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Abstract: Predicting the mesoscale eddies in the ocean is crucial for advancing our understanding
of the ocean and climate systems. Establishing spatio-temporal correlation among input data is a
significant challenge in mesoscale eddy prediction tasks, especially for deep learning techniques. In
this paper, we first present a deep learning solution based on a video prediction model to capture
the spatio-temporal correlation and predict future sea surface height data accurately. To enhance the
performance of the model, we introduced a novel metadata embedding module that utilizes neural
networks to fuse remote sensing metadata with input data, resulting in increased accuracy. To the
best of our knowledge, our model outperforms the state-of-the-art method for predicting sea level
anomalies. Consequently, a mesoscale eddy detection algorithm will be applied to the predicted
sea surface height data to generate mesoscale eddies in future. The proposed solution achieves
competitive results, indicating that the prediction error for the eddy center position is 5.6 km for a
3-day prediction and 13.6 km for a 7-day prediction.

Keywords: mesoscale eddy; deep learning; sea surface height prediction

1. Introduction

Mesoscale eddies, which are widespread in the global ocean, exhibit circular motions
of water masses with horizontal scales ranging from tens to hundreds of kilometers and
lifetimes lasting from weeks to months. These eddies play a pivotal role in the transport of
heat, salt, nutrients, carbon, and biological organisms across various regions, significantly
influencing ocean circulation, mixing, and air–sea interactions [1–3]. Consequently, they
have far-reaching implications for the climate system and marine ecosystems. It is essential
to understand the future locations and properties of mesoscale eddies to enhance ocean
modeling, management, and the evaluation of their impact on marine ecosystems and the
global climate.

Mesoscale eddy prediction is a challenging task. In previous research, the prediction
of mesoscale eddies was categorized into traditional methods and machine learning meth-
ods. Recently, the rapid development of deep learning has led to the emergence of new
methodologies in eddy prediction. However, these methods face similar challenges, such as
lacking spatiotemporal modeling of various oceanic elements and being unable to predict
the generation and dissipation of eddies.

We believe that accurate eddy prediction requires the model to perform spatial–
temporal feature extraction and analysis on ocean data. In the field of deep learning,
models such as Convolutional Neural Networks (CNNs) extract spatial features effectively
through convolution and max-pooling operations. Models like Recurrent Neural Networks
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(RNNs) or Long Short-Term Memory (LSTM) Networks efficiently handle time-series anal-
ysis problems. However, these models struggle to establish spatio-temporal correlations in
the data. In recent years, deep learning for video prediction has gained widespread atten-
tion. Video prediction involves generating future frames of a video sequence based on given
previous frames. The key focus of research lies in effectively establishing spatio-temporal
correlations in the data, which is essential for our task.

Considering the close relationship between mesoscale eddies and sea surface height
(SSH) data, we can utilize SSH data to study and predict the evolution of mesoscale
eddies. Mesoscale eddies can cause changes in SSH because the pressure anomalies at
the eddy center can lead to the lifting or lowering of the sea surface [4]. Conversely,
SSH anomaly data obtained from satellite altimetry are often used to identify and track
oceanic mesoscale eddies. By analyzing SSH anomaly data, we can determine the location,
scale, intensity, and propagation trajectories of eddies [5]. Furthermore, SSH anomaly
data can also provide information on the vertical structure of eddies, such as their depth
and vertical stratification [6]. Given the close relationship between SSH and mesoscale
eddies, as well as the proven effectiveness of video prediction models in capturing spatio-
temporal correlations, we have strong grounds to employ video-prediction-based methods
for forecasting sea surface height, which in turn enables the prediction of mesoscale eddies.

In our research, we have developed a method for predicting the movement, for-
mation, and dissipation of mesoscale eddies. This method primarily relies on a high-
performance ocean surface height prediction model that integrates past ocean surface
height and geostrophic velocity grid data as model inputs to accurately predict ocean
surface height grid data. We formulated the input data as spatiotemporal sequences and
constructed an end-to-end trainable model based on a video prediction model. By extend-
ing the prediction model to include a Metadata Embedding (ME) module, we propose
integrating remote sensing metadata with input data features, enabling multi-modal data
fusion. In addition, we constructed a dataset merging sea surface height and geostrophic
velocity data, along with metadata, for training and evaluation. At the final stage, we
applied a mesoscale eddy detection and tracking algorithm to the predicted sea surface
height data for acquiring information on the future mesoscale eddies. Figure 1 illustrates
the architecture of our mesoscale eddy prediction method.
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Figure 1. The architecture of our eddy prediction method. In the SSH prediction component, a deep
learning model consisting of an Encoder, Metadata Embedding Module, Predictor, and Decoder takes
a sequence of sea surface height and velocity along with its metadata as the input to predict the sea
surface height several days later, utilizing MSE Loss for training. In the mesoscale eddy prediction
component, the trained SSH prediction model is employed to predict sea surface height, which is
then used for detecting mesoscale eddies, thus obtaining the prediction results for mesoscale eddies.

Our main contributions are summarized as follows:

1. We constructed an SSH prediction model based on a video prediction model, utilizing
SSH and ocean velocity data input to accurately predict sea surface height values 3 or
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7 days in advance. To the best of our knowledge, our sea surface height prediction
model achieved the highest accuracy compared to existing works.

2. We introduced a novel Metadata Embedding module to enhance the performance
of remote sensing data prediction models by providing relative time and location
information. This approach can be a useful extension to enhance other relevant models
and datasets.

3. We analyzed the predicted SSH data using a mesoscale eddy detection algorithm to
predict future mesoscale eddies within the focused area. This method is effective
in tracking the movement and deformation of mesoscale eddies, and enables the
prediction of the timing of eddy generation and disappearance, which has not been
explicitly measured in the literature of mesoscale eddy prediction.

The remainder of this article is organized as follows. Section 2 discusses related works
on mesoscale eddy prediction. Section 3 introduces the data and methods for sea surface
height prediction, and the mesoscale eddy detection algorithm we used. Section 4 presents
the experimental results of sea surface height prediction and medium-scale eddy prediction.
Section 5 summarizes the research conducted in this study.

2. Related Works

In recent decades, the accurate prediction of ocean mesoscale eddies has become a
critical focus of research in oceanography. The quest for predictability in mesoscale eddies
began with seminal work by Robinson et al. [7] and Robinson and Leslie [8], who achieved
a breakthrough by demonstrating the predictability of mesoscale eddies in the northeast
Pacific. Their 2-week evolution forecasts, particularly focusing on eddies off the California
coast, marked a pivotal moment in the field, inspiring subsequent research endeavors.

