of 8 compounds and 31 targets from the compound–target
network were identified. The results show that the top five targets with the highest degree
values were HSP104, NTH1, TPS2, HXK1, and PGM2 (18, 16, 16, 16, and 16, respectively).
Meanwhile, the top two compounds with the highest degree value were trehalose and
quercetin (15 and 10, respectively). Additionally, the top target with the most compounds
was HOG1, which interacts with kaempferol, procyanidin B2, N-oleoylethanolamine, and
quercetin. Among these 31 targets, HOG1, MSN2, and MSN4 are transcription factors
of CTT1.
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3.7. NLE Promotes Resistance against H2O2-Induced Oxidative Stress in Human Cells

Since NLE enhanced OSR in yeast cells (Figure 2) and was predicted to regulate OSR
in human cells (Figure 3E,F), we then asked whether NLE is able to promote resistance
to H2O2-induced oxidative stress and the senescence of human cells. Firstly, we assessed
the ROS of HeLa cells treated with or without NLE. Under H2O2-induced oxidative stress,
HeLa cells treated with NLE produced fewer ROS compared to the control (Figure 7A).
This result indicates that NLE enhances the OSR of human cells. We then evaluated the
H2O2-induced senescence of HeLa cells through senescence-associated β-galactosidase
(SA-β-gal) staining. HeLa cells treated with H2O2 exhibited strong SA-β-gal staining,
indicating the effective induction of senescence by H2O2 (Figure 7B). NLE pre-treatment
significantly attenuates H2O2-induced SA-β-gal activation, indicating that NLE treatment
also prevents cell senescence induced by oxidative stress in human cells. These data suggest
that the antioxidative and anti-senescence/anti-aging effects of NLE are conserved from
yeast to human cells.
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Figure 7. NLE promotes the resistance of HeLa cells against H2O2-induced oxidative stress. (A) The
fluorescence of DCFH-DA, indicating the generation of ROS in HeLa cells, was visualized using a flu-
orescence microscope (left) and quantified by calculating the integrated density per cell (IntDen/Cell)
of positively stained cells (right). HeLa cells were pretreated with or without NLE, followed by
exposure to H2O2 to induce ROS generation. (n = 3, * p < 0.05). (B) The SA-β-gal staining of HeLa
cells was imaged by microscope (left) and quantified by calculating the positively stained cells (right).
HeLa cells were pretreated with or without NLE then exposed to PBS as control or to H2O2 to induce
senescence (n = 4, **** p < 0.0001).

4. Discussion

Pharmacological intervention aimed at extending lifespan represents a promising
strategy, with oxidative damage prevention emerging as a pivotal factor in achieving
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this goal [28]. In our study, we identified both lifespan extension and anti-oxidative
effects associated with neem leaf extract (NLE) in yeast. The straightforward preparation
method for NLE, involving crushing, soaking, and ultrasound treatment without the need
for further purification [14], adds practicality and convenience to its utilization. These
attributes enhance the potential application of NLE, making it a feasible and promising
candidate as a tonic or food additive to mitigate the aging process.

To enhance the practical application of NLE, a comprehensive understanding of its
constituents and the underlying mechanisms responsible for its anti-oxidative and lifespan-
extension effects is essential. In this pursuit, we employed LC/MS and conducted molecular
network analyses on the GNPS platform to identify potential active compounds within
NLE. Our analysis revealed the presence of various natural chemicals, including quercetin,
kaempferol, phloretin, nonaethylene glycol, trehalose, and L-epicatechin, among others. A
significant portion of these compounds belong to the flavonoid class, which has previously
been reported for its anti-oxidative properties [29–32]. This finding provides a plausible
explanation for the observed anti-oxidative effects of NLE.

