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Abstract: A point cloud is a simple and concise 3D representation, but point cloud generation is
a long-term challenging task in 3D vision. However, most existing methods only focus on their
effectiveness of generation and auto-encoding separately. Furthermore, both generative adversarial
networks (GANs) and auto-encoders (AEs) are the most popular generative models. But there is a
lack of related research that investigates the implicit connections between them in the field of point
cloud generation. Thus, we propose a new bidirectional network (BI-Net) trained with collaborative
learning, introducing more priors through the alternate parameter optimizations of a GAN and AE
combination, which is different from the way of combining them at the network structure and loss
function level. Specifically, BI-Net acts as a GAN and AE in different data processing directions,
where their network structures can be reused. If optimizing only the GAN without the AE, there is no
direct constraint of ground truth on the generator’s parameter optimization. This unique approach
enables better network optimization and leads to superior generation results. Moreover, we propose
a nearest neighbor mutual exclusion (NNME) loss to further homogenize the spatial distribution of
generated points during the reverse direction. Extensive experiments were conducted, and the results
show that the BI-Net produces competitive and high-quality results on reasonable structure and
uniform distributions compared to existing state-of-the-art methods. We believe that our network
structure (BI-Net) with collaborative learning could provide a new promising method for future point
cloud generation tasks.

Keywords: 3D point cloud; 3D object generation; generative adversarial network; deep learning

1. Introduction

Three-dimensional point clouds are becoming more and more popular for depicting
real-life objects, and thus, they play significant roles in vision, robotics, augmented reality
and virtual reality tasks. Among these tasks, learning to generate 3D data has attracted
much attention and has been studied using various methods, e.g., image-to-point cloud,
image-to-mesh, point cloud-to-voxel, point cloud-to-point cloud, etc. These generated
data can be used for different 3D computer vision tasks, such as reconstruction [1–4],
completion [5–7], segmentation [8,9], object detection [10–14], classification [15,16] and
upsampling [17–21]. However, there are few works tackling the task of generating 3D point
clouds from noises, which can create additional training data for recognition, synthesizing
new shapes, etc.

To address the point cloud generation task, researchers have proposed several gen-
erative adversarial network (GAN)-based models [22–26], auto-regressive models [27],
flow-based models [28] and probabilistic generative model [29]. It is obvious that more
researchers tend to use GAN-based methods due to their strong generative ability and easy
expandability. Meanwhile, we find that many point cloud generation methods explore the
effectiveness of their methods in auto-encoding tasks. For instance, Achlioptas et al. [22]
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proposed a latent-space GAN (l-GAN) to first train an AE to learn a latent representation
z and then sample z from its fixed latent space Pz as the input of the GAN. And once the
training of the GAN was over, they converted a code learned by the generator into a point
cloud using the AE’s decoder. Yang et al. [28] also proposed a flow-based auto-encoder
to tackle the point cloud generation task, and they also evaluated the auto-encoding per-
formance of their method. The above researchers illustrate the strong correlation between
point cloud generation and auto-encoding tasks. Moreover, in the field of image generation,
GANs [30–33] and AEs [34–36] are both the most popular generative frameworks. However,
all the aforementioned methods use different networks for auto-encoding and generation,
and train them individually. This will inevitably ignore the implicit connection between
GANs and AEs, which involves valuable priors.

To solve the above problems, this paper proposes a bidirectional network (BI-Net)
with a novel training pipeline for tackling the point cloud generation task. The generated
multi-category shapes illustrated in Figure 1 demonstrate the robustness of our BI-Net,
since various categories of point clouds can be generated with BI-Net in high quality. We
deeply explored the relationship between a GAN and AE. In a nutshell, we designed a
novel network that could be reused in the reverse training direction, and the network
performs generation and auto-encoding tasks in different training directions. Crucially, we
trained a GAN and AE alternately in the same training period, allowing the two tasks to
share and mutually assist each other in terms of parameters. Coupled with the different
object functions of the GAN and AE, the BI-Net was enhanced, thus being capability of
generating high-quality shapes.

Similar to a 3D GAN, the BI-Net consists of two modules, i.e., an En-Di module
and De-Ge module. In the forward direction, the BI-Net is considered an AE. The En-Di
module is an encoder in the forward direction, and it extracts latent features of the input real
point clouds. The features would then be fed to the De-Ge module, which is a decoder in
this direction. In the reverse direction, the BI-Net is considered a GAN. The De-Ge module
takes noises as input and generates fake point clouds in this direction. The En-Di module
plays a discriminator role and discriminates fake/real point clouds in a classification form.
Since the De-Ge module learns a mapping function from the latent features to point clouds
when training the AE, its non-linear fitting ability was enhanced when training the BI-Net
as a GAN, thus achieving the purpose of collaboration between the GAN and AE. Since
there is no ground truth in the point cloud generation task, the Chamfer distance (CD) loss
and Earth mover’s distance (EMD) loss cannot be applied to constrain the quality of the
generated point clouds. But in the auto-encoding task, there do exist ground truths, and of
course, the CD/EMD loss can be utilized. Therefore, the collaborative learning of the GAN
and AE brings more priors, in terms of parameters, into the whole BI-Net.