Since those pioneering efforts, a multitude of mesoscale eddy prediction methods has
emerged, broadly categorized into traditional and machine learning approaches. Traditional
methods often rely on physical principles and empirical relationships to model the behavior
of mesoscale eddies, while machine learning approaches leverage advanced algorithms
and data-driven techniques to uncover patterns in complex oceanic processes.

2.1. Traditional Methods

In traditional oceanic mesoscale eddy prediction, the analysis of relevant remote
sensing data for prediction or simulation heavily relies on the use of statistical methods,
ocean circulation models (OCMs), and other numerical simulation techniques. Traditional
methods struggle to model ocean spatiotemporal data, resulting in low prediction accuracy.

In the early stages of mesoscale eddy prediction research, Robinson et al. [7] applied
ocean dynamics modeling to predict the evolution of mesoscale eddies, achieving a break-
through by demonstrating the predictability of oceanic eddy currents through real-time
forecasts in the northeast Pacific. Rienecker et al. [9] extended this effort with an ocean
prediction experiment off Northern California, highlighting the positive impact of assimi-
lating altimeter sea level anomaly data. Masina S et al. [10] conducted a mesoscale data
assimilation experiment, presenting a quasi-geostrophic numerical model with initial fields
for mesoscale assimilation around the Middle Adriatic Sea, enabling a 30-day dynamical
prediction of the mesoscale flow field. These works laid the foundation for understanding
mesoscale eddy dynamics and underscored the potential of traditional prediction methods.

Building on traditional approaches, Isern-Fontanet et al. [11] proposed an eddy identi-
fication and evolution model that utilizes physical characteristics of eddies for prediction.
With the evolution of data assimilation strategies and the enhancement of resolution,
Hurlburt et al. [12] enhanced prediction accuracy by integrating observational data with
numerical model data.

Prants et al. [13] developed a Lagrangian methodology to simulate and track the origin
and evolution of water masses within mesoscale ocean eddies using trajectories of synthetic
particles advected by altimetry velocities. They applied this technique to identify the
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Tohoku and Hokkaido eddies contaminated by Fukushima-derived radionuclides after the
2011 disaster, and compared the modeled eddy distributions against in situ measurements.

The simulation of ocean processes and the prediction of oceanic variables are essential
for predicting mesoscale eddies. HYCOM [14] (Hybrid Coordinate Ocean Model) is an
ocean model that combines the advantages of several different vertical coordinate systems
to provide the most efficient representation of ocean processes in different oceanographic
regimes. It uses isopycnal coordinates in the stratified ocean interior, z-level coordinates in
the unstratified surface mixed layer, terrain-following sigma coordinates in shallow coastal
regions, and hybrid coordinates that are isopycnal in the open, stratified ocean but revert
smoothly to terrain-following coordinates in shallow coastal regions. HYCOM is designed
to optimize the simulation of middle-scale phenomena such as eddies, meanders, and
fronts, as well as their interaction with coastal and bathymetric features. It can be applied
at both global and regional scales.

Fu et al. [15] proposed a hybrid model combining empirical mode decomposition
(EMD), singular spectrum analysis (SSA), and least square (LS) extrapolation for predicting
long-term satellite-derived sea level anomalies (SLAs). The model first decomposed the SLA
into intrinsic mode functions (IMFs) using EMD, then decomposed and reconstructed each
IMF into identifiable principal components via SSA, and finally predicted the reconstructed
components and residuals using LS extrapolation.

2.2. Machine Learning Methods

The dynamics of the ocean are intricate. Traditional methods for predicting the future
development of ocean mesoscale eddies lack accuracy, while machine learning can utilize
a large amount of remote sensing data and achieve more complex modeling, making
it somewhat necessary to use machine learning methods. The task of mesoscale eddy
prediction clearly requires machine learning models to possess strong spatiotemporal
modeling capabilities. They should be able to analyze the patterns and connections in the
changes in eddies or related information to predict information about eddies or related
information in the next timestep.

In a study by Li et al. [16], a predictive model for mesoscale eddy propagation trajecto-
ries was formulated using multivariate linear regression. This model showcased a notable
improvement in forecasting capability over a four-week window compared to conventional
persistent forecasting methods. However, it was observed that forecast accuracy is subject
to sensitivity concerning eddy polarity and forecast seasons. Ma et al. [17] achieved signifi-
cant success in real-time eddy prediction by employing an enhanced Convolutional Long
Short-Term Memory (ConvLSTM) network, complemented by a sea level anomaly-based
eddy detection algorithm.

Building on this momentum, Wang et al. [18] proposed a machine learning model
grounded in a multi-task Convolutional Long Short-Term Memory (LSTM) network and
the extra trees (ET) algorithm. This innovative approach utilized satellite altimetry data
for predicting eddy properties and propagation trajectories. Nian et al. [19] successfully
forecasted the sea level anomaly (SLA) by introducing the Memory In Memory (MIM)
model, integrating a deep learning architecture and making an initial attempt to unravel
the predictability of eddies, demonstrating promising performance. In a parallel vein,
Wang et al. [20] introduced the MesoGRU framework, elevating eddy trajectory prediction
through inventive loss functions and strategic data integration.

Furthermore, Zhu et al. [21] introduced the Vortex-Implanted Initialization Scheme
for Mesoscale Eddy Prediction (VISTMEP), significantly enhancing eddy prediction ac-
curacy. This was achieved by constructing a synthetic eddy and embedding it into the
model’s initial field, accounting for three-dimensional structure, movement trajectory, size,
and intensity.
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3. Preliminary

In recent years, deep learning methods have shown tremendous potential in the
field of weather and climate forecasting [22]. They represent a data-driven forecasting
approach that utilizes large amounts of historical data and complex neural network models
to automatically learn the intrinsic relationships and patterns between the environment
and various influencing factors [23,24]. This method can extract valuable representation
from massive ocean observation data to construct precise prediction models. Deep learning
models can simultaneously consider the interactions of multiple physical variables, better
reflecting the nonlinear dynamic processes of the ocean, thus providing more accurate and
detailed forecasts of ocean conditions. Therefore, the application of deep learning methods
in ocean forecasting has good reliability and prospects. However, there are also issues with
interpretability and stability that need to be addressed. The foundation of deep learning
methods lies in the structure and functioning of artificial neural networks, which will be
discussed in the following section.