Aging is a multifaceted biological process, and the active compounds found in NLE
target multiple pathways. Therefore, network pharmacological analyses were conducted to
explore the anti-aging and antioxidant effects of NLE and their underlying mechanisms.
Initially, potential targets of each compound were identified using the STP and STITCH
platforms, which generate targets based on experimental results or theoretical computation.
Since results may vary between platforms, both were utilized to ensure comprehensive
findings. Subsequently, pharmacological networks were constructed based on the topology
of the active compounds, targets, and compound–target interactions. From these networks,
targets with relatively high degrees were identified, indicating their interaction with a
significant number of compounds. However, relying solely on high-degree targets posed
limitations, as a single target might not be reliable due to unknown compound doses and
high-degree targets might not fully represent the comprehensive effects of all targets. To
mitigate errors associated with single targets and better understand the overall effects
of NLE, GO and KEGG enrichment analyses were performed. Interestingly, the results
revealed that “oxidoreductase activity” and “longevity-regulating pathways” were among
the top enriched terms, supporting the observed antioxidative and lifespan-extension effects
of NLE in yeast cells. Similarly, in human cells, the analysis indicated that “oxidoreductase
activity” and “chemical carcinogenesis—reactive oxygen species” were among the top
enriched terms, corroborating the antioxidant effect of NLE on HeLa cells.

In alignment with network pharmacological analyses, our transcriptome investiga-
tion revealed the regulatory influence of NLE in yeast on “oxidoreductase activity” and
“oxidation-reduction processes”. Further experimental studies indicated that catalase CTT1
prominently facilitated the NLE-induced extension of lifespan. Intriguingly, molecular
network analyses did not identify CTT1 as the primary target with the highest degree
value. Therefore, although network pharmacological analyses of NLE compounds offer
valuable insights into targeted proteins and pathways, a comprehensive understanding of
the underlying mechanism necessitates further experimental analysis.

The preceding findings prompt the question of why CTT1 experienced upregulation.
To address this, we probed whether NLE targeted the regulators of CTT1. Among the
array of predicted NLE targets, we focused on the manually curated regulators of CTT1,
namely HOG1, MSN2, and MSN4, as documented in the Saccharomyces Genome Database
(https://www.yeastgenome.org/, accessed on 8 August 2023). These three regulators
govern the transcription of CTT1, with degrees in the pharmacological networks measuring
5, 1, and 1, respectively. Notably, HOG1 exhibits a higher degree, suggesting its potential
role in orchestrating the upregulation of CTT1 under NLE treatment. Despite this insight,
the underlying cause for the NLE-induced upregulation of CTT1 remains elusive based on
current data and the published literature. Further experiments are imperative to scrutinize
alterations in the regulators of CTT1 under NLE treatment and unravel the mechanisms
at play.

https://www.yeastgenome.org/
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Considering evolutionary conservation and pivotal role of the OSR pathway in cel-
lular aging across yeast and human systems, we further investigated whether NLE could
safeguard human cells against H2O2-induced oxidative stress and aging. The measurement
of ROS levels and SA-β-gal staining in HeLa cells revealed that pre-treatment with NLE
significantly reduced intracellular ROS levels and mitigated H2O2-induced SA-β-gal acti-
vation. These findings suggest that NLE enhances oxidative stress resistance and alleviates
oxidative-stress-induced senescence in human cells. Notably, CTT1 has a human ortholog
called CAT, a crucial antioxidant enzyme defending the body against oxidative stress.
While certain compounds in NLE, such as quercetin [33] and myricetin [34], are reported to
increase CAT activity, future studies are required to ascertain whether NLE upregulates
CAT, thereby protecting various human cells from oxidative stress.

5. Conclusions

In this investigation, we prepared a neem leaf extract (NLE) and discerned its note-
worthy anti-oxidative and anti-aging effects in both yeast and human cells. Through the
application of LC/MS, we successfully identified the active compounds within NLE. Em-
ploying pharmacological network analysis, we predicted potential targets of NLE in yeast,
highlighting oxidoreductase activity and the regulation of longevity pathways. Subsequent
RNA-seq experiments confirmed the regulatory influence of NLE on oxidoreductase ac-
tivity in yeast. Notably, we pinpointed CTT1 as the primary gene target of NLE in yeast
and observed NLE’s potent transcriptional activation of CTT1 in yeast. Future studies
will concentrate on investigating the antioxidative and anti-aging effects of NLE in animal
models, as well as exploring its potential clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16101506/s1, Table S1: The potential active compounds of
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