Figure 1. Examples of multi-category unsupervised shapes generated by BI-Net (e.g., guitar, bag,
table, bottle, car, bathtub, bowl, airplane and chair).
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To further improve the quality of the generated points, we also propose a nearest
neighbor mutual exclusion (NNME) loss for the 3D GAN. Li et al. [20] and Yu et al. [19]
proposed the uniform loss and repulsion loss in upsampling tasks, respectively. However,
these losses are not applicable to pure generation tasks. The uniform loss utilizes the
farthest sampling strategy to choose seed points; because the fake point clouds are not
fixed at the beginning, the selected seed points cannot effectively represent shapes. Hence,
it is difficult for the network to optimize uniform loss in pure generation tasks. In repulsive
loss, there is a parameter relative to the upsampling rate. However, there is no upsampling
rate existing in this pure point cloud generation task, so repulsion loss is not applicable,
either. To this end, our NNME loss imposes a weak constraint on the point distribution
uniformity. It selects non-repetitive minimum distances among points and attempts to
minimize the variance of these distances.

Our contributions are three-fold, and are as follows:

• To tackle the point cloud generation task, we propose a bidirectional network with
collaborative learning in a novel point cloud generation and auto-encoding pipeline,
and the collaborative learning of the GAN and AE brings more priors, in terms of
parameters, into the BI-Net.

• We propose a nearest neighbor mutual exclusion loss, which minimizes the variance
of the minimum distances to distribute points more uniformly.

• We conducted extensive experiments, including visual and quantitative experiments.
The BI-Net shows an excellent generative ability in many categories of objects. The BI-
Net produces competitive quantitative generation results compared to existing state-
of-the-art methods.

2. Related Work
2.1. Generating 3D Data

Generally, there are four kinds of tasks related to generating 3D data: upsampling,
completion, reconstruction and generation. Point cloud upsampling tasks generate dense
point clouds from the given sparse point clouds, thus modeling the geometry of the shape
more refinely. Point cloud completion tasks aim to generate the entire shape from partial
input point sets. Reconstruction tasks usually involve the reconstruction of image-to-point
cloud, image-to-mesh, image-to-voxel, point cloud-to-mesh data. Generation tasks focus
on generating point clouds from noises. It is a newly developing task, and researchers
usually call this task point cloud generation or shape generation.

Point cloud upsampling. Yu et al. [19] proposed the PU-Net architecture based on
PointNet++ to upsample point clouds; it captures mixing and blending point features in
a learned feature space to work on patches in order to expand point sets. Qian et al. [17]
first proposed a geometric-based upsampling strategy that could jointly generate coor-
dinates and normals for the generated point sets. PU-GAN [20] was the first work that
utilized a GAN to upsample point sets. It uses an up-down-up unit to expand point sets in
the generator and utilizes a self-attention mechanism in the discriminator. Qian et al. [18]
analyzed the local geometry of point clouds and designed a flexible point cloud upsam-
pling network (FlexiblePU) to adaptively learn interpolation weights and the high-order
refinements. The greatest strength of FlexiblePU is that it can upsample point clouds with a
flexible factor after one-time training.

Point cloud completion. Rao et al. [37] designed a bidirectional reasoning strategy
to learn the patterns in both local-to-global and global-to-local directions. SpareNet [38]
presented a channel-attentive EdgeConv to extract the local and global structures of point
features, and then projected the completed points to depth maps with a differentiable
renderer and used adversarial training to advocate the perceptual realism under different
viewpoints. PF-Net [39] utilizes a feature point-based multi-scale generating network to
estimate a missing point cloud hierarchically. Fei et al. [40] employed a dual-channel
Transformer and cross-attention for point cloud completion, convening the geometric
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information from the local regions of incomplete point clouds for the generation of complete
ones at different resolutions.

3D shape reconstruction. Fan et al. [41] introduced the PointOutNet structure to
address the point cloud reconstruction task from a single image, generating point cloud coor-
dinates. Wu et al. [1] utilized a 3D CNN to build a 3D GAN to construct 3D objects from im-
ages by learning the probabilistic latent spaces of two different representations. Gao et al. [2]
proposed DEFTET, which optimizes both vertex placement and occupancy when using vol-
umetric tetrahedral meshes for tackling reconstruction problems. Choy et al. [3] proposed
a 3D recurrent reconstruction neural network (3D-R2N2) to reconstruct a voxel model from
single- or multi-view image(s) and unified single- and multi-view 3D reconstruction in a
single framework.

Point cloud generation. It is also called shape generation. Achlioptas et al. [22] first
researched this problem. They designed a simple GAN with several MLPs in the generator
and discriminator, respectively. Meanwhile, they proposed several evaluation metrics for
the 3D GAN quality. Valsesia et al. [23] utilized graph convolution operations to enhance
the generator. TreeGAN [24] uses a tree-structured graph convolution network (GCN)
to learn the information of father nodes. MRGAN [42] uses a GAN with multi-roots to
generate point sets with unsupervised part disentanglement. In addition to GAN-based
methods, there are also some methods based on probability theory. Cai et al. proposed
ShapeGF [25], which performs stochastic gradient ascent on an un-normalized probability
density to move randomly sampled points to high-density areas, near the surface of a
certain shape. Luo et al. [29] considered the conversion of points from a noise distribution
to a point cloud of a certain shape as the inverse process of the diffusion of particles
from a specific distribution to a noise distribution in a thermal system in contact with a
heat bath. And they proposed to model this inverse diffusion process as a Markov chain
conditioned on a specific shape. Yang et al. [28] proposed PointFlow, which generates point
sets by modeling them as a distribution of distributions under a principled probabilistic
framework. Kimura et al. [43] proposed a flow-based model ChartPointFlow, which forms
a map conditioned on a label. ChartPointFlow maintains the topological structure of the
shape clearly. Li et al. [44] presented a modified Variational auto-encoder to achieve
parts-aware edition and the generation of point clouds in an unsupervised manner. Several
methods have demonstrated their effectiveness on the auto-encoding task through using
AE architectures, e.g., l-GAN [22], ShapeGF [25] and DPM [29]. Although researchers have
made progress in point cloud generation, the implicit connection between a GAN and AE,
which contains a substantial prior information gain, is neglected.