3.1. Neural Network Basis

Artificial Neural Networks (ANNs) are computational models that mimic the structure
and function of biological neural systems. A basic neural network consists of an input layer,
hidden layers, and an output layer, with each layer containing multiple neurons. Neurons
receive inputs from the previous layer, process them through weighted summation and
activation functions, and output the results to the next layer.

For the j-th neuron in the l-th layer, its output can be represented as

a(l)j = σ

(
nl−1

∑
i=1

w(l)
ji a(l−1)

i + b(l)j

)

where a(l)j is the output of the j-th neuron in the l-th layer, w(l)
ji is the weight from the i-th

neuron in the (l-1)-th layer to the j-th neuron in the l-th layer, b(l)j is the bias term of the j-th
neuron in the l-th layer, and σ is the activation function.

The introduction of nonlinear activation functions endows neural networks with
nonlinear mapping capabilities, enabling them to learn nonlinear patterns and features
from the input data, thereby better fitting complex data distributions. Common activation
functions include Sigmoid, Tanh, and ReLU. Different activation functions have different
mathematical properties and perform differently in various scenarios.

3.2. Convolution-Based Neural Networks

Convolutional Neural Networks (CNNs) are popular and effective deep learning
models widely applied to tasks such as image and video processing. The design of CNNs
is inspired by the biological visual system, aiming to automatically learn hierarchical
feature representations.

The convolution operation in CNNs can efficiently and effectively learn representations
from images. It has the characteristics of having fewer parameters and being invariant
to translation and rotation. The convolutional layer performs convolution operations by
sliding a kernel over the input feature maps to extract local features while preserving the
spatial structure information of the input. The convolution operation involves the following
key parameters:

Kernel: The kernel is a small matrix that determines the output feature map.
Stride: The step size at which the kernel slides over the input.
The formula of a convolution operation is

yij = ∑
m

∑
n

wmnxi×stride+m,j×stride+n + b
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where x is the input feature map, w is the kernel weight, and b is the bias term. By applying
the kernel at every position of the image or feature map, a new feature map is obtained.

3.3. Model Training Process

The training process of deep learning models typically includes two stages: forward
propagation and backward propagation. Forward propagation calculates the model’s
output and loss function value, while backward propagation updates the model parameters
based on the loss function.

Given a training sample (x, y), the model’s predicted output is ŷ = f (x; θ), where θ
represents the model parameters. The loss function L(ŷ, y) measures the difference between
the predicted output and the true label. In our task, we used Mean Squared Error (MSE) as
the loss function. Its formula is as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

where n is the number of samples, ŷi is the true/target value, and yi is the predicted value.
Backward propagation calculates the gradients of the loss function with respect to the

parameters of each layer using the chain rule:

∂L

∂w(l)
ji

=
∂L

∂a(l)j

∂a(l)j

∂z(l)j

∂z(l)j

∂w(l)
ji

= δ
(l)
j a(l−1)

i

∂L

∂b(l)j

=
∂L

∂a(l)j

∂a(l)j

∂z(l)j

∂z(l)j

∂b(l)j

= δ
(l)
j

where z(l)j = ∑
nl−1
i=1 w(l)

ji a(l−1)
i + b(l)j and δ

(l)
j = ∂L

∂z(l)j

.

The optimizer can utilize the results of backpropagation to update the model’s param-
eters, θ, thereby reducing the loss between the model’s output and the true values.

4. Data and Methods
4.1. Data

We obtained ocean grid data from the Copernicus Marine Environment Monitoring
Service (CMEMS). We used the “Global Ocean Gridded L4 Sea Surface Heights and Derived
Variables Reprocessed 1993 Ongoing” [25] and “Global Ocean Gridded L4 Sea Surface
Heights And Derived Variables Nrt” [26] dataset. Due to the spatial and temporal gaps in
satellite observations and the need for higher accuracy, these datasets employ interpolation
techniques. The NRT (Near Real Time) data use interpolation with data from the current
day and up to 6 weeks prior, but do not include data from future dates. In contrast, the
reprocessed data incorporate data from subsequent days, although the product does not
specify the maximum number of future days used. Both sources have a resolution of
0.25◦ × 0.25◦. The data include these variables that we need to use:

• Absolute Dynamic Topography (ADT), which measures the sea surface height relative
to the geoid.

• Sea Level Anomaly (SLA), which measures the deviation of the sea surface height
from the mean sea level.

• Zonal geostrophic velocity (UGOS) and meridian geostrophic velocity (VGOS), which
are the horizontal components of the geostrophic currents. These currents are driven
by the balance of the pressure gradient and the Coriolis force.
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4.2. SSH Prediction Model

To predict future SSH data, a deep learning model can be constructed. This model
should take a series of previously observed SSH data as input, use future SSH data as labels,
compute loss, optimize the model, and achieve accurate SSH predictions. The input–output
format and the need to capture spatio-temporal correlations are very similar to those for
video prediction models.

The video prediction task aims to generate future frames of a video sequence based
on past frames. Video prediction models have played an important role in predicting
geographical data such as typhoons and weather, and have also demonstrated their poten-
tial for the accurate prediction of sea surface height. Our SSH prediction model structure
is primarily based on the Implicit Stacked Autoregressive Model for Video Prediction
(IAM4VP) [27]. The model consists of an Encoder, a Predictor, and a Decoder. Additionally,
we incorporated a Metadata Embedding (ME) module into the model to enhance the pre-
dictive performance of the SSH prediction model by providing metadata of the model’s
input. Figure 2 briefly illustrates the model’s architecture.

SSH & Velocities 

二三
I Metadata Embedding I� 三］

Figure 2. The architecture of our SSH prediction model. This convolution-based deep learning
model consists of an Encoder, Metadata Embedding Module, Predictor, and Decoder, using sea
surface height and velocity data as the input. Section 4.2.5 provides a detailed overview of the
model’s composition.

4.2.1. Encoder

The Encoder module aims to encode the input sea surface height (SSH) and velocity
data, extracting effective feature representations. It employs a series of convolutional layers
to gradually downsample the feature maps and increase the number of channels. This
process resembles the commonly used CNN architectures, where spatial information is
progressively aggregated to obtain more abstract and high-level features. The features
extracted by the Encoder need to capture the spatial patterns of ocean dynamics. Through
successive convolution and downsampling operations, the Encoder can capture structural
features at different scales, such as ocean currents, eddies, and waves, providing essential
prior knowledge for subsequent time series prediction.
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The Encoder consists of four Convolution–Layer Normalization–SiLU [28] (Conv–
LayerNorm–SiLU) Layers, as illustrated in Figure 2. The Encoder takes 64 × 64 pixel ocean
grid data for the previous 10 time steps, including SSH and UGOS, VGOS, resulting in an
input shape of 10 × 3 × 64 × 64. The first layer’s output is passed through skip connections
and used as part of the decoder’s input. The fourth layer generates a 128-channel spatial
feature map, which is then sent to the predictor.

Overall, the Encoder learned deep spatial features from input data, improving the
model’s representational capacity. These deep features play a vital role in the Predictor.

4.2.2. Metadata Embedding Module

Breaking down images into patches and converting them into features is a method
employed by certain deep learning models for image processing to reduce computational
complexity [29]. However, this approach would lead to a loss of relative positional in-
formation of patches. Relative positional information often differs from the modality of
the original data or features, necessitating a network module to extract its features and
integrate them with the input data’s features. Therefore, these models encode the relative
positional information of each patch and embed it into the corresponding features of the
patch. Similarly, in our training data creation process, the SSH images that cover a wide area
over a certain time period were segmented into patches, resulting in the loss of metadata
from the input data. In our model, metadata refers to the sampling time and geographical
location of the patch.

After being inspired by this, we added a Metadata Embedding module to the model,
which encodes the input data’s metadata and outputs a feature vector to enhance the
performance of the Predictor. This feature, along with the output feature of the Encoder,
both enter the Predictor. In our single window area prediction model, the metadata only
include t, while in the large-scale area prediction model, they include t, lon, and lat. The
definitions of t, lon, and lat are as follows:

t = DOY/365

lon = (SamplingLongitude + 180)/360

lat = (SamplingLatitude + 90)/180

The DOY (Day Of the Year) is an integer between 0 and 365, representing the number
of days into the year that correspond to the sampling time of the first frame of an input.
For instance, the DOY for 2 February 2021 is 31 + 1 = 32. SamplingLongitude is a number
between −180 and 180. It represents the lowest longitude value (in degrees) in the input
SSH frame, with negative numbers indicating western longitude and positive numbers
indicating eastern longitude. SamplingLatitude is a number between −90 and 90, repre-
senting the lowest latitude value in degrees within the input SSH frame, where negative
values denote southern latitudes and positive values denote northern latitudes.

Figure 3 illustrates the architecture of the Metadata Embedding module. The module
includes a positional encoding module and a Feed-Forward Network with a GELU [30]
activation function. We utilized sinusoidal positional encoding [31] for the initial encoding
of the metadata. Sinusoidal positional encoding provides a unique representation for each
position. It captures relative positional relationships through the periodicity of sine and
cosine functions. Despite introducing redundancy, sinusoidal positional encoding is a
simple and effective positional encoding method due to its multi-scale representation, good
generalization ability, and computational efficiency. Each element Ej of the input vector is
first encoded into a d sized vector using the following positional encoding formula:

PE(Ej, 2i) = sin
( Ej

100002i/d

)

PE(Ej, 2i + 1) = cos
( Ej

100002i/d

)
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Figure 3. A simplified image representation of the Metadata Embedding Module.

Then, through two layers of fully connected networks, a metadata feature of size d is
obtained. The hyperparameter d is the size of the feature output, and it is set to 64 in our model.

This module enables the model to learn the patterns of SSH changes in different
regions or at different times, thereby improving the accuracy of SSH prediction.

4.2.3. Predictor

The Predictor module is responsible for predicting the sea features for future time steps
based on the features extracted by the Encoder. It employs a ConvNeXt [32] block-based
spatial–temporal prediction network that performs causal convolution along the temporal
dimension to model the temporal evolution of ocean dynamics. ConvNeXt is a novel
convolutional neural network architecture designed for computer vision tasks. ConvNeXt
employs a unique design that combines the strengths of convolutional neural networks and
transformer models, leveraging the inductive biases of both architectures. Each ConvNeXt
block in the Predictor includes components such as depthwise separable convolutions,
Layer Normalization, and MLP, effectively capturing the nonlinear dynamic features of
ocean dynamics. Through gradual transformations and updates of the feature maps, the
Predictor generates high-quality predictions of future sea surface heights.

Moreover, the Predictor incorporates metadata features as additional input. It contains
prior information such as relative time, latitude, and longitude, enabling the model to
better understand the spatial and temporal patterns in ocean data. As a result, the Predictor
can more accurately capture the evolution trends of ocean dynamic processes and generate
future ocean features.

Overall, by introducing metadata embedding and adopting a powerful spatio-temporal
convolutional network, Predictor can effectively model the long-term evolution patterns of
ocean dynamic processes, generating accurate future ocean features. These features contain
abundant semantic information about the ocean, which can be restored in the decoder as
future sea surface heights and are also applicable to other prediction tasks.

4.2.4. Decoder

The Decoder module is responsible for progressively upsampling and decoding the
low-resolution prediction feature maps generated by the Predictor, restoring sea surface
height predictions with the same size as the input. It employs a series of transposed
convolutional layers to gradually increase the resolution of the feature maps and fuses them
with shallow features extracted by the Encoder to recover more refined prediction details.

During the decoding process, the Decoder needs to combine feature information at
different scales to generate high-quality prediction results. By incorporating shallow fea-
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tures extracted by the Encoder, the Decoder can fuse high and low-frequency information,
preserving global structural consistency while restoring prediction details. This design
of skip connections has been widely validated in tasks such as image segmentation and
super-resolution, effectively enhancing the visual quality of the generated results.

Finally, the output of the Decoder is mapped through a 1 × 1 convolutional layer to
obtain sea surface height prediction results with the same size as the input. By calculating
Mean Squared Error (MSE) Loss using actual future time-steps for sea surface height and
updating model parameters through backpropagation, this training approach allows for
the end-to-end training of the prediction model. As a result, accurate sea surface height
predictions with visual similarity to actual sea surface height maps can be achieved.

In summary, the Decoder module employs a transposed convolution-based architec-
ture with large kernel attention (LKA) [33] mechanisms to effectively restore low-resolution
prediction feature maps into high-quality sea surface height prediction results. Through
strategies such as skip connections and dynamic weight adjustments, the Decoder en-
hances the spatio-temporal consistency and detail representation of the prediction results,
providing reliable support for ocean prediction tasks.

4.2.5. Model Details

Table 1, below, shows the precise model architecture, outlining layer specifics for each
component along with input and output tensor shapes, which can be used for replicating
the model.

Table 1. The detailed breakdown of the model we used. M represents the number of metadata items.