2.2. Combination of GAN and AE

The combination of a GAN and AE in the form of network structure or training
has been widely studied in the 2D image vision field. Donahue et al. [45] proposed
an unsupervised feature learning framework, BiGAN, to learn more useful feature rep-
resentations for auxiliary problems related to semantics. Besides the generator G and
discriminator D of a GAN, BiGAN includes an encoder E to map data generated by G
for a latent representation. BiGAN achieves joint training through the D, discriminat-
ing jointly in data and latent spaces. To tackle the domain generalization problem of
images, Li et al. [46] presented a framework based on adversarial auto-encoders that
consisted of an auto-encoder, discriminator and classifier. The discriminator introduces
adversarial loss in the auto-encoding process, matching the distribution aligned from
different domains by the AE to an arbitrary prior distribution. To alleviate mode col-
lapse and gradient vanishing, Tran et al. [47] proposed Dist-GAN, which combines a
GAN and AE in one framework by constraining the generator with the AE. Dist-GAN
considers the reconstructed data from the AE as real data for the discriminator, combin-
ing the convergence of the AE with that of the discriminator. Thus, Dist-GAN slows
down the convergence of the discriminator and alleviates gradient vanishing effectively.
An et al. [48] designed AE-OT-GAN, which consists of an auto-encoder and a discriminator,
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to alleviate the mode collapse problem in the image generation field. In AE-OT-GAN, the
AE and GAN share the same module, which plays the role of the decoder and generator in
the AE and GAN, respectively. Although the effectiveness and potential of the combination
of a GAN and AE in the field of 2D image vision has been confirmed through extensive
research, there is still a lack of related research in the field of 3D point cloud generation.

2.3. Point Distribution Uniformity Loss

During the experiments, we noticed that lots of points in the point cloud generated by
TreeGCN are not uniformly distributed, which slightly reduces the generation performance
of the BI-Net. Also, the uniformity of the point distribution is an important factor influ-
encing the quality of the point clouds, and many researchers have studied this problem.
Yu et al. [19] proposed repulsion loss in PU-Net. This loss is formulated as follows:

Lrep =
N̂

∑
i=0

∑
i′∈K(i)

η(∥xi′ − xi∥)w(∥xi′ − xi∥), (1)

where the parameter N̂ = rN is the number of output points, η and w are formulated as

η(r) = −r and w(r) = e
−r2

h2 , and K(i) is the index set of the k-nearest neighbors of point
xi. Both η and w are relative to the upsampling rate in the upsampling tasks. Hence,
the repulsion loss cannot be used in the GAN. Li et al. [20] proposed a uniform loss
for PU-GAN. Different from repulsion loss, this loss does not require the upsampling
rate. However, it needs to select several seed points through the farthest-point sampling
strategy. Hence, this loss heavily relies on the quality of selected points, which is also not
suitable for the GAN because the points generated by GANs are very unstable. Similarly,
Wen et al. [49] designed a novel loss that uses an averaged local density of points over a
large surface area of the point cloud. These losses impose strong constraints on the point
distribution uniformity.

3. Proposed Method
3.1. Method Overview

The training pipelines of point cloud generation, auto-encoding and the proposed
BI-Net with collaborative learning are illustrated in Figure 2. As shown in Figure 2a,
the general pipeline used to tackle the shape generation task involves estimating the point
clouds generated by the generator and then discriminating their realness using the discrim-
inator. The adversarial loss is utilized to constrain the generator and discriminator, making
them play the game, thereby ensuring the quality of generated point clouds. However,
using only the adversarial loss is not enough for high-quality point cloud generation [22].
And for the generation task, an unsupervised learning task, it is impossible to introduce the
constraint directly on the distance between the generated point cloud and its ground truth.
And as illustrated in Figure 2b, the general pipeline of training the AE involves utilizing
the encoder to capture the latent code of input point clouds and reconstructing the input
using the decoder. It is feasible to apply constraints on the similarity of the generated point
cloud and the ground truth in the process of training the AE.

In particular, the encoder of the AE and the discriminator of the GAN both actually
reduce the dimension. Although they end up with different dimensions of low-dimensional
data, we can achieve the simultaneous acquisition of both dimensions through the design
of the network of the encoder. The decoder of the AE and the generator of the GAN both
increase the dimensions, and they finally reach the same dimension of data. As illustrated
in Figure 2c, we take advantage of the above traits to integrate the GAN and AE in a
single pipeline with collaborative learning. Moreover, to further improve the quality of the
generated point clouds, we propose an NNME loss that constrains the uniformity of the
point cloud distribution, which alleviates the problem of the local density inconsistency in
the generated point clouds. The error backward propagation of the BI-Net is illustrated in
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Figure 3. The BI-Net propagates point cloud reconstruction loss and optimizes the En and
De in step k and then propagates the GAN loss and NNME loss to the Ge, and the GAN
loss to the Di in step k + 1, thus achieving the collaborative learning of the BI-Net.