Layer Sub-Layer Input Name (Shape) Output Name (Shape)

Encoder
Conv–LayerNorm–SiLU InputSeqs: (10,3,64,64) Enc1: (10,128,64,64)

(Conv–LayerNorm–SiLU) × 3 Enc1 Enc2: (10,128,16,16)

Metadata
Embedding

SinusoidalPosEmb Metadata: (M) Metadata: (M × 64)
Linear Metadata Metadata: (256)
GELU Metadata Metadata: (256)
Linear Metadata Metadata: (64)

Predictor

Concat + Reshape Learnable Parameter: (10,128,16,16),
Enc2 Pred: (2560,16,16)

ConvNeXt bottle Pred Pred: (1280,16,16)
Linear Metadata Metadata_emb: (128)
Add Pred, Metadata_emb Pred: (1280,16,16)

ConvNeXt bottle Pred Pred: (1280,16,16)
Linear Metadata Metadata_emb: (128)
Add Pred, Metadata_emb Pred: (1280,16,16)

ConvNeXt bottle Pred Pred: (1280,16,16)
Linear Metadata Metadata_emb: (128)
Add Pred, Metadata_emb Pred: (1280,16,16)

Linear Metadata Metadata_emb: (128)
ConvNeXt bottle Pred Pred: (1280,16,16)

Linear Metadata Metadata_emb: (128)
Add Pred, Metadata_emb Pred: (1280,16,16)

ConvNeXt bottle Pred Pred: (1280,16,16)
Linear Metadata Metadata_emb: (128)
Add Pred, Metadata_emb Pred: (1280,16,16)

Reshape Pred Pred: (10,128,16,16)

Decoder

TransposedConv-LayerNorm-SiLU Pred Dec: (10,128,16,16)
TransposedConv-LayerNorm-SiLU Dec Dec: (10,128,32,32)
TransposedConv-LayerNorm-SiLU Dec Dec: (10,128,64,64)

Add Dec, Enc1 Dec: (10,256,64,64)
TransposedConv-LayerNorm-SiLU Dec Dec: (10,128,64,64)

Reshape Dec Dec: (1280,64,64)
2D 1 × 1 Convolution Dec Dec: (64,64,64)

Large Kernel Attention (LKA) Dec Dec: (64,64,64)
2D 1 × 1 Convolution Dec Output: (1,64,64)



Remote Sens. 2024, 16, 1466 11 of 23

4.3. Eddy Detection Algorithm

The main purpose of the eddy detection algorithm is to automatically identify and
track eddy structures in ocean currents for a better understanding of ocean dynamic
processes. This algorithm requires processing a large amount of ocean data, typically
including sea surface height, geostrophic current, and sea surface temperature. Table 2
presents common algorithms for detecting mesoscale eddies and their characteristics, each
with their own advantages, disadvantages, and conditions of applicability [34].

Table 2. The comparison of various mesoscale eddy detection algorithms.

Method Category Principle Features

Okubo–Weiss Physical
parameter-based

Uses the Okubo–Weiss parameter to
determine eddy cores based on coherent

regions of negative W for both cyclonic and
anticyclonic eddies.

Low excessive detection rate (EDR).
Low successful detection rate (SDR).

Moderate definition of eddy
boundary (radius).

Vector–Geometry Flow
geometry-based

Uses geometric characteristics of the velocity
field to identify eddies, requiring velocity

vectors in adjacent quadrants inside a chosen
area to successively change by roughly the

same angle and rotate constantly with same
(anticyclonic) or opposite (cyclonic) sign.

Sensitive to data resolution.
Good detection of weak eddies

when using high resolution data.

Winding Angle Flow
geometry-based

Uses a certain SLA value and swirling
vectors to determine eddy boundary;

computes the winding angle and clusters
particles released in the geostrophic current

field into anticyclonic (cyclonic) eddies.

High SDR.
Tends to detect eddies with

larger boundaries.

Angular Momentum
Eddy Detection and
Tracking Algorithm

(AMEDA) [35]

Hybrid (physical
parameter + flow

geometry)

Uses local normalized angular momentum
(LNAM) to detect eddy centers and closed

streamlines to determine eddy boundary; can
track eddy merging and splitting events.

Robust to grid resolution.
Uses a minimal number of

tunable parameters.
Quantifies dynamical eddy features.

In our work, we utilized the AMEDA algorithm as the eddy detection module in the
eddy prediction framework. The Angular Momentum Eddy Detection and Tracking Algo-
rithm (AMEDA) combines angular momentum and geometric features for eddy detection.
It first determines the eddy centers on each grid point based on local angular momentum
and constructs closed contour lines. Then, the algorithm calculates the radius and velocity
of each closed contour line, detecting any merging or splitting events. Finally, it tracks
and analyzes the evolution and interactions of eddies at each time step. The algorithm
ultimately provides detailed information on all eddies within the detection area. This
information includes the eddy center (a single coordinate), the eddy outline (a set of points
enclosing the eddy region), and the eddy properties (either cyclonic or anticyclonic). We
utilized the eddy outline for visualizing predicted eddies and measured the effectiveness
of eddy predictions by calculating the distance between the predicted eddy center and the
true value.

5. Experiments
5.1. Setup

The model training and prediction were performed using the following computer
hardware and software configuration: NVIDIA RTX 4090 graphics card; Intel(R) Core
(TM) i7-13700F CPU; 64 GB RAM; Windows 11 22H2 operating system; Python 3.10.13
interpreter; NumPy 1.26.0; PyTorch 2.1.0. We used the AdamW [36] Optimizer with
parameters (learning_rate = 0.0005, β 1 = 0.9, β2 = 0.999, λ = 0.01) and Mean Square
Loss (MSE) loss function for our model training. Due to limited memory, the batch size for
training was set at 10.
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5.2. Metrics
5.2.1. Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is a measure of the accuracy of the SSH prediction
model. It indicates the average deviation between the predicted values and the true values,
the smaller the better. The formula for RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2

where n is the number of samples, yi is the true value of the i-th sample, and ŷi is the
predicted value of the i-th sample.

5.2.2. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a metric used to evaluate the performance of the SSH
prediction model. It is defined as the average absolute difference between the predicted
values of the model and the true values of the data. The MAE is calculated using the
following formula:

MAE =
1
n

n

∑
i=1

|yi − ŷi|

where n is the number of observations in the data, yi is the true value of the i-th observation,
and ŷi is the predicted value of the i-th observation.