Furthermore, the BI-Net plays different roles in different directions of network com-
puting. In the forward direction, the BI-Net works as an AE, which attempts to learn a
mapping function from real points to latent features. Its encoder module takes real points
as input and learns a latent feature of the input by encoding it. The latent feature, which
is of the same dimensional data as the input noise of the GAN, is then passed through
the decoder module to recover the input real points. In the reverse direction, the decoder
module of the AE plays the generator module role of the GAN, and the encoder module
plays the role of discriminator in the GAN. The network architecture is not changed and
the weight learned by the AE is reused. The generator takes N-dim noises as input and
attempts to generate fake points. The fake points are then input into the discriminator for
the classification task. Meanwhile, when training the generator, the proposed NNME loss
is jointly optimized.

Nx

Ge

Di

real points

fake points

(a). Point cloud generation

(c). BI-Net with collaborative learning

(b). Point cloud auto-encoding

latent

feature

real points recovered 

points

En De

z
latent

featurereal points recovered

points

fake points

En

Di

De

Ge

Nx

z

predict labelreal label

GAN
L

recL

NNME
L

Figure 2. Training pipelines of general point cloud generation, auto-encoding and our BI-Net. N
presents the dimension of the input random vector x, and z refers to the latent feature. The graphs and
arrows marked in green (orange) present the modules and data flow of the GAN (AE). (a) Point cloud
generation: Ge and Di represent the generator and discriminator modules of the GAN, respectively.
(b) Point cloud auto-encoding: En and De represent the encoder and decoder modules of the AE,
respectively. (c) BI-Net with collaborative learning: generating and recovering point clouds alterna-
tively and optimizing the BI-Net with reconstruction losses Lrec and LGAN+LNNME, respectively.

fake points

GAN
L

Nx

Ge

De

Di

En

NNME
L

real points recovered points

z

recL
Ge

De

Di

En
Step k

Step k+1

predict labelreal label

Figure 3. The error backward propagation of the BI-Net. For k ∈ [0, Nepoch], Nepoch refers to the
number of training epochs. The BI-Net propagates the error and optimizes as an AE (Step k) and
GAN (Step k + 1) alternatively in the training phase.
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3.2. Network Architecture

As mentioned before, the encoder and discriminator perform a similar information
compression. The encoder of the AE is used to learn the latent feature of point clouds,
of which their dimensions are equal to those of the input noise of the GAN, and the
discriminator of the GAN attempts to distinguish whether the input point clouds are real or
fake. We slightly modified the En–Di output layer to achieve both goals. The architecture of
the En–Di is shown in Figure 4. A point cloud with a size of 2048× 3 will first pass through
5 convolutional layers with a 1× 1 kernel. And after the max pooling layer, the feature will
pass through 3 fully connected layers to obtain a latent feature, which will be input into the
last fully connected layer. The last fully connected layer infers the 1 dim discriminating
results of the current input point cloud based on the latent feature. To sum up, in the
forward direction, the latent feature will be returned as the input of the decoder module.
While in the reverse direction, the 1 dim feature is captured to distinguish whether the
input point cloud is real or fake.

co
n

v
1

co
n

v
2

co
n

v
5

co
n

v
3

co
n

v
4

Max

Pooling

fc
1

fc
2

fc
3

latent feature

fc
4

En Di

real/fake

Figure 4. The architecture of the encoder/discriminator. Conv and fc represent convolutional and
fully connected layers, respectively.

The decoder of the auto-encoder takes the N dim latent feature as input and attempts
to recover the real points, while the generator of the GAN takes the noises as input and
attempts to generate novel unseen points. Both of them perform tasks that increase the
dimensions. In other words, the random vector, the input of the generator, can be under-
stood as a kind of random latent feature. Because graph convolutional networks have
achieved great success in generating 3D point clouds composed of localized point clusters,
we adopted TreeGCN as the backbone of the De–Ge in the BI-Net. The detailed architec-
ture of the decoder/generator is shown in Figure 5. Different from conventional graph
convolutional methods, TreeGCN considers points according to the depth of a tree instead
of combining features of a static number of points with fixed connectivity. The decoder
in the BI-Net builds a tree starting from this latent feature and then grows into a set of
nodes through convolution and branching operations. The branching operation creates
new children nodes for each leaf on the basis of the current tree, thereby increasing the
depth of the tree. The decoder replaces the relationships among neighbors in a graph with
the relationships among children nodes and ancestor nodes. Hence, the feature propagation
of the decoder is formulated as follows:

pl+1
i = σ

Fl
K(pl

i) + ∑
qj∈A(pl

i)

Ul
j qj + bl

, (2)

where σ is the activation unit, pl
i is the i-th node in the graph at the l-th layer, ql

j is the j-th

ancestor node of pl
i , Fl

K is a support net (which consists of two MLPs) used to enhance the

fitting ability of the MLPs, and A
(

pl
i

)
is the set of all ancestor nodes of pl

i . Ul
j and bl are the

weight and bias parameters of the l-th layer, respectively. Similarly, in the reverse direction,
the generator module takes noises as input and generates fake points, which are input into
the discriminator module for classification.
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Figure 5. The architecture of the decoder/generator, which is the same as the generator of
TreeGAN [24]. GraphConv and branching represent advanced graph convolution and branching
operators, respectively.

3.3. Auto-Encoder Direction

In the forward direction, we train the BI-Net as an AE to reconstruct the input point
clouds. Compared with images, point clouds are unordered, and there is no strong rele-
vance of information between different points; therefore, conventional convolution cannot
be adopted. Moreover, the data information of point clouds is much less prevalent than that
of images; for example, if we consider a 3-channel and 128 × 128-pixel image to include
49,152 (128 × 128 × 3) data, the image has much more data than the commonly used point
cloud (2048 × 3). These two reasons determine that the generator module of the GAN
cannot have a complex structure. Most researchers follow this rule, for example, all of the
methods in [22–24] use simple MLPs or assemblies of MLPs, which causes the generator to
not have sufficient ability to learn complex mapping from noises to non-linear shapes.

Hence, we trained an AE in this direction to introduce more priors of point clouds
into the network, constraining the network parameters to a region in which the BI-Net has
a stronger nonlinear fitting ability. The constraint on the hypothesis space of the GAN is
achieved by optimizing the parameters of the BI-Net during the training process of the AE.
The GAN can be optimized to satisfy the discriminative critical points in the hypothesis
space of generating high-quality point clouds. To perform the auto-encoding, we adopted
the EMD loss to evaluate the similarity between real points Srp ⊆ R3 and recovered points
Srecp ⊆ R3, which is formulated as

Lrec = dEMD
(
Srecp, Srp

)
= min

ϕ:Srecp→Srp
∑

xi∈Srecp

∥xi − ϕ(xi)∥2, (3)

where ϕ : Srecp → Srp represents the learned mapping function. Actually, the Chamfer
distance (CD) is another metric method used to evaluate the similarity between two point
sets. However, the main goal of the BI-Net is generating rather than auto-encoding; we
only utilized the EMD loss to avoid having the BI-Net deviate from the optimal weights for
the generation task. The EMD loss captures the point shape structures, encouraging the
recovered points to be located closer to the underlying object surfaces.

3.4. GAN Direction

In the reverse direction, we trained the BI-Net as a GAN to generate point clouds from
random vectors. Since the generated point clouds are not fixed at the beginning, a too
complex discriminator would lead to the unbalance of the GAN. Hence, in the game of the
generator and discriminator in point cloud generation, a discriminator that is simpler than
the generator is recommended. We adopted a two-output-layer network that only consists
of a few MLPs as the discriminator of the BI-Net.
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In order to guarantee the training stability, we selected the object function of the
Wasserstein GAN [50]. The loss used to optimize the generator module is defined as
follows:

Lgen = −Ez∼Z [D(G(z))], (4)

where G and D represent the generator module and discriminator module, respectively.
z ∈ N (0, I) represents a noise that is from a normal distribution Z . The loss of the
discriminator module is defined as follows:

Ldisc =Ez∼Z [D(G(z))]−Ex∼R[D(x)]

+ λgpEx̂

[
(∥∇x̂D(x̂)∥2 − 1)2

]
,

(5)

where x̂ is sampled from the line segments between real point sets x and generated fake
point sets G(z). R represents the distribution of real point sets. To prevent collapse during
the training process, we utilized a gradient penalty to satisfy the 1-Lipschitz condition,
where λgp is a parameter that controls the weight of the gradient penalty.

3.5. Nearest Neighbor Mutual Exclusion Loss

In the course of the experiment, we found that the point clouds generated by TreeGCN
have a non-uniform distribution. However, both the EMD loss and GAN loss have no
supervision on the point distribution uniformity; moreover, as aforementioned, existing
uniformity losses are inapplicable for training a GAN. Hence, we propose the NNME loss,
which has a weak constraint on the point distribution uniformity when training the BI-Net
in the reverse direction. Similar to like charges repelling, the NNME loss attempts to make
points that are too close mutually exclusive. However, the mutual exclusion should not be
too strong; otherwise, the distribution of points will be too dispersed and the BI-Net will
face difficulty in generating meaningful shapes. In order to balance the mutual exclusion
and the underlying shape, the NNME loss only calculates the distance of each point’s
nearest neighbor, rather than reject more points. Instead of restricting the point-to-point
distance as strictly as the repulsion loss, the NNME loss calculates the variance of these
distances to prevent excessive differences in the strength of the mutual exclusion forces at
different points. And this make NNME a much weaker constraint on the point distribution.

Ultimately, the NNME loss makes the points in a point cloud distribute more uniformly
by distancing each point from its nearest point and reducing the variance of this distance.
When training in the GAN phase, we selected the minimum distances in each generated
fake point cloud. The selection process is shown in Figure 6. Supposing that there is a
shape with 2048 points, in the first step, we randomly select one point and find its nearest
neighbor and then save the distance between them in a Minimum Distance Bank and offline
the first point. In the second step, the goal is to find the nearest neighbor of the point that is
the nearest neighbor point in the first step and to save the minimum distance in the bank.
We repeat this process until there are no points left. At this time, all the minimum distances
are stored in the Minimum Distance Bank. The variance of all minimum distances stored in
the Minimum Distance Bank is calculated as the NNME loss:

LNNME =
∑(d− d̄)2

n
, (6)

where d is the distance saved in the Minimum Distance Bank, and d̄ is the mean value of
the distances, while n is the number of distances. Finally, the full objective function that
we apply to optimize the generator module combines both the GAN loss and NNME loss
as follows:

LG = Lgen + λLNNME, (7)

where λ is a hyperparameter controlling the weight of the NNME loss.
The training algorithm of the BI-Net in two directions is shown in Algorithm 1.