5.2.3. Average Center Distance and Match Rate

The main indicators used to evaluate the effectiveness of mesoscale eddy prediction in
our study were the average center distance and the match rate. For a predicted sea surface
height image ŷi and the corresponding ground truth image yi, we first applied an eddy
detection algorithm D to obtain the set of center points of mesoscale eddies on the sea
surface height images, denoted as c = D(yi) and ĉ = D(ŷi ). Subsequently, we constructed
a bipartite graph using V = {c, ĉ} as the vertex set, with the edge weight being the absolute
distance between the eddy center points, to perform a minimum weight matching to obtain
the set of matched points. This process allowed us to calculate the Average Center Distance
as follows:

AvgDis = ∑n
i=1 disi

n
The variable disi represents the weight of the i-th edge of matching, representing the

distance between the predicted eddy center and the actual value, measured in kilometers.
n denotes the total number of matched points.

The Match Rate indicates the frequency at which the eddy centers in the actual values
are successfully matched. It can be calculated by the following formula:

MatchRate =
n
N

The variable N denotes the total number of ground truth eddy center points.

5.3. Sea Surface Height (SSH) Prediction Results

In this section, we employed large-scale ADT prediction and single-window SLA
prediction methods to assess the performance variations of our different models across
various time intervals and datasets. Large-area prediction involves the use of a sliding
window to sample the dataset within a large area, allowing for predictions of sea surface
heights at any window position within the area. On the other hand, single-window
area prediction focuses only on a fixed small area, aiming to achieve better results than
large-area prediction. The large-area predictive model saves computational resources
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significantly, while the single-window predictive model provides a significant improvement
in effectiveness compared to the large-area predictive model.

5.3.1. Large Area ADT Prediction Results

In this section, we utilize the ADT and UGOS, VGOS data from the “Global Ocean
Gridded L4 Sea Surface Heights And Derived Variables Nrt” product to train models for
predicting future ADT data in a large region. The study area was defined by the region
bounded by 107.875◦E to 179.875◦E in longitude and 39.875◦N to 39.875◦S in latitude.
Due to the larger size of the target region for training and prediction compared to the
input–output area of the model, we employed a sliding window approach to extract data
of the same size as the model’s input and output from the larger dataset. We then gathered
the metadata proposed in Section 4.2.2 to form the dataset. The training and validation
data were from the years 2019 to 2020, while the testing data were from 2021. We selected
11 consecutive time steps with a time interval of 3 days between each time step, setting
the window size to be 64 × 64 pixels, corresponding to the spatial resolution of the data
product. Each pixel represented a 0.25◦ × 0.25◦ grid cell on the Earth surface. The window
was moved in both longitude and latitude directions with a stride of 24 pixels.

In 3-day prediction, the input data’s time series were derived from the remote sensing
image frames of the past 28 days, with 10 frames sampled as input at 3-day intervals. In
7-day prediction, we used a specific time interval sequence of past SSH frames to help the
model better capture the long-term and short-term changes in the ocean. In brief, the input
consisted of 10 frames with relative days of i, i + 7, i + 14, i + 17, i + 20, i + 23, i + 26, i + 27,
i + 28, and i + 29, while the predicted frame, or label, corresponded to day i + 36. We trained
these models for 100 epochs.

We divided the experiment into four groups: the first group trained using ADT and
UGOS, VGOS channels with the Metadata Embedding module (3dim-ME), the second
group trained using ADT and UGOS, VGOS channels without the Metadata Embedding
module (3dim), the third group trained using only the ADT channel with the Metadata
Embedding module (1dim-ME), and the fourth group trained using only velocity channels
with the Metadata Embedding module (UV-ME). We also employed a ConvLSTM [37]
with 5 hidden layers and a hidden dimension of 64 for comparison. Table 3 shows the
performances of these models. The model performed best when using velocity input
combined with Metadata Embedding. It obtained an RMSE of 0.0108 m and MAE of
0.0084 m for 3-day prediction, and an RMSE of 0.0216 m and MAE of 0.0167 m for 7-day
prediction. The model’s performance using only ADT as input with Metadata Embedding
was second-best, achieving an RMSE of 0.0110 m and MAE of 0.0085 m for the 3-day
prediction and an RMSE of 0.0221 m and MAE of 0.0172 m for the 7-day prediction. The
model performed less well when using velocity input without Metadata Embedding,
achieving RMSE and MAE values of 0.0111 m and 0.0087 m for the 3-day prediction, and
0.0228 m and 0.0177 m for the 7-day prediction. When using only velocity input along with
metadata embedding, the model attained an RMSE of 0.0476 m and an MAE of 0.0381 m
for 3-day prediction. As for 7-day prediction, the RMSE and MAE values were 0.0515 m
and 0.0380 m, respectively. ConvLSTM exhibited poorer performance, achieving RMSE
and MAE values of 0.0541 m and 0.0425 m for the 3-day prediction and 0.0564 m and
0.0440 m for the 7-day prediction. Figure 4 shows the error distribution of our model on
the test dataset. It can be observed that the absolute error in the 3-day prediction was
almost always within 0.05 m, while the performance in the 7-day prediction was noticeably
worse. Overall, the prediction performance of 7-day prediction was significantly inferior to
3-day prediction.

When the model is trained and used to make predictions based on data from a large
area, the varying locations of data sources significantly impact the accuracy of the model’s
predictions. In other words, the difficulty of predicting data varies across different locations.
Figure 5 illustrates the distribution of RMSE in predicting the model at different locations
within the area we studied for 3-day and 7-day prediction. There are many parts in the
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image without points due to missing data in the dataset, mainly caused by missing data in
land areas. It can be observed from the figure that the model seems to perform worse near
the missing values and better and more consistently in areas without missing values.

Table 3. Large area ADT prediction experiment results and performance comparison.