The collaborative learning is implemented through alternate forward propagation and the
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optimization of the GAN and AE. The BI-Net will first be optimized with the reconstruction
loss Lrec in the forward direction. In the reverse direction, the BI-Net will be optimized
with the generation loss LG and the discrimination loss Ldisc.

minDist3

minDist2
minDist1

···
minDistn

Step 1 Step 2 Step 3 Step n

Minimum Distance Bank

Figure 6. Illustration of selecting the minimum distances in a single point cloud.

Algorithm 1 The training pipeline of the BI-Net
Input: For auto-encoder: batches of real point clouds rp;
For GAN: batches of noises z ∼ N(0, I).
Output: For generator (decoder): batches of fake point clouds f p.

1: while not converged do
2: recover real point clouds, recp← De(En(rp)).
3: Lrec ← minϕ:Srecp→Srp ∑xi∈Srecp∥xi − ϕ(xi)∥2
4: chain En and De module to form auto-encoder and optimize it with Lrec
5: if epoch now > 0: then
6: With no gradient calculation:
7: generate fake point clouds, f p← Ge(z)
8: discriminate fake and real point clouds, f label ← Di( f p), rlabel ← Di(rp)

9: Ldisc ← E[ f label]−E[rlabel] + λgpEr̂p

[(∥∥∇r̂pD(r̂p)
∥∥

2 − 1
)2

]
10: optimize discriminator module with Ldisc
11: generate fake point clouds, f p← Ge(z)

12: LG ← λ ∑(d−d̄)2

n −E[ f p]
13: optimize generator module with LG
14: end if
15: end while
16: return f p

4. Experiments

We implemented the BI-Net with the Pytorch framework. The Adam optimizer was
used for both the encoder and decoder modules (i.e., the generator and discriminator mod-
ules in the reverse direction.) We take a 128-dimensional random vector as input for the
GAN, which means that N was set as 128, as shown in Figure 2. The learning rate was set as
2× 10−4, while other coefficients such as the exponential decay rates β1 and β2 for the mo-
ment estimates in Adam were set as 0 and 0.99, respectively. λgp and λuni were set as 10 and
1000, respectively. We adopted LeakyReLU as a non-linearity function without batch nor-
malization. To implement TreeGCN, we used 7 layers with depth degrees [1, 2, 2, 2, 2, 2, 64],
and the features of different depths were set as [128, 256, 256, 256, 128, 128, 128, 3]. The loop
term of the support network was set as 10.

4.1. Dataset and Evaluation Metrics

We evaluated the BI-Net with ShapeNet [51], which is a large-scale dataset of 3D
shapes. We selected chair and airplane shapes for the generation in this evaluation. For the
training and testing, we normalized all shapes by centering their bounding boxes to the
origin. Moreover, we re-scaled all shapes by a constant, and hence, all coordinates were in
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the range [−1, 1], so that the metrics focused on the shapes of the point clouds but not the
scale. All of the point clouds in our experiments consisted of 2048 points.

Following prior works, we used the Chamfer distance (CD) and Earth mover’s distance
(EMD) to quantify the generation quality of the point clouds. For each point in the real point
clouds, we first found its nearest neighbor among the generated fake points. The coverage
(COV) was measured as the fraction of the generated point clouds that were matched to the
real point clouds. Both the CD and EMD can be used to compute the distance. Meanwhile,
because coverage cannot indicate exactly how well the covered examples are represented
in real point clouds, we used the minimum matching distance (MMD) to measure the
fidelity of the real point clouds with respect to the generated points. However, since the
low-quality point clouds were most unlikely to match the real point clouds, the MMD was
actually less sensitive to the low-quality point clouds. Thus, following PointFlow, we also
applied a 1-nearest neighbor accuracy (1-NNA), which was proposed by Lopez-Paz and
Oquab [52], to assess whether the distributions of the real and generated point clouds were
identical. The 1-NNA can also be computed using both the CD and EMD. Consequently,
we utilized four metrics in this study, i.e., COV-CD, COV-EMD, MMD-CD, MMD-EMD,
1-NNA-CD and 1-NNA-EMD.

4.2. Visualization of Auto-Encoder

Figure 7 shows the reconstruction results of the input point cloud during the BI-
Net forward auto-encoding process and the generation results of the inverse generating
process. As can be observed, although there are still some differences between the recon-
structed point cloud obtained using auto-encoding and the input, the underlying shapes
are complete and real. The spatial distribution of the reconstructed points is very uniform.
To recover the input point cloud, the AE shows much greater interest in the whole point
cloud rather than the skeleton of the point cloud, which requires a strong nonlinear fitting
ability. Therefore the visualization results illustrate that the auto-encoding task can con-
strain the network parameters to a region where the BI-Net has a stronger nonlinear fitting
ability. The optimization of alternating the GAN and AE allows the BI-Net to generate or
reconstruct the underlying geometry of shapes simultaneously.