Timestep Model
Test Loss

RMSE (m) MAE (m)

3 days

IAM4VP-3dim-ME 0.0108 0.0084
IAM4VP-3dim 0.0110 0.0085

IAM4VP-1dim-ME
IAM4VP-UV-ME

0.0111
0.0476

0.0087
0.0381

ConvLSTM 0.0541 0.0425

7 days

IAM4VP-3dim-ME 0.0216 0.0167
IAM4VP-3dim 0.0221 0.0172

IAM4VP-1dim-ME 0.0228 0.0177
IAM4VP-UV-ME 0.0515 0.0380

ConvLSTM 0.0564 0.0440
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0.06 
0.03 

0.04 0.02 

0.02 O.Ol 

0.00 0.00 
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Figure 4. The error distribution in the large area ADT predictions. Each graph shows the absolute
error (m) on the horizontal axis and the frequency on the vertical axis. The first and second images
show the results for predictions over 3 days and 7 days, respectively.
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Figure 5. The distribution of RMSE across different regions. The points on the graph represent the
central coordinates of a data point. The axes represent longitude and latitude in degrees, with western
longitude and northern latitude specified as positive directions.
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5.3.2. Single-Window Area SLA Prediction Results

In this section, we used single-window-size area data from the “Global Ocean Gridded
L4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing” product to
predict the sea level anomaly (SLA) 3 or 7 days later. Training in a single-window-size area
means that only the sea surface height within that particular window can be predicted, but
it is apparent that higher accuracy can be achieved. Multiple models can be trained using
this method to predict sea surface height in larger areas. Since the prediction location is
static, the Metadata Embedding module only provides relative time information t proposed
in Section 4.2.2, as the location metadata is static.

We conducted tests on data from three different regions. Our training data were sourced
from the region with the specified latitude and longitude (Region 1, 13.375◦N~29.125◦N,
139.375◦E~123.125◦E) and two areas in Kuroshio Extension (Region 2, 26.125◦N~41.875◦N,
179.875◦E~163.625◦E; Region 3, 26.125◦N~41.875◦N, 167.875◦E~151.625◦E) as our research
sample to predict mesoscale eddies. Due to the lower accuracy of edge areas in the
predicted numerical image compared to the center areas [4], we only selected the central
50 × 50 region of the numerical image for output to calculate the loss and assess the
accuracy. The training and validation data were from the years 1993 to 2017, while the
testing data span from 2018 to 2021. To the best of our knowledge, our model performed
the best among all known methods for this specific task.

First, we trained a 7-day prediction for Region 1 for 100 epochs. Region 1 was chosen
to compare performance with Enhanced MIM [19] for SLA prediction. Table 4 shows the
performances of these models. Even though the Enhanced MIM paper did not include
a 7-day prediction experiment, our 7-day prediction in this area resulted in an RMSE of
0.0110 m and MAE of 0.0083 m, significantly outperforming their 6-day prediction with an
RMSE of 0.017 m.

Table 4. Comparison of the model performance in Region 1 prediction. Models were trained and
tested using the same data source, same region, and similar timestep.

Model (Timestep)
Test Loss

RMSE (m) MAE (m)

IAM4VP-ME (7 days) 0.0110 0.0083
Enhanced MIM (6 days) 0.017 /
Enhanced MIM (8 days) 0.019 /

Then, we used the weights of this model as pre-training weights for training models
in Regions 2 and 3. Using the pre-training weights, only 5 to 10 epochs of fine-tuning are
needed to achieve good results, as higher numbers of epochs can lead to severe overfit-
ting. Table 5 shows the performance of our single-window-size SSH prediction model.
The results indicate that the RMSE values for the 3-day prediction in two regions were
0.0033 m and 0.0030 m, with corresponding MAE values of 0.0025 m and 0.0023 m. For
the 7-day prediction in two regions, the RMSE values were 0.0097 m and 0.0087 m, with
MAE values of 0.0076 m and 0.0061 m. Figures 6 and 7 display the performance of 3-day
and 7-day predictions. The results demonstrate that employing single-window area predic-
tion significantly enhances prediction accuracy, with considerable differences in accuracy
observed across different regions.

In addition, the spatial distribution of errors in the 3-day prediction is relatively
uniform, while in the 7-day prediction, the spatial distribution of errors is more uneven.
Figure 8 depicts the distribution of errors for 3-day and 7-day prediction. The results
indicate that the error for the 3-day predictions was nearly always below 0.01 m, whereas
the accuracy of the 7-day prediction was slightly lower.
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Table 5. Comparison of the model performance in two different time intervals within the Kuroshio
Extension area.

Timestep

Test Loss

Region 2 Region 3

RMSE (m) MAE (m) RMSE (m) MAE (m)

3 days 0.0033 0.0025 0.0030 0.0023
7 days 0.0097 0.0076 0.0087 0.0061
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Figure 6. A sample of single-window area 3-day prediction results. The columns from left to
right show the predicted image, the ground truth image, the error, and the scatter plot with the
fitted line of predicted value versus true value. The error is the result obtained by calculating the
difference between the predicted image and the ground truth image. The color bar and scatter plot
measurements are in meters.
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Figure 8. The error distribution in the single-window area SLA predictions. Each graph shows the
absolute error (m) on the horizontal axis and the frequency on the vertical axis. The first and second
columns represent the results of Region 2 and Region 3 in the test data, while the first and second
rows show the results for predictions over 3 days and 7 days, respectively.
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5.4. Mesoscale Eddy Prediction Results

In this section, we tested and evaluated the predictions of mesoscale eddies in the
Kuroshio Extension region. We utilized the model from Section 4.2 to predict the sea
level anomaly (SLA) gridded data for the Kuroshio Extension region for the period from
8 February 2022 to 31 July 2022. The test areas were as follows: (Area 1: 27.875◦N~40.125◦N,
166.125◦E~153.875◦E) and (Area 2: 27.875◦N~40.125◦N, 178.125◦E~165.875◦E), correspond-
ing to the Region 2 and 3 cropping of a 50 × 50 center area mentioned in Section 5.3.2. We
applied the AMEDA algorithm to detect mesoscale eddies in both predicted and ground
truth sea level anomaly (SLA) series and compared the results from both sets of eddy
detections. The performance evaluation will focus on the deviation of the eddy center
and the prediction of the mesoscale eddies’ lifespan. Figure 9 shows examples of eddy
detection results with SLA maps. The result demonstrates that our method accurately
predicts larger mesoscale eddies, but may inaccurately predict or fail to predict the location
of some smaller mesoscale eddies.
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Figure 9. Examples of eddy detection results with SLA maps. The white circles represent the shape of
the eddies, with the points inside the circles indicating the position of the eddy centers. This shape
and center position information is calculated by the eddy detection algorithm.

First, we conducted a statistical analysis of the total detection counts for cyclonic and
anticyclonic eddies. Figure 10 shows the total counts of cyclonic and anticyclonic eddies for
different datasets. We found that the original dataset had the highest detection capabilities
for eddies, followed by the 3-day prediction and the 7-day prediction, which detected
fewer eddies. We found that this method performs less well for smaller eddies, primarily
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due to the lag in predicting the appearance of eddies and the tendency to anticipate the
disappearance of eddies.