Chair Airplane

GT Points

Gen. Points

Rec. Points

Figure 7. The ground truth, reconstructed shapes and generated shapes of the BI-Net with NNME loss.
Rec. Points and Gen. Points represent the reconstructed points and the generated points, respectively.

In addition, we explored the latent space learned by the AE through visualizing the
latent features of shapes. We fed the point clouds in the testing set into the encoder of the
trained AE to obtain the bn × 1× 128 latent features of point clouds, where bn refers to
the batch size. The latent features produced by the encoder were dimensioned down to
2D, and the clustering of the 2D features was visualized in a 2D plane using t-SNE [53],
as presented in Figure 8. It can be observed that for most categories, the latent features
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of a certain category are gathered together, and there are significant margins between
different categories. The t-SNE clustering performance indicates that the BI-Net is capable
of learning effective, category-distinct representations.

Figure 8. The t-SNE clustering visualization of latent codes obtained from the encoder of the BI-Net.

4.3. Visualization of Generation

We visualize the ground truth and the generation results of TreeGAN, the BI-Net and
the BI-Net with the NNME loss for a chair in Figure 9 and airplane in Figure 10. Instead of
visualizing the generated point clouds as relatively large points, which is more aesthetically
pleasing for visualizing shapes, we set the point size to be small enough to show the
uniformity of the point cloud spatial distribution in Figures 9 and 10. It can be observed
that the BI-Net can generate the accurate and complete underlying geometry of chair and
airplane shapes. For example, in the red boxes of the chairs, the chair legs are oddly shaped
or incomplete. In the red boxes of the airplanes, the physical irrationality and asymmetry
of the wings is reflected. In addition, it is obvious that there are several agglomerations in
the TreeGAN results, as shown in the yellow boxes. While the non-uniform phenomenon
has been relieved a lot by the BI-Net, the point distribution is still not totally uniform.
In combination with the NNME loss, the point distribution uniformity is acceptable for
both the chair and airplane point clouds. The visualization of the generated results strongly
supports the validity of the BI-Net with the NNME loss.

Ground Truth

TreeGAN

BI-Net

BI-Net+NNME

Figure 9. The ground truths of chairs and the corresponding generation shapes of TreeGAN, the
BI-Net and the BI-Net with the NNME loss, respectively. The red boxes indicate the shape problems,
and the yellow boxes denote the points’ local clumping problem.
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Ground Truth

TreeGAN

BI-Net

BI-Net+NNME

Figure 10. The ground truths of airplanes and the corresponding generation shapes of TreeGAN, the
BI-Net and the BI-Net with the NNME loss, respectively. The red boxes indicate the shape problems,
and the yellow boxes denote the points local clumping problem.

To validate the generalization ability of the proposed BI-Net, we tested the BI-Net
on more categories of shapes in ShapeNet. More examples of the generated point clouds
visualization are illustrated in Figure 11, where we present a larger size of points to exhibit
the geometry of the generated point clouds more explicitly. The visualization results indi-
cate that the BI-Net can be implemented to generate objects of different underlying shapes,
including curved and flat surfaces, e.g., bottle, bag, bathtub, car, guitar, table and bowl
shapes. All the visualizations of the generation results demonstrate that the collaborative
learning of the GAN and AE led the BI-Net to generate better underlying shapes.

Figure 11. Visualization of shapes generated by the BI-Net for more categories (e.g., bottle, bag,
bathtub, car, guitar, table and bowl).

4.4. Ablation Study

We conducted an ablation study to quantify the importance of the proposed BI-Net
with collaborative learning (CL) and the NNME loss. Since the generator of the BI-Net is the
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same as that of TreeGAN, we used TreeGAN with CL to represent the BI-Net, and TreeGAN
with the NNME loss and CL refers to the BI-Net with the NNME loss. The generation
results of the chair and airplane shapes are shown in Table 1. AE in Table 1 means simply
introducing an auto-encoding loss in the GAN without collaborative learning, like the way
in which most works essentially combine a GAN and AE. We can find that in the task of
3D point cloud generation, the collaborative learning method, that is, the BI-Net, is more
effective than the previous simple introduction of an AE reconstruction loss. We can see
that the NNME loss has a significant effect on improving the shape generation quality of
both TreeGAN and the BI-Net. For both chair and airplane generation, the BI-Net without
NNME performs better than TreeGAN, which demonstrates that the collaborative learning
of the GAN and AE is of great significance for point cloud generation. And with the NNME
loss, the generation performance of the BI-Net is further improved. All the metrics show
that the BI-Net with the NNME loss achieves the best performance on shape generation.
The ablation study demonstrates the effectiveness and superiority of both the NNME loss
and the BI-Net with collaborative learning.

Table 1. Ablation study comparing generation performance. ↑: the higher the better; ↓: the lower
the better. CL refers to the proposed collaborative learning of the GAN and AE; thus, a modified
TreeGAN with CL is actually equivalent to our BI-Net. Bold numbers denote the best results.

COV (%, ↑) MMD (↓)

Shape TreeGAN NNME AE CL CD EMD CD (%) EMD (/10)

Chair

✓ 38.02 6.77 1.494 3.613
✓ ✓ 45.00 35.00 0.823 1.486
✓ ✓ ✓ 50.00 50.00 3.565 2.205
✓ ✓ 55.00 40.00 0.831 1.869
✓ ✓ ✓ 60.00 50.00 0.543 1.114

Airplane

✓ 39.37 8.40 0.432 1.953
✓ ✓ 45.00 45.00 0.295 1.037
✓ ✓ ✓ 40.00 25.00 1.098 1.543
✓ ✓ 56.25 50.00 0.169 1.093
✓ ✓ ✓ 60.00 65.00 0.294 0.845

4.5. Evaluation of Generation

We quantitatively compared the BI-Net with six state-of-the-art methods in the point
cloud generation task, i.e., r-GAN [22], GCN-GAN [23], TreeGAN [24], ShapeGF [25],
DPM [29] and ChartPointFLow [43]. Table 2 reports the metrics of the generation results.
Without the NNME loss, the COV-CD and MMD-CD metrics show that the BI-Net achieves
the best performance with respect to chair shape generation, i.e., 6.06% and 0.397% better
than those of DPM. And the MMD-EMD metric of the BI-Net is close to the optimal value
of 1.784. For airplane shape generation, the BI-Net obtains the best results for the COV-CD,
COV-EMD and MMD-CD metrics. And its MMD-EMD and 1-NNA-CD metrics are also
competitive compared with those of SOTAs. These results support the conclusion that the
collaborative learning of the GAN and AE helps the network learn how to generate better
shapes effectively. However, as is shown in Table 2, the BI-Net shows a poor performance
in 1-NNA-EMD, which illustrates that the distribution of shapes generated by the BI-Net is
different from that of the real shapes.

With the NNME loss, the generation performance of the BI-Net on most metrics far
exceeded those of the existing state-of-the-art methods. For chair shape generation, the
BI-Net outperformed the other methods by a large margin with respect to all the COV
and MMD metrics. The BI-Net also achieves a comparable performance to those of DPM
and ShapeGF under the 1-NNA score. Furthermore, it should be noted that the MMD-CD
metric value was reduced to approximately 40% of those of other state-of-the-art methods,
which is a considerable improvement. With the NNME loss, the BI-Net also achieves the
best performance in all COV metrics, including the MMD-EMD and 1-NNA-CD metrics for



Remote Sens. 2024, 16, 1772 15 of 18

airplane shape generation, and it achieves the second best performance for MMD-CD and
1-NNA-EMD. The generation results demonstrate that both the coverage and fidelity of the
points generated by the BI-Net achieve the best performance. Based on the above results,
we note that the BI-Net and NNME loss make a lot of sense in generating high-quality
point clouds.

Table 2. Shape generation results. ↑: the higher the better; ↓: the lower the better. Bold numbers
denote the best results. The italics are sub-optimal results. The 1-NNA (%) metrics that are closer to
50% are better.

COV (%, ↑) MMD (↓) 1-NNA (%)

Shape Model CD EMD CD (%) EMD (/10) CD EMD

Chair

r-GAN 46.23 22.14 1.345 3.104 69.67 100
GCN 39.84 35.09 1.535 2.213 77.86 95.8

TreeGAN 38.02 6.77 1.494 3.613 74.92 100
ShapeGF 48.53 46.71 1.318 1.785 56.17 62.69

DPM 48.94 47.52 1.228 1.784 60.11 69.06
ChartPointFlow - - - - - 58.31

BI-Net 55.00 40.00 0.831 1.869 70.00 97.50
BI-Net+NNME 60.00 50.00 0.543 1.114 65.00 67.50

Airplane

r-GAN 42.17 13.84 0.382 1.81 77.59 98.52
GCN 39.04 18.62 0.471 1.65 89.13 98.6

TreeGAN 39.37 8.4 0.432 1.953 83.86 99.67
ShapeGF 46.79 44.98 0.373 1.061 62.69 71.91

DPM 48.71 45.47 0.328 1.061 64.83 75.12
ChartPointFlow - - - - - 65.08

BI-Net 56.25 50.00 0.169 1.093 65.63 93.75
BI-Net+NNME 60.00 65.00 0.294 0.845 60.00 70.00

5. Conclusions

In this paper, we propose a novel and promising bidirectional network (BI-Net) for
tackling the 3D point cloud generation task. In contrast to existing approaches that usually
produce point clouds by training a GAN and AE without collaboration, we utilized the
network structure similarity and the task similarity between the AE and GAN ingeniously,
and we trained a GAN and AE alternately to achieve collaborative learning. The BI-Net
was trained toward auto-encoding and generation tasks in the forward and reverse direc-
tions, respectively. The alternating training of the network in both directions enhances
the non-linear fitting ability of the generator module, and the parameters optimized using
the AE help the GAN to step into a better region. In this way, the BI-Net not only enables
the integration of prior information significantly, but also enhances the ability to generate
reasonably structured and high-quality point clouds. To further improve the uniformity of
generated point clouds, we proposed a Nearest Neighbor Mutual Exclusion loss, which im-
poses a precise constraint during the training process. We conducted extensive experiments
to demonstrate that our BI-Net with the collaborative learning and NNME loss obtains
the best results for the COV-CD, COV-EMD and MMD-CD metrics, which means that our
approach outperforms existing state-of-the-art GAN and AE methods, providing a novel
and robust solution to the 3D point cloud generation challenge.
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