Total detection count of cyclonic/anticyclonic eddies 
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Figure 10. Total detection count of cyclonic/anticyclonic eddies in Area 1 and Area 2.

We matched the actual and predicted positions of the eddy centers at the same time
and location to evaluate the performance of the eddy prediction. To address the problem of
aligning predicted and actual eddy center positions, we transformed the sets of predicted
and actual eddy centers for each day into a bipartite graph. We then determined the
minimum-weight matching by considering the actual distances between the points. During
the construction of the bipartite graph, edges with real distances (edge weights) exceeding
100 km are ignored due to the significant deviation of eddy centers, which may likely not
represent a correct match.

Table 6 presents the results of the evaluation of eddy prediction after matching. In the
3-day prediction, Area 1 achieved an Average Center Distance of 4.5566 km and a Match
Rate of 94.02%, while Area 2 had an Average Center Distance of 6.6462 km and a Match
Rate of 92.48%. In the 7-day prediction, Area 1 achieved an Average Center Distance of
11.6794 km and a Match Rate of 86.57%, while Area 2 had an Average Center Distance of
15.5567 km and a Match Rate of 82.28%. As the prediction time increases, the difficulty of
prediction also rises, resulting in lower accuracy of the predicted eddy. The decrease in
match rate is associated with lagging predictions of eddy appearance and a loss of image
details, leading to undetectable eddies.

Table 6. Assessment of mesoscale eddy predictions with different time steps in two regions.

Prediction Area/Time Step Average Center Distance (km) Match Rate

Area 1, 3-day 4.5566 94.02%
Area 1, 7-day 11.6794 86.57%
Area 2, 3-day 6.6462 92.48%
Area 2, 7-day 15.5567 82.28%

Figure 11 illustrates the distribution of distances between the predicted eddy centers
and the actual values. We found that predicting mesoscale eddies using the 3-day prediction
of sea surface height has very high accuracy. Most of the predicted eddy centers deviated
from the true values by less than 20 km. However, the accuracy slightly decreased in the
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7-day prediction, and the match rate also declined. Combining with the results in Figure 9,
this may be attributed to the higher difficulty in predicting sea surface height, leading to
inaccuracies in the reflected eddy information in the predicted SSH data.
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Figure 11. Distributions of eddy center distances at different time steps in different regions.

Table 7 presents a comparison of various mesoscale eddy prediction methods, includ-
ing our proposed IAM4VP with ME approach. The methods are evaluated based on the
datasets used, the geographical data range, the average center offset distance at different time
offsets, and their ability to predict the generation and disappearance of mesoscale eddies.

Table 7. The comparison of various mesoscale eddy prediction methods and our proposed method.

Method Dataset Data Range Average Center Offset
Distance (Prediction Time)

Prediction of the
Generation and
Disappearance

Multiple Linear
Regression [16]

AVISO (L4 SSH, Eddy
Trajectory dataset)
GDEM V3 (Ocean

Temperature, Salinity)

Northern South
China Sea

36.9 km (anticyclonic),
41.1 km (cyclonic) (7 days)

81.0 km (anticyclonic),
88.5 km (cyclonic) (14 days)

×

LSTM + ET [18] AVISO (Eddy
Trajectory dataset)

South China Sea
(5◦~25◦N, 105◦~125◦E)

10.6 km (1 day)
23.3 km (7 days) ×

Enhanced MIM [19] AVISO (L4 SSH)
Western Pacific Ocean

(125◦~137.5◦E,
15◦~27.5◦N)

21.43 km (7 days)
29.8 km (14 days)

√

MesoGRU [20]
AVISO (Eddy

Trajectory dataset)
CMEMS (L4 SSH)

South China Sea
(4◦~21◦N, 105◦~118◦E)

8 km (1 day)
18.5 km (14 days) ×

IAM4VP with
ME (Ours) CMEMS (L4 SSH)

Kuroshio Extension
(27.875◦N~40.125◦N,
166.125◦E~153.875◦E)

and (27.875◦N~40.125◦N,
178.125◦E~165.875◦E)

5.6267 km (3 days)
13.6315 km (7 days)

√

Among the compared methods, our IAM4VP with ME approach demonstrated su-
perior performance in terms of the average center offset distance, achieving 5.6267 km
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at a 3-day time offset and 13.6315 km at a 7-day time offset. Furthermore, our method
was capable of predicting both the generation and disappearance of mesoscale eddies, a
feature that is only shared by the Enhanced MIM method. The other methods, such as
LSTM and ET and MesoGRU, do not provide this capability. In conclusion, our IAM4VP
with ME approach exhibited high performance in mesoscale eddy prediction, offering
accurate predictions of eddy center positions and the ability to forecast the generation and
disappearance of eddies.

6. Conclusions

In our study, we employed a deep learning SSH prediction model to predict sea
surface height. Then, we utilized the predicted sea surface height data for eddy detection to
predict mesoscale eddies. For the sea surface height prediction, we incorporated ADT and
SLA data from CMEMS, and integrated geostrophic velocity data as the training dataset.
We constructed a sea surface height prediction model based on the deep learning model
IAM4VP and incorporated a Metadata Embedding module to enable the model to learn the
patterns of sea surface height variations in different regions and times. The experimental
results demonstrated that the fusion of velocity data and the Metadata Embedding module
enhanced the performance of the sea surface height prediction model. Furthermore, in
addition to training the model with large-area sea surface height data, we also explored the
use of a fixed small area for single-window area SSH prediction. This approach allowed the
model to focus on prior knowledge within the same geographical location and predict the
sea surface height exclusively within that small region, significantly improving prediction
accuracy. Our model obtained RMSE values of 0.0033 m and 0.0030 m, as well as MAE
values of 0.0025 m and 0.0023 m, respectively, in two chosen regions for 3-day prediction.
For the 7-day prediction in two regions, we achieved RMSE 0.0097 m and 0.0087 m, with
MAE 0.0076 m and 0.0061 m. The empirical results validated that our model outperformed
the best-known models of the same type. Lastly, we employed the AMEDA algorithm to
perform eddy detection on the predicted sea surface height data and thus obtained the
prediction results for mesoscale eddies. We analyzed the errors in the 3-day and 7-day
prediction results in comparison to the ground truth values. The results indicate that both
the 3-day and 7-day predictions have high accuracy. In the 3-day prediction in two selected
areas, the average distance of the eddy center deviation reached 4.5566 km and 6.6462 km,
while in the 7-day prediction, it reached 11.6794 km and 15.5567 km.